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Introduction

Let F be a totally real number field, ρ = ρf : GF → GL2(k) be an odd residually modular

representation (odd meaning that complex conjugation acts as

(
−1 0
0 1

)
for every archimedean

place).
Let St be the set of places where ρf is Steinberg, Sp is the set of places over p, S∞ the set of
archimedean places of F, , and assume it is unramified everywhere else. For the purposes of this
write up, all that matters is that St ∪ Sp is a finite set of finite places.
Our is to construct certain auxillary sets of places Q of F which have associated deformation rings
RQ. Q will consist of so called Taylor-Wiles Places.

Definition. A place v of F is a Taylor-Wiles place if it satisfies the following conditions.

• v /∈ S ∪ Sp.

• Nv ≡ 1 (p).

• The eigenvalues of ρ(Frobv) are distinct and belong to k.

Let R�,χ
Q∪St∪Sp be the universal framed deformation ring unramified outside of Q ∪ St ∪ Sp with

fixed determinant χ = χp, the p-adic cyclotomic character.
Let L� be the completed tensor product of the universal framed local deformation rings at
v ∈ St ∪ Sp of fixed determinant ψv and B� the completed universal product of their Steinberg
quotients (for v ∈ St,) and their ordinary-crystalline quotients for v ∈ Sp.
Let R�

Q = R�,χ
Q∪St∪Sp ⊗L� B�. This represents the universal framed deformation ρ : GF → GL2(RQ)

of ρ unramified outisde of Q ∪ St ∪ Sp which is Steinberg at St and ordinary-crystalline at Sp.

Although we do allow ramification at Q, the Taylor-Wiles conditions control it tightly.
Let v be a Taylor-Wiles place and consider ρ|GFv .
ρ is unramified at v. So, ρ(Iv) lands inside the 1-units of GL2(RQ), which is a pro-p group. But
the wild inertia group Wv ⊂ Iv is a pro-v group and so it gets killed. Thus, the reduction is
tamely ramified at v. Even better,

Lemma. ρ|GFv is a sum of two (tamely ramified) characters η1 ⊕ η2.

Proof. The tame galois group is generated by σ = Frobv and the group Iv. For every τ ∈ Iv, we
have the relation

στσ−1 = τNv. (∗)
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By the Taylor-Wiles assumption on Frobenii, ρ(σ) has distinct eigenvalues. By Hensel’s lemma,

we may lift ρ(σ) so that ρ(σ) is diagonal, say

(
α 0
0 β

)
,

with respect to some (possibly different) basis. With respect to this basis, express

ρ(τ) = 1 +

(
a b
c d

)
For some a, b, c, d ∈ mQ. Apply ρ to (∗) and expand to get

1 +

(
a bαβ−1

cβα−1 d

)
=

Nv∑
k=0

(
Nv

k

)(
a b
c d

)k
.

Note that for k ≥ 2, the top right and bottom left entries of the right side summands lie in
mQ(b, c). Thus comparing with these entries on the left side,

b(αβ−1 −Nv), c(βα−1 −Nv) ∈ mQ(b, c).

But α and β are residually distinct, by assumption. Then by the congruence property of TW
places

αβ−1 −Nv, βα−1 −Nv 6= 0 (p)

implying that both terms are units in RQ. Thus, (b, c) ⊂ mQ(b, c). By Nakayama’s Lemma, this
implies that b = c = 0. Since τ was aribitrary, the claim follows.

O[∆Q] Structure on R�
Q

We have just shown that ρ|GFv is a sum of two (tamely ramified) characters η1 ⊕ η2. Choose one,
say η.
We know that η|Iv has pro-p image. Also by class field theory, it determines a character
η′ : O×v → R�×

Q . As the 1-units are pro-v, this is really a map η′ : (Ov/v)× → R�×
Q which factors

through the maximal p-power quotient of (Ov/v)×. Call this maximal p-power quotient ∆v. Let
∆Q =

∏
v∈Q ∆v. Our choice of η defines an action of ∆Q on RQ, thus giving RQ the structure of an

O[∆Q]-module.

We still haven’t constructed the set of primes Q. Actually, we want to construct a family of such
Q = Qn of the following sort:
For fixed positive integers g, h satisfying dimB� = 1 + h+ l− g (remember that B� is the framed
ring of Steinberg and ord-cryst conditions),

• |Qn| = h

• Nv = 1 (pn)

• R�
Qn

is topological generated by g elements over B�.
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Note that the congruence condition Nv = 1 (pn) means that ∆v is p−power cyclic of order
divisible by pn. Thus, after a choice of generators for these cyclic groups, the O[∆Q]-module
structure on R�

Q is equivalently an O[[T1, ..., Th]]/((T1 + 1)p
a1 − 1, ..., (Th + 1)p

ah − 1)-module
structure, where all ai ≥ n.
There are no obvious maps between the RQn . But by the magic of the patching, we will find a
subset of the RQn which form a kind of inverse system with limit R�

∞. We dream that by “letting
n→∞”, we’ll give R�

∞ the structure of a free O[[T1, ..., Th]]-module.
A couple remarks about these conditions:

1) The explicit values

h = dimH1(GF,St∪Sp , ad
0ρ(1))

g = h− [F : Q] + |St|+ |Sp| − 1

will suffice.

2) Our stipulation that dimB� = 1 + h+ l − g will only appear natural once we dive into the
patching argument.

3) The g we will construct is actually the relative topological dimension of R�
Qn

over L�, which
will certainly suffice.

Construction of the TW Sets

From now on, we will assume that

ρ|GF (ζp)
is absolutely irreducible.

This cheaply implies the following apparently much stronger fact.

Lemma. ρ|GF (ζpn )
is absolutely irreducible.

Proof. Our standing assumption is that ρ|GF (ζp)
is absolutely irreducible.

Note that H = GF (ζpn ) is a normal subgroup of G = GF (ζp). Thus, the restriction ρ|H is
semisimple. Indeed, if W is an invariant subspace, then⊕

G/H−1.H

gW

is an invariant complement.
Suppose ρ|H is not irreducible. Then it is the direct sum of two characters. Since V, as a
G-module, is absolutely irreducible, G/H must permute these characters transitively. But G/H is
a p-group, and so it cannot act transitively on a 2 element set (for any p > 2, which we have
assumed). Thus, the two characters are the same.
This implies that every line in V is stabilized by H. But there are |P(V )(k)| = |k|+ 1 of them. So
the number of them is prime to p. Hence, some orbit of G/H on the set of k-lines in V has size
prime to p. But the size of the orbit must also divide |G/H|, which is p-power. Hence, this orbit
has size 1, i.e. there is an H-stable line which is G/H-stable. This line is then G-stable,
contradicting the irreducibility of V.
The same argument carries out mutatis mutandis after first making a finite extension of the
ground field k of V. Thus, ρ|H is indeed absolutely irreducible.
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We’ll now prove our main lemma of interest.

Theorem (DDT, Lemma 2.49). Let h = dimH1(GF,St∪Sp , ad
0(ρ(1))). For every n, we can

construct a set Qn of Taylor-Wiles places, i.e.

(1) For each v ∈ Qn, Nv = 1 (pn).

(2) For each v ∈ Qn, ρ(Frobv) has distinct k-rational eigenvalues.

(3) |Qn| = h.

Proof. An easy calculation shows that if ρ(Frobv) is a Taylor-Wiles place, then
dimH1(kv, ad

0(ρ)(1)) = 1.
Indeed, for any σ in GF,St∪Sp , if σ has (generalized) eigenvalues α, β then ad0(ρ)(σ) has
(generalized) eigenvalues 1, αβ−1, βα−1. Thus, if ρ(Frobv) has distinct eigenvalues, the space
ad0(V )/(Frobv − 1)ad0(V ) is one dimensional. Since a v-unramified cocycle is uniquely
determined by its value on Frobv, we get that dimH1(kv, ad

0(ρ)(1)) = 1.
Thus, it suffices to show that the restriction map

H1(GF,St∪Sp , ad
0(ρ)(1))→ ⊕v∈QnH1(kv, ad

0(ρ)(1))

is an isomorphism. Then equating dimensions shows that condition (3) is fulfilled.
To do this, it suffices to show that for any global cocycle ψ there exists a v = vψ satisfying (1) and
(2) such that resv(ψ) 6= 0. For then we could apply this to the elements of a basis (of size h) for
the left side, and the corresponding set of places {vψ} would consistute a TW set.
Instead we’ll show that we can find σ ∈ GF,St∪Sp satisfying the following:

(1’) σ|GF (ζp)
= 1.

(2’) ad0ρ(σ) has an eigenvalue other than 1.

(3’) ψ(σ) /∈ (σ − 1)ad0ρ(1).

Indeed, all three of the above conditions are open conditions in GF,St∪Sp . But by the Chebotarev
density theorem, we any non-empty open set contains some Frobv. This v will do.

Let F0 be the fixed field of the kernel of ad0ρ and let Fm = F0(ζpm).

Claim. ψ(GFn) is non-zero.

Later, we’ll even show that its k-span is a non-zero Gal(Fn/F (ζpn))-submodule of ad0ρ. From this,
we can leverage information from the irreducibility of ρ|GF (ζpn )

just proven.

Proof. In this claim and what follows, assume n > 0 so that the cyclotomic character is trivial
when restricted to GFn . There is an inflation-restriction sequence

0→ H1(GFn/F , ad
0ρ(1))

inf−−→ H1(GF , ad
0ρ(1))

res−→ H1(GFn , ad
0ρ(1)).

Thus, it suffices to prove that the leftmost term is zero. For then, ψ|GFn is a non-zero cohomology
class, and so is certainly not identically 0.
We can sandwich the left most term in another inflation-restriction sequence:

0→ H1(GF0/F , (ad
0ρ(1))GF0 )

inf−−→ H1(GFn/F , ad
0ρ(1))

res−→ H1(GFn/F0 , ad
0ρ(1))GF0/F . (∗)

where the action of g ∈ GF0/F on the third term is given by η 7→ (h 7→ g−1η(ghg−1)).
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• Third term of (*)
There is a restriction-corestriction sequence

H1(GFn/F0 , ad
0ρ(1))

res−→ H1(GFn/F1 , ad
0ρ(1))

cores−−−→ H1(GFn/F0 , ad
0ρ(1))

and the composition is multiplication by |GF1/F0|. This number is ≤ p− 1 and so is prime to
p. Hence, res is injective. It also sends GF0/F -invariants to GF0/F -invariants. Thus, it suffices
to show that H1(GFn/F1 , ad

0ρ(1))GF0/F is zero.

– GFn/F1 is naturally a subgroup of the commutative quotient GF (ζpn )/F of GF (given just
by restricting automorphisms to F (ζpn)). The conjugation action is compatible with
this restriction. Thus the conjugation action on GFn/F1 is trivial since the latter
quotient of GF is abelian.
Note that GFn/F1 acts trivially on ad0ρ(1). Hence,

H1(GFn/F1 , ad
0ρ(1))GF0/F = Hom(GFn/F1 , ad

0ρ(1))GF0/F = Hom(GFn/F1 , ad
0ρ(1)GF0/F ).

But ad0ρ(1)GF0/F = 0.
Indeed, any GF (ζpn )-invariant element of ad0ρ(1) is equivalently a trace 0 intertwining
operator V → V (1) (V the underlying vector space of ad0). But n > 0, so the action of
the cyclotomic character is trivial. So this is actually an intertwining operator V → V.
But V is an irreducible GF (ζpn )-module, and so any self-intertwining operator is scalar
and so must be 0 by our trace 0 assumption (p > 3 by our standing assumptions).

Hence, the third term of (∗) is 0.

• First term of (*)

– (ad0ρ(1))GF0/F is trivial unless F0 ⊃ F (ζp). This is because for any place v with
Nv 6= 1 (p), ad0ρ(Frobv) fixes something but χp(Frobv) 6= 1. So, we assume that

GF0/F → GF (ζp)/F → 0.

In particular, GF0/F has a non-trivial quotient and so is not a non-abelian simple group.

– Since (ad0ρ(1))GF0/F has p-power order, we also have an injection

0→ H1(GF0/F , (ad
0ρ(1))GF0 )

res−→ H1(P, (ad0ρ(1))GF0 ),

where P is the Sylow p-subgroup of GF0/F . Thus, we can assume that P is non-trivial,
i.e. that p divides |GF0/F |.

– Finally, since F0 is the field cut out by ad0ρ,GF0/F is isomorphic to the projective
image of ρ.

We can put these facts to good use in conjunction with an explicit characterization of finite
subgroups of PGL2(Fp).

List of Finite Subgroups H of PGL2(Fp) [ EG, II.8.27 ]
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– H is conjugate to a subgroup of the upper triangular matrices.

– H is conjugate to PGL2(Fpr) or PSL2(Fpr) for some r ≥ 1.

– H is isomorphic to A4, A5, S4, or D2r, p - r for r ≥ 2. Furthermore, if H is isomorphic to
D2r = 〈s, t|s2 = tr = 1, sts = t−1〉 , then it is conjugate to the image of

s 7→
(

0 1
1 0

)
t 7→

(
ζ 0
0 1

)
,

where ζ is a primitive rth root of unity.

We can eliminate all of these possibilities, one by one.

– The projective image H cannot be conjugate to a subgroup of the upper triangular
matrices, for then ρ|GF (ζp)

would not be absolutely irreducible.

– Our assumptions p > 5 and p divides |GF0/F | preclude the possibilities
H ∼= A4, A5, S4, D2r, p - r.

– PSL2(Fpr) is simple for p > 5. Thus, it cannot have a quotient, namely GF (ζp)/F , which
is non-trivial.

– Suppose H = im(ρ) ∼= PGL2(Fpr). The only non-trivial quotient of PGL2(Fpr) is order
2. But GF0/F cannot have a quotient of order 2.
If it did, there would be an exact sequence

1→ Z → im(ρ)→ im(ad0(ρ))→ 1,

with Z a central subgroup of GL2(k) and im(ad0(ρ)) either order 1 or 2. But then any
pre-image A of the non-trivial element of im(ad0(ρ)) and Z generate im(ρ). But A has
an invariant subspace (possibly after a quadratic extension). So that means im(ρ) does
too, contradicting the absolute irreducibility of ρ.

Since none of these are possible, we must have the first term of (∗) being 0 after all.

We conclude that the second term of (∗) is 0 as well, which is what we wanted; this proves that
ψ(GFn) is indeed non-zero.

We can say more. For τ, τ ′ ∈ GFn , σ ∈ GF (ζpn ), repeated use of the cocycle relation gives

ψ(στσ−1) = ψ(σ) + ψ(τσ−1)

= ψ(σ) + σψ(τ) + στψ(σ−1)

= ψ(σ) + σψ(τ) + σψ(σ−1) = σψ(τ).

Note: the second last equality holds because τ acts trivially on ad0ρ(GFn). Also,

ψ(τ) + ψ(τ ′) = τ ′ψ(τ) + ψ(τ ′) = ψ(ττ ′).

Thus, the k-span of ψ(GFn) is in fact a non-zero GFn/F (ζpn )-submodule of ad0ρ.

Next, we’ll find an element g ∈ GFn/F (ζpn ) such that ρ(g) has distinct eigenvalues and which fixes
an element of k.ψ(GFn). We do this by the explicit classification of possible projective images, i.e.
we’ll show that for any subgroup H which could possibly be the projective image of ρ, there is an
element of H with distinct eigenvalues which fixes an element of k.ψ(GFn).
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• Note first that if we can prove the result for some subgroup H ⊂ H ′, then it true for
putative projective image H ′ as well. Also, the “exceptional” cases A4, S4, and A5 all
contain D4 and the projective image cannot be contained in an upper triangular subgroup
(due to the absolute irreducibility of ρ|GF (ζpn )

. Thus, in view of the preceding classification of

finite subgroups of PGL2(Fp), it suffices to check the following cases:

• PSL2(Fpr)
ad0 is simple under the action of PSL2(Fpr). Thus, k.ψ(GFn) = ad0 and(
α 0
0 α−1

)
fixes

(
−1 0
0 1

)
∈ ad0 = k.ψ(GFn). Since p > 5, we can certainly find α 6= α−1.

• D4

ad0 decomposes as V1 ⊕ V2 ⊕ V3, where

V1 =

〈(
0 1
1 0

)〉
, V2 =

〈(
0 −1
1 0

)〉
, V3 =

〈(
1 0
0 −1

)〉
.

D4 acts as ±1 on each Vi. Furthermore, by our explicit description of the image of dihedral
groups, each non-trivial element has distinct eigenvalues (of ±1). Since the only possible
invariant subspaces of ad0 are then ⊕i∈IVi for some I ⊂ {1, 2, 3}, it follows that some
element h ∈ D4 with distinct eigenvalues fixes an element of k.ψ(GFn).

• D2r, r odd
ad0 decomposes as W1 ⊕W2 where

W1 =

〈(
1 0
0 −1

)〉
,W2 =

〈(
0 1
0 0

)
,

(
0 0
1 0

)〉
.

W1 is fixed by

(
1 0
0 ζ

)
and

(
0 1
1 0

)
fixes

(
0 1
1 0

)
.

Since ad0 = Wi or W1 ⊕W2, it follows again that some h ∈ D2r with distinct eigenvalues
fixes an element of k.ψ(GFn).

Having found such a g, it must certainly fix a non-zero element of ψ(GFn) itself, say ψ(τ0).

• Indeed, as an Fp-vector space, the k.ψ(GFn) is isomorphic to k ⊗Fp ψ(GFn). But then if
k1, ..., km forms a basis for k over Fp, we can express the fixed element m of k.ψ(GFn) as
m = k1ψ(τ1) + ...+ knψ(τn), where at least one ψ(τi) 6= 0. If m is fixed by g, then

k1((g − 1)ψ(τ1)) + ...+ kn((g − 1)ψ(τn)) = 0.

But linear independence implies that (g − 1)ψ(τi) = 0, which is what we wanted.

Choose a lift σ0 of g to the absolute Galois group.
For τ ∈ GFn , we have

ψ(τσ0) = τψ(σ0) + ψ(τ) = ψ(σ0) + ψ(τ).
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• If ψ(σ0) /∈ (σ0 − 1)(ad0ρ(1)), then take τ = 1.

• Otherwise, choose τ = τ0. For this choice, ψ(τ0) /∈ (σ0 − 1)ad0ρ(1). For suppose
(σ0 − 1)x = ψ(τ0) 6= 0. Applying σ0 − 1 to both sides, our construction of τ0 gives

(σ0 − 1)2x = (σ0 − 1)ψ(τ0) = 0.

But σ0 acting on ad0 is semisimple and has eigenvalue 1 with multiplicity 1 (since ρ(σ0) has
distinct eigenvalues) . Thus, (σ0 − 1)x = 0, implying that ψ(τ0) = 0, contrary to our
construction.

Thus, in both cases
ψ(τσ0) /∈ (σ0 − 1)ad0ρ(1) = (τσ0 − 1)ad0ρ(1).

So we’ve finally constructed the element σ = τσ0 that we sought in the first place.

Number of Topological Generators for R�,χ
Qn∪St∪Sp

over L�

We now have all of the pieces in place to compute the relative tangent space dimension of
R�,χ
Qn∪St∪Sp over L�, both defined as in the introduction.

Lemma (FFGS, 3.2.2). Let h1(GF,St∪Sp∪S∞ , ad
0(V )) denote the k-dimension of

ker(H1(GF,St∪Sp∪S∞ , ad
0(V ))→

∏
v∈St∪Sp

H1(GFv , ad
0(V ))).

For v ∈ St ∪ Sp, let δv = dimkH
0(GF,St∪Sp∪S∞ , adV ) and δF = dimkH

0(GF,St∪Sp∪S∞ , adV ).

Then R�,χ
F,St∪Sp∪S∞ is the quotient of a power series ring over L� in

g = h1(GF,St∪Sp∪S∞ , ad
0(V )) +

∑
v∈St∪Sp

δv − δF .

variables.

Proof. Let our vector space V have fixed basis β.
An element of the relative tangent space corresponds to a deformation of V to a finite free
k[ε]-module Ṽ together with a choice of bases β̃v lifting β such that for each v ∈ St ∪ Sp, the pair
(Ṽ |GFv , βv) is isomorphic to (V ⊗k k[ε], β ⊗k 1).
For fixed choices of bases, the space of such deformations is given by

ker(H1(GF,St∪Sp∪S∞ , ad
0(V ))→

∏
v∈St∪Sp

H1(GFv , ad
0(V ))).

Given such a deformation, Ṽ , the space of possible choices for a bases is the space of GFv

automorphisms of (V ⊗k k[ε], β ⊗k 1); such an automorphism reduces to 1 mod (ε) and so is of the
form 1 + εM for some GFv -equivariant M ∈ ad(V ), i.e. M ∈ H0(GFv , adV ).
The same reasoning shows that two collections {βv}v∈St∪Sp and {β′v}v∈St∪Sp determine the same
framed deformation if they differ by an element of H0(GF,St∪Sp∪S∞ , adV ). The lemma follows.
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Now we compute this h1, the dimension of a Selmer group, via the Wiles Product formula.

Lemma (FFGS, 3.2.5). Set g = dimkH
1(GF,Sp∪St, ad

0ρ(1)), ad0ρ(1))− [F : Q] + |St|+ |Sp| − 1.
For each positive integer n, there is a finite set of primes Qn of F which is disjoint from St ∪ Sp
and such that

(1) If v ∈ Qn, then Nv = 1 (pn) and ρ(Frobv) has distinct eigenvalues.

(2) |Qn| = dimkH
1(GF,Sp∪St, ad

0ρ(1)). Also, R�
Qn

is topolgoically generated by g elements as a

B�-algebra.

Proof. We define a set of local conditions to compute this relative dimension, the dimension of a
Selmer group. Namely, let

H1
Lv =

{
0 if v ∈ St ∪ Sp
H1(GFv , ad

0ρ) otherwise.

Write H1
LQn (resp. H1

L⊥Qn
) for the set of classes which restrict to H1

Lv (resp. H1
L⊥v

) for each

v ∈ St ∪ Sp ∪Qn. (“⊥” denoting the annihilator under Tate local duality).
The main result from the previous section shows that we can find a set of primes Qn satisfying
condition (1) and the first part of condition (2). Furthermore, any class in H1

L⊥Qn
restricts to 0 in

H1(GFv , ad
0ρ(1)). By our choice of primes, this implies that H1

L⊥Qn
= 0.

By the Wiles Product Formula, we get

|H1
LQn | =

H0(GF,St∪Sp∪S∞ , ad
0ρ)

H0(GF,St∪Sp∪S∞ , ad
0ρ(1))

∏
v∈St∪Sp∪S∞

H1
Lv

H0(GFv , ad
0ρ)

.

• Global terms
An element of H0(GF,St∪Sp∪S∞ , ad

0ρ) corresponds to a trace 0 self-intertwining operator of V.
Since ρ|GF (ζp)

is absolutely irreducible, any self-intertwining operators are scalars. But the

only trace 0 scalar matrix is 0 (for p > 2).
Similarly, an element of H0(GF,St∪Sp∪S∞ , ad

0ρ(1)) corresponds to an intertwining operator
V → V (1) between irreducible GF (ζp)-modules. Either they are not isomorphic, in which
case only the 0 operator can intertwine them, or they are isomorphic, in which case the
above paragraph applies.

• v ∈ St ∪ Sp
ad0(V ) is a summand of ad(V ) for p > 2. So, the terms in the product corresponding to
v ∈ St ∪ Sp in the product formula contribute |k|1−δv .

• v ∈ S∞

• v ∈ Qn

H1(GFv , ad
0ρ)

H0(GFv , ad
0ρ)

= H2((GFv , ad
0ρ))× local Euler characteristic−1.

The H2 term equals H0(GFv , ad
0ρ(1)) by Tate local duality. The local Euler characteristic,

which equals [Ov : |ad0(V )|Ov]
−1 by the local Euler characteristic formula, is 1 since |ad0(V )|

is prime to v ∈ Qn. Hence, the product formula terms for v ∈ Qn equal H0(GFv , ad
0ρ(1)).
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Since ρ(Frobv) had distinct eigenvalues, there is a 1-dimensional subspace of ad0(V ) fixed by
ad0ρ(Frobv). Since ρ|GFv is unramified, H0(GFv , ad

0ρ(1)) is 1-dimensional.

• S∞
By one of our standing assumptions, ρ is odd, i.e. for archimedean places v, ρ(c) can

represented as a matrix

(
1 0
0 −1

)
with respect to some basis. Hence, ad0ρ(c) is can be

diagonalized to

 −1 0 0
0 1 0
0 0 −1

 . But GFv is cyclic of order 2, generated by c. Hence, the

space of cocycles is just ker(ad0ρ(c) + 1), which is 2-dimensional, and the space of
coboundaries is im(ad0ρ(c)− 1), which is 2-dimensional. Hence H1(GFv , ad

0ρ) = 0.
Also, H0(GFv , ad

0ρ) is the 1-eigenspace of ad0ρ(c), and so is 1-dimensional.

Adding everything together, we get

h1(GF,St∪Sp∪S∞ , ad
0(V )) = dimkH

1
LQn

= 0 +
∑

v∈St∪Sp

(1− δv) +
∑
v∈Qn

1 +
∑
v∈S∞

−1

= |St|+ |Sp| −
∑

v∈St∪Sp

δv + |Qn|+ [F : Q]

= |St|+ |Sp| −
∑

v∈St∪Sp

δv + dimkH
1(GF,St∪Sp , ad

0ρ(1)) + [F : Q]

Combining with the previous lemma gives that

g = dimkH
1(GF,St∪Sp , ad

0ρ(1)) + |St|+ |Sp|+ [F : Q]− 1,

as desired.

We can conclude that R�
Q is generated by g elements as a B� algebra as well. Thus, we are finally

done our construction of TW primes.
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