Existence of Taylor-Wiles Primes

Michael Lipnowski

Introduction

Let F be a totally real number field, $\overline{\rho} = \overline{\rho_f} : G_F \to GL_2(k)$ be an odd residually modular representation (odd meaning that complex conjugation acts as $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ for every archimedean place).

Let St be the set of places where ρ_f is Steinberg, S_p is the set of places over p, S_{∞} the set of archimedean places of F, and assume it is unramified everywhere else. For the purposes of this write up, all that matters is that $St \cup S_p$ is a finite set of finite places.

Our is to construct certain auxillary sets of places Q of F which have associated deformation rings R_Q . Q will consist of so called Taylor-Wiles Places.

Definition. A place v of F is a **Taylor-Wiles place** if it satisfies the following conditions.

- $v \notin S \cup S_p$.
- $Nv \equiv 1 \ (p)$.
- The eigenvalues of $\overline{\rho}(Frob_v)$ are distinct and belong to k.

Let $R_{Q \cup St \cup S_p}^{\square, \chi}$ be the universal framed deformation ring unramified outside of $Q \cup St \cup S_p$ with fixed determinant $\chi = \chi_p$, the *p*-adic cyclotomic character.

Let L^{\square} be the completed tensor product of the universal framed local deformation rings at $v \in St \cup S_p$ of fixed determinant ψ_v and B^{\square} the completed universal product of their Steinberg quotients (for $v \in St$,) and their ordinary-crystalline quotients for $v \in S_p$.

Let $R_Q^{\square} = R_{Q \cup St \cup S_p}^{\square, \chi} \otimes_{L^{\square}} B^{\square}$. This represents the universal framed deformation $\rho: G_F \to GL_2(R_Q)$ of $\overline{\rho}$ unramified outside of $Q \cup St \cup S_p$ which is Steinberg at St and ordinary-crystalline at S_p .

Although we do allow ramification at Q, the Taylor-Wiles conditions control it tightly. Let v be a Taylor-Wiles place and consider $\rho|_{G_{F_v}}$.

 $\overline{\rho}$ is unramified at v. So, $\rho(I_v)$ lands inside the 1-units of $GL_2(R_Q)$, which is a pro-p group. But the wild inertia group $W_v \subset I_v$ is a pro-v group and so it gets killed. Thus, the reduction is tamely ramified at v. Even better,

Lemma. $\rho|_{G_{F_{\eta}}}$ is a sum of two (tamely ramified) characters $\eta_1 \oplus \eta_2$.

Proof. The tame galois group is generated by $\sigma = Frob_v$ and the group I_v . For every $\tau \in I_v$, we have the relation

$$\sigma \tau \sigma^{-1} = \tau^{Nv}. \quad (*)$$

By the Taylor-Wiles assumption on Frobenii, $\overline{\rho}(\sigma)$ has distinct eigenvalues. By Hensel's lemma, we may lift $\overline{\rho}(\sigma)$ so that $\rho(\sigma)$ is diagonal, say $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, with respect to some (possibly different) basis. With respect to this basis, express

$$\rho(\tau) = 1 + \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

For some $a, b, c, d \in m_Q$. Apply ρ to (*) and expand to get

$$1 + \begin{pmatrix} a & b\alpha\beta^{-1} \\ c\beta\alpha^{-1} & d \end{pmatrix} = \sum_{k=0}^{Nv} \begin{pmatrix} Nv \\ k \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{k}.$$

Note that for $k \geq 2$, the top right and bottom left entries of the right side summands lie in $m_Q(b,c)$. Thus comparing with these entries on the left side,

$$b(\alpha\beta^{-1} - Nv), c(\beta\alpha^{-1} - Nv) \in m_Q(b, c).$$

But α and β are residually distinct, by assumption. Then by the congruence property of TW places

$$\alpha \beta^{-1} - Nv, \beta \alpha^{-1} - Nv \neq 0 \ (p)$$

implying that both terms are units in R_Q . Thus, $(b,c) \subset m_Q(b,c)$. By Nakayama's Lemma, this implies that b=c=0. Since τ was aribitrary, the claim follows.

$\mathcal{O}[\Delta_Q]$ Structure on R_Q^{\square}

We have just shown that $\rho|_{G_{F_v}}$ is a sum of two (tamely ramified) characters $\eta_1 \oplus \eta_2$. Choose one, say η .

We know that $\eta|_{I_v}$ has pro-p image. Also by class field theory, it determines a character $\eta': O_v^{\times} \to R_Q^{\square \times}$. As the 1-units are pro-v, this is really a map $\eta': (O_v/v)^{\times} \to R_Q^{\square \times}$ which factors through the maximal p-power quotient of $(O_v/v)^{\times}$. Call this maximal p-power quotient Δ_v . Let $\Delta_Q = \prod_{v \in Q} \Delta_v$. Our choice of η defines an action of Δ_Q on R_Q , thus giving R_Q the structure of an $\mathcal{O}[\Delta_Q]$ -module.

We still haven't constructed the set of primes Q. Actually, we want to construct a family of such $Q = Q_n$ of the following sort:

For fixed positive integers g, h satisfying dim $B^{\square} = 1 + h + l - g$ (remember that B^{\square} is the framed ring of Steinberg and ord-cryst conditions),

- $\bullet |Q_n| = h$
- $Nv = 1 (p^n)$
- $R_{Q_n}^{\square}$ is topological generated by g elements over B^{\square} .

Note that the congruence condition Nv = 1 (p^n) means that Δ_v is p-power cyclic of order divisible by p^n . Thus, after a choice of generators for these cyclic groups, the $\mathcal{O}[\Delta_Q]$ -module structure on R_Q^{\square} is equivalently an $\mathcal{O}[[T_1,...,T_h]]/((T_1+1)^{p^{a_1}}-1,...,(T_h+1)^{p^{a_h}}-1)$ -module structure, where all $a_i \geq n$.

There are no obvious maps between the R_{Q_n} . But by the magic of the patching, we will find a subset of the R_{Q_n} which form a kind of inverse system with limit R_{∞}^{\square} . We dream that by "letting $n \to \infty$ ", we'll give R_{∞}^{\square} the structure of a free $\mathcal{O}[[T_1, ..., T_h]]$ -module.

A couple remarks about these conditions:

1) The explicit values

$$h = \dim H^{1}(G_{F,St \cup S_{p}}, ad^{0}\overline{\rho}(1))$$

$$g = h - [F : \mathbb{Q}] + |St| + |S_{p}| - 1$$

will suffice.

- 2) Our stipulation that dim $B^{\square} = 1 + h + l g$ will only appear natural once we dive into the patching argument.
- 3) The g we will construct is actually the relative topological dimension of $R_{Q_n}^{\square}$ over L^{\square} , which will certainly suffice.

Construction of the TW Sets

From now on, we will assume that

 $\overline{\rho}|_{G_{F(\zeta_n)}}$ is absolutely irreducible.

This cheaply implies the following apparently much stronger fact.

Lemma. $\overline{\rho}|_{G_{F(\zeta_n n)}}$ is absolutely irreducible.

Proof. Our standing assumption is that $\overline{\rho}|_{G_{F(\zeta_p)}}$ is absolutely irreducible.

Note that $H = G_{F(\zeta_{p^n})}$ is a normal subgroup of $G = G_{F(\zeta_p)}$. Thus, the restriction $\overline{\rho}|_H$ is semisimple. Indeed, if W is an invariant subspace, then

$$\bigoplus_{G/H-1.H} gW$$

is an invariant complement.

Suppose $\overline{\rho}|_H$ is not irreducible. Then it is the direct sum of two characters. Since V, as a G-module, is absolutely irreducible, G/H must permute these characters transitively. But G/H is a p-group, and so it cannot act transitively on a 2 element set (for any p > 2, which we have assumed). Thus, the two characters are the same.

This implies that every line in V is stabilized by H. But there are $|\mathbb{P}(V)(k)| = |k| + 1$ of them. So the number of them is prime to p. Hence, some orbit of G/H on the set of k-lines in V has size prime to p. But the size of the orbit must also divide |G/H|, which is p-power. Hence, this orbit has size 1, i.e. there is an H-stable line which is G/H-stable. This line is then G-stable, contradicting the irreducibility of V.

The same argument carries out mutatis mutandis after first making a finite extension of the ground field k of V. Thus, $\overline{\rho}|_H$ is indeed absolutely irreducible.

We'll now prove our main lemma of interest.

Theorem (DDT, Lemma 2.49). Let $h = \dim H^1(G_{F,St \cup S_p}, ad^0(\overline{\rho}(1)))$. For every n, we can construct a set Q_n of Taylor-Wiles places, i.e.

- (1) For each $v \in Q_n$, Nv = 1 (p^n) .
- (2) For each $v \in Q_n, \overline{\rho}(Frob_v)$ has distinct k-rational eigenvalues.
- (3) $|Q_n| = h$.

Proof. An easy calculation shows that if $\overline{\rho}(Frob_v)$ is a Taylor-Wiles place, then $\dim H^1(k_v, ad^0(\overline{\rho})(1)) = 1$.

Indeed, for any σ in $G_{F,St \cup S_p}$, if σ has (generalized) eigenvalues α, β then $ad^0(\overline{\rho})(\sigma)$ has (generalized) eigenvalues $1, \alpha\beta^{-1}, \beta\alpha^{-1}$. Thus, if $\overline{\rho}(Frob_v)$ has distinct eigenvalues, the space $ad^0(V)/(Frob_v-1)ad^0(V)$ is one dimensional. Since a v-unramified cocycle is uniquely determined by its value on $Frob_v$, we get that dim $H^1(k_v, ad^0(\overline{\rho})(1)) = 1$.

Thus, it suffices to show that the restriction map

$$H^1(G_{F,St\cup S_p}, ad^0(\overline{\rho})(1)) \to \bigoplus_{v\in Q_n} H^1(k_v, ad^0(\overline{\rho})(1))$$

is an isomorphism. Then equating dimensions shows that condition (3) is fulfilled.

To do this, it suffices to show that for any global cocycle ψ there exists a $v = v_{\psi}$ satisfying (1) and (2) such that $res_v(\psi) \neq 0$. For then we could apply this to the elements of a basis (of size h) for the left side, and the corresponding set of places $\{v_{\psi}\}$ would consistute a TW set.

Instead we'll show that we can find $\sigma \in G_{F,St \cup S_p}$ satisfying the following:

- (1') $\sigma|_{G_{F(\zeta_p)}} = 1.$
- (2') $ad^0\overline{\rho}(\sigma)$ has an eigenvalue other than 1.
- (3') $\psi(\sigma) \notin (\sigma 1)ad^0\overline{\rho}(1)$.

Indeed, all three of the above conditions are open conditions in $G_{F,St\cup S_p}$. But by the Chebotarev density theorem, we any non-empty open set contains some $Frob_v$. This v will do.

Let F_0 be the fixed field of the kernel of $ad^0\overline{\rho}$ and let $F_m = F_0(\zeta_{p^m})$.

Claim. $\psi(G_{F_n})$ is non-zero.

Later, we'll even show that its k-span is a non-zero $Gal(F_n/F(\zeta_{p^n}))$ -submodule of $ad^0\overline{\rho}$. From this, we can leverage information from the irreducibility of $\overline{\rho}|_{G_F(\zeta_{-n})}$ just proven.

Proof. In this claim and what follows, assume n > 0 so that the cyclotomic character is trivial when restricted to G_{F_n} . There is an inflation-restriction sequence

$$0 \to H^1(G_{F_n/F}, ad^0\overline{\rho}(1)) \xrightarrow{inf} H^1(G_F, ad^0\overline{\rho}(1)) \xrightarrow{res} H^1(G_{F_n}, ad^0\overline{\rho}(1)).$$

Thus, it suffices to prove that the leftmost term is zero. For then, $\psi|_{G_{F_n}}$ is a non-zero cohomology class, and so is certainly not identically 0.

We can sandwich the left most term in another inflation-restriction sequence:

$$0 \to H^1(G_{F_0/F}, (ad^0\overline{\rho}(1))^{G_{F_0}}) \xrightarrow{inf} H^1(G_{F_n/F}, ad^0\overline{\rho}(1)) \xrightarrow{res} H^1(G_{F_n/F_0}, ad^0\overline{\rho}(1))^{G_{F_0/F}}. (*)$$

where the action of $g \in G_{F_0/F}$ on the third term is given by $\eta \mapsto (h \mapsto g^{-1}\eta(ghg^{-1}))$.

• Third term of (*)

There is a restriction-corestriction sequence

$$H^1(G_{F_n/F_0}, ad^0\overline{\rho}(1)) \xrightarrow{res} H^1(G_{F_n/F_1}, ad^0\overline{\rho}(1)) \xrightarrow{cores} H^1(G_{F_n/F_0}, ad^0\overline{\rho}(1))$$

and the composition is multiplication by $|G_{F_1/F_0}|$. This number is $\leq p-1$ and so is prime to p. Hence, res is injective. It also sends $G_{F_0/F}$ -invariants to $G_{F_0/F}$ -invariants. Thus, it suffices to show that $H^1(G_{F_n/F_1}, ad^0\overline{\rho}(1))^{G_{F_0/F}}$ is zero.

 $-G_{F_n/F_1}$ is naturally a subgroup of the commutative quotient $G_{F(\zeta_{p^n})/F}$ of G_F (given just by restricting automorphisms to $F(\zeta_{p^n})$). The conjugation action is compatible with this restriction. Thus the conjugation action on G_{F_n/F_1} is trivial since the latter quotient of G_F is abelian.

Note that G_{F_n/F_1} acts trivially on $ad^0\overline{\rho}(1)$. Hence,

$$H^1(G_{F_n/F_1}, ad^0\overline{\rho}(1))^{G_{F_0/F}} = Hom(G_{F_n/F_1}, ad^0\overline{\rho}(1))^{G_{F_0/F}} = Hom(G_{F_n/F_1}, ad^0\overline{\rho}(1)^{G_{F_0/F}}).$$

But $ad^{0}\overline{\rho}(1)^{G_{F_{0}/F}} = 0.$

Indeed, any $G_{F(\zeta_{p^n})}$ -invariant element of $ad^0\overline{p}(1)$ is equivalently a trace 0 intertwining operator $V \to V(1)$ (V the underlying vector space of ad^0). But n > 0, so the action of the cyclotomic character is trivial. So this is actually an intertwining operator $V \to V$. But V is an irreducible $G_{F(\zeta_{p^n})}$ -module, and so any self-intertwining operator is scalar and so must be 0 by our trace 0 assumption (p > 3 by our standing assumptions).

Hence, the third term of (*) is 0.

- First term of (*)
 - $-(ad^0\overline{\rho}(1))^{G_{F_0/F}}$ is trivial unless $F_0 \supset F(\zeta_p)$. This is because for any place v with $Nv \neq 1$ $(p), ad^0\overline{\rho}(Frob_v)$ fixes something but $\chi_p(Frob_v) \neq 1$. So, we assume that

$$G_{F_0/F} \to G_{F(\zeta_p)/F} \to 0.$$

In particular, $G_{F_0/F}$ has a non-trivial quotient and so is not a non-abelian simple group.

- Since $(ad^0\overline{\rho}(1))^{G_{F_0/F}}$ has p-power order, we also have an injection

$$0 \to H^1(G_{F_0/F}, (ad^0\overline{\rho}(1))^{G_{F_0}}) \xrightarrow{res} H^1(P, (ad^0\overline{\rho}(1))^{G_{F_0}}),$$

where P is the Sylow p-subgroup of $G_{F_0/F}$. Thus, we can assume that P is non-trivial, i.e. that p divides $|G_{F_0/F}|$.

– Finally, since F_0 is the field cut out by $ad^0\overline{\rho}$, $G_{F_0/F}$ is isomorphic to the projective image of $\overline{\rho}$.

We can put these facts to good use in conjunction with an explicit characterization of finite subgroups of $PGL_2(\overline{\mathbb{F}}_p)$.

<u>List of Finite Subgroups</u> H of $PGL_2(\overline{\mathbb{F}}_p)$ [**EG, II.8.27**]

- H is conjugate to a subgroup of the upper triangular matrices.
- H is conjugate to $PGL_2(\mathbb{F}_{p^r})$ or $PSL_2(\mathbb{F}_{p^r})$ for some $r \geq 1$.
- H is isomorphic to A_4, A_5, S_4 , or $D_{2r}, p \nmid r$ for $r \geq 2$. Furthermore, if H is isomorphic to $D_{2r} = \langle s, t | s^2 = t^r = 1, sts = t^{-1} \rangle$, then it is conjugate to the image of

$$s \mapsto \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) t \mapsto \left(\begin{array}{cc} \zeta & 0 \\ 0 & 1 \end{array}\right),$$

where ζ is a primitive r^{th} root of unity.

We can eliminate all of these possibilities, one by one.

- The projective image H cannot be conjugate to a subgroup of the upper triangular matrices, for then $\overline{\rho}|_{G_{F(\zeta_p)}}$ would not be absolutely irreducible.
- Our assumptions p > 5 and p divides $|G_{F_0/F}|$ preclude the possibilities $H \cong A_4, A_5, S_4, D_{2r}, p \nmid r$.
- $PSL_2(\mathbb{F}_{p^r})$ is simple for p > 5. Thus, it cannot have a quotient, namely $G_{F(\zeta_p)/F}$, which is non-trivial.
- Suppose $H = im(\overline{\rho}) \cong PGL_2(\mathbb{F}_{p^r})$. The only non-trivial quotient of $PGL_2(\mathbb{F}_{p^r})$ is order 2. But $G_{F_0/F}$ cannot have a quotient of order 2. If it did, there would be an exact sequence

$$1 \to Z \to im(\overline{\rho}) \to im(ad^0(\overline{\rho})) \to 1$$
,

with Z a central subgroup of $GL_2(k)$ and $im(ad^0(\overline{\rho}))$ either order 1 or 2. But then any pre-image A of the non-trivial element of $im(ad^0(\overline{\rho}))$ and Z generate $im(\overline{\rho})$. But A has an invariant subspace (possibly after a quadratic extension). So that means $im(\overline{\rho})$ does too, contradicting the absolute irreducibility of $\overline{\rho}$.

Since none of these are possible, we must have the first term of (*) being 0 after all.

We conclude that the second term of (*) is 0 as well, which is what we wanted; this proves that $\psi(G_{F_n})$ is indeed non-zero.

We can say more. For $\tau, \tau' \in G_{F_n}, \sigma \in G_{F(\zeta_{p^n})}$, repeated use of the cocycle relation gives

$$\psi(\sigma\tau\sigma^{-1}) = \psi(\sigma) + \psi(\tau\sigma^{-1})$$

$$= \psi(\sigma) + \sigma\psi(\tau) + \sigma\tau\psi(\sigma^{-1})$$

$$= \psi(\sigma) + \sigma\psi(\tau) + \sigma\psi(\sigma^{-1}) = \sigma\psi(\tau).$$

Note: the second last equality holds because τ acts trivially on $ad^0\overline{\rho}(G_{F_n})$. Also,

$$\psi(\tau) + \psi(\tau') = \tau'\psi(\tau) + \psi(\tau') = \psi(\tau\tau').$$

Thus, the k-span of $\psi(G_{F_n})$ is in fact a non-zero $G_{F_n/F(\zeta_{p^n})}$ -submodule of $ad^0\overline{\rho}$.

Next, we'll find an element $g \in G_{F_n/F(\zeta_{p^n})}$ such that $\overline{\rho}(g)$ has distinct eigenvalues and which fixes an element of $k.\psi(G_{F_n})$. We do this by the explicit classification of possible projective images, i.e. we'll show that for any subgroup H which could possibly be the projective image of $\overline{\rho}$, there is an element of H with distinct eigenvalues which fixes an element of $k.\psi(G_{F_n})$.

- Note first that if we can prove the result for some subgroup $H \subset H'$, then it true for putative projective image H' as well. Also, the "exceptional" cases A_4 , S_4 , and A_5 all contain D_4 and the projective image cannot be contained in an upper triangular subgroup (due to the absolute irreducibility of $\overline{\rho}|_{G_{F(\zeta_p^n)}}$. Thus, in view of the preceding classification of finite subgroups of $\mathrm{PGL}_2(\overline{\mathbb{F}}_p)$, it suffices to check the following cases:
- $PSL_2(\mathbb{F}_{p^r})$ ad^0 is simple under the action of $PSL_2(\mathbb{F}_{p^r})$. Thus, $k.\psi(G_{F_n})=ad^0$ and $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}$ fixes $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \in ad^0 = k.\psi(G_{F_n})$. Since p>5, we can certainly find $\alpha \neq \alpha^{-1}$.
- $\frac{D_4}{ad^0}$ decomposes as $V_1 \oplus V_2 \oplus V_3$, where

$$V_1 = \left\langle \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\rangle, V_2 = \left\langle \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \right\rangle, V_3 = \left\langle \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right\rangle.$$

 D_4 acts as ± 1 on each V_i . Furthermore, by our explicit description of the image of dihedral groups, each non-trivial element has distinct eigenvalues (of ± 1). Since the only possible invariant subspaces of ad^0 are then $\bigoplus_{i\in I} V_i$ for some $I\subset\{1,2,3\}$, it follows that some element $h\in D_4$ with distinct eigenvalues fixes an element of $k.\psi(G_{F_n})$.

• $\frac{D_{2r}, r \text{ odd}}{ad^0 \text{ decomposes as } W_1 \oplus W_2 \text{ where}}$

$$W_1 = \left\langle \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right\rangle, W_2 = \left\langle \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \right\rangle.$$

$$W_1$$
 is fixed by $\begin{pmatrix} 1 & 0 \\ 0 & \zeta \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ fixes $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Since $ad^0 = W_i$ or $W_1 \oplus W_2$, it follows again that some $h \in D_{2r}$ with distinct eigenvalues fixes an element of $k.\psi(G_{F_n})$.

Having found such a g, it must certainly fix a non-zero element of $\psi(G_{F_n})$ itself, say $\psi(\tau_0)$.

• Indeed, as an \mathbb{F}_p -vector space, the $k.\psi(G_{F_n})$ is isomorphic to $k \otimes_{\mathbb{F}_p} \psi(G_{F_n})$. But then if $k_1, ..., k_m$ forms a basis for k over \mathbb{F}_p , we can express the fixed element m of $k.\psi(G_{F_n})$ as $m = k_1\psi(\tau_1) + ... + k_n\psi(\tau_n)$, where at least one $\psi(\tau_i) \neq 0$. If m is fixed by g, then

$$k_1((g-1)\psi(\tau_1)) + \dots + k_n((g-1)\psi(\tau_n)) = 0.$$

But linear independence implies that $(g-1)\psi(\tau_i)=0$, which is what we wanted.

Choose a lift σ_0 of g to the absolute Galois group. For $\tau \in G_{F_n}$, we have

$$\psi(\tau\sigma_0) = \tau\psi(\sigma_0) + \psi(\tau) = \psi(\sigma_0) + \psi(\tau).$$

- If $\psi(\sigma_0) \notin (\sigma_0 1)(ad^0\overline{\rho}(1))$, then take $\tau = 1$.
- Otherwise, choose $\tau = \tau_0$. For this choice, $\psi(\tau_0) \notin (\sigma_0 1)ad^0\overline{\rho}(1)$. For suppose $(\sigma_0 1)x = \psi(\tau_0) \neq 0$. Applying $\sigma_0 1$ to both sides, our construction of τ_0 gives

$$(\sigma_0 - 1)^2 x = (\sigma_0 - 1)\psi(\tau_0) = 0.$$

But σ_0 acting on ad^0 is semisimple and has eigenvalue 1 with multiplicity 1 (since $\overline{\rho}(\sigma_0)$ has distinct eigenvalues). Thus, $(\sigma_0 - 1)x = 0$, implying that $\psi(\tau_0) = 0$, contrary to our construction.

Thus, in both cases

$$\psi(\tau\sigma_0) \notin (\sigma_0 - 1)ad^0\overline{\rho}(1) = (\tau\sigma_0 - 1)ad^0\overline{\rho}(1).$$

So we've finally constructed the element $\sigma = \tau \sigma_0$ that we sought in the first place.

Number of Topological Generators for $R_{Q_n \cup St \cup S_p}^{\square, \chi}$ over L^{\square}

We now have all of the pieces in place to compute the relative tangent space dimension of $R_{Q_n \cup St \cup S_p}^{\square, \chi}$ over L^{\square} , both defined as in the introduction.

Lemma (FFGS, 3.2.2). Let $h^1(G_{F,St\cup S_v\cup S_\infty}, ad^0(V))$ denote the k-dimension of

$$\ker(H^1(G_{F,St\cup S_p\cup S_\infty},ad^0(V))\to \prod_{v\in St\cup S_p}H^1(G_{F_v},ad^0(V))).$$

For $v \in St \cup S_p$, let $\delta_v = \dim_k H^0(G_{F,St \cup S_p \cup S_\infty}, adV)$ and $\delta_F = \dim_k H^0(G_{F,St \cup S_p \cup S_\infty}, adV)$. Then $R_{F,St \cup S_p \cup S_\infty}^{\square,\chi}$ is the quotient of a power series ring over L^{\square} in

$$g = h^{1}(G_{F,St \cup S_{p} \cup S_{\infty}}, ad^{0}(V)) + \sum_{v \in St \cup S_{p}} \delta_{v} - \delta_{F}.$$

variables.

Proof. Let our vector space V have fixed basis β .

An element of the relative tangent space corresponds to a deformation of V to a finite free $k[\epsilon]$ -module \tilde{V} together with a choice of bases $\tilde{\beta}_v$ lifting β such that for each $v \in St \cup S_p$, the pair $(\tilde{V}|_{G_{F_v}}, \beta_v)$ is isomorphic to $(V \otimes_k k[\epsilon], \beta \otimes_k 1)$.

For fixed choices of bases, the space of such deformations is given by

$$ker(H^1(G_{F,St\cup S_p\cup S_\infty},ad^0(V))\to \prod_{v\in St\cup S_p}H^1(G_{F_v},ad^0(V))).$$

Given such a deformation, \tilde{V} , the space of possible choices for a bases is the space of G_{F_v} automorphisms of $(V \otimes_k k[\epsilon], \beta \otimes_k 1)$; such an automorphism reduces to 1 mod (ϵ) and so is of the form $1 + \epsilon M$ for some G_{F_v} -equivariant $M \in ad(V)$, i.e. $M \in H^0(G_{F_v}, adV)$.

The same reasoning shows that two collections $\{\beta_v\}_{v \in St \cup S_p}$ and $\{\beta'_v\}_{v \in St \cup S_p}$ determine the same framed deformation if they differ by an element of $H^0(G_{F,St \cup S_p \cup S_\infty}, adV)$. The lemma follows.

Now we compute this h^1 , the dimension of a Selmer group, via the Wiles Product formula.

Lemma (FFGS, 3.2.5). Set $g = \dim_k H^1(G_{F,S_p \cup St}, ad^0\overline{\rho}(1)), ad^0\overline{\rho}(1)) - [F : \mathbb{Q}] + |St| + |S_p| - 1.$ For each positive integer n, there is a finite set of primes Q_n of F which is disjoint from $St \cup S_p$ and such that

- (1) If $v \in Q_n$, then Nv = 1 (p^n) and $\overline{\rho}(Frob_v)$ has distinct eigenvalues.
- (2) $|Q_n| = \dim_k H^1(G_{F,S_p \cup St}, ad^0\overline{\rho}(1))$. Also, $R_{Q_n}^{\square}$ is topologically generated by g elements as a B^{\square} -algebra.

Proof. We define a set of local conditions to compute this relative dimension, the dimension of a Selmer group. Namely, let

$$H^{1}_{\mathcal{L}_{v}} = \begin{cases} 0 & \text{if } v \in St \cup S_{p} \\ H^{1}(G_{F_{v}}, ad^{0}\overline{\rho}) & \text{otherwise.} \end{cases}$$

Write $H^1_{\mathcal{L}_{Q_n}}$ (resp. $H^1_{\mathcal{L}^{\perp}_{Q_n}}$) for the set of classes which restrict to $H^1_{\mathcal{L}_v}$ (resp. $H^1_{\mathcal{L}^{\perp}_v}$) for each $v \in St \cup S_p \cup Q_n$. (" \perp " denoting the annihilator under Tate local duality). The main result from the previous section shows that we can find a set of primes Q_n satisfying

condition (1) and the first part of condition (2). Furthermore, any class in $H^1_{\mathcal{L}_{Q_n}^{\perp}}$ restricts to 0 in $H^1(G_{F_v}, ad^0\overline{\rho}(1))$. By our choice of primes, this implies that $H^1_{\mathcal{L}_{Q_n}^{\perp}} = 0$.

By the Wiles Product Formula, we get

$$|H^1_{\mathcal{L}_{Q_n}}| = \frac{H^0(G_{F,St \cup S_p \cup S_\infty}, ad^0\overline{\rho})}{H^0(G_{F,St \cup S_p \cup S_\infty}, ad^0\overline{\rho}(1))} \prod_{v \in St \cup S_p \cup S_\infty} \frac{H^1_{\mathcal{L}_v}}{H^0(G_{F_v}, ad^0\overline{\rho})}.$$

• Global terms

An element of $H^0(G_{F,St\cup S_p\cup S_\infty},ad^0\overline{\rho})$ corresponds to a trace 0 self-intertwining operator of V. Since $\overline{\rho}|_{G_{F(\zeta_p)}}$ is absolutely irreducible, any self-intertwining operators are scalars. But the only trace 0 scalar matrix is 0 (for p>2).

Similarly, an element of $H^0(G_{F,St \cup S_p \cup S_\infty}, ad^0\overline{\rho}(1))$ corresponds to an intertwining operator $V \to V(1)$ between irreducible $G_{F(\zeta_p)}$ -modules. Either they are not isomorphic, in which case only the 0 operator can intertwine them, or they are isomorphic, in which case the above paragraph applies.

- $v \in St \cup S_p \over ad^0(V)$ is a summand of ad(V) for p > 2. So, the terms in the product corresponding to $v \in St \cup S_p$ in the product formula contribute $|k|^{1-\delta_v}$.
- $\underline{v \in S_{\infty}}$
- $v \in Q_n$

$$\frac{H^1(G_{F_v}, ad^0\overline{\rho})}{H^0(G_{F_v}, ad^0\overline{\rho})} = H^2((G_{F_v}, ad^0\overline{\rho})) \times \text{local Euler characteristic}^{-1}.$$

The H^2 term equals $H^0(G_{F_v}, ad^0\overline{\rho}(1))$ by Tate local duality. The local Euler characteristic, which equals $[O_v: |ad^0(V)|O_v]^{-1}$ by the local Euler characteristic formula, is 1 since $|ad^0(V)|$ is prime to $v \in Q_n$. Hence, the product formula terms for $v \in Q_n$ equal $H^0(G_{F_v}, ad^0\overline{\rho}(1))$.

Since $\overline{\rho}(Frob_v)$ had distinct eigenvalues, there is a 1-dimensional subspace of $ad^0(V)$ fixed by $ad^0\overline{\rho}(Frob_v)$. Since $\overline{\rho}|_{G_{F_v}}$ is unramified, $H^0(G_{F_v}, ad^0\overline{\rho}(1))$ is 1-dimensional.

• S_{∞}

By one of our standing assumptions, $\overline{\rho}$ is odd, i.e. for archimedean places $v, \overline{\rho(c)}$ can represented as a matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ with respect to some basis. Hence, $ad^0\overline{\rho}(c)$ is can be diagonalized to $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. But G_{F_v} is cyclic of order 2, generated by c. Hence, the space of cocycles is just $\ker(ad^0\overline{\rho}(c)+1)$, which is 2-dimensional, and the space of coboundaries is $im(ad^0\overline{\rho}(c)-1)$, which is 2-dimensional. Hence $H^1(G_{F_v},ad^0\overline{\rho})=0$.

Also, $H^0(G_{F_n}, ad^0\overline{\rho})$ is the 1-eigenspace of $ad^0\overline{\rho}(c)$, and so is 1-dimensional.

Adding everything together, we get

$$h^{1}(G_{F,St \cup S_{p} \cup S_{\infty}}, ad^{0}(V)) = \dim_{k} H^{1}_{\mathcal{L}_{Q_{n}}}$$

$$= 0 + \sum_{v \in St \cup S_{p}} (1 - \delta_{v}) + \sum_{v \in Q_{n}} 1 + \sum_{v \in S_{\infty}} -1$$

$$= |St| + |S_{p}| - \sum_{v \in St \cup S_{p}} \delta_{v} + |Q_{n}| + [F : \mathbb{Q}]$$

$$= |St| + |S_{p}| - \sum_{v \in St \cup S_{p}} \delta_{v} + \dim_{k} H^{1}(G_{F,St \cup S_{p}}, ad^{0}\overline{\rho}(1)) + [F : \mathbb{Q}]$$

Combining with the previous lemma gives that

$$g = \dim_k H^1(G_{F,St \cup S_p}, ad^0 \overline{\rho}(1)) + |St| + |S_p| + [F : \mathbb{Q}] - 1,$$

as desired. \Box

We can conclude that R_Q^{\square} is generated by g elements as a B^{\square} algebra as well. Thus, we are finally done our construction of TW primes.

References

- **DDT** H. Darmon, F. Diamon, R. Taylor. Fermat's Last Theorem. Current Developments in Mathematics 1 (1995), International Press, pp. 1-157.
- **FFGS** M. Kisin. *Moduli of Finite Flat Group Schemes and Modularity*. Annals of Math. 170(3) (2009), 1085-1180.
 - **EG** B. Huppert. *Endliche Gruppen I.* Grundlehren Math. Wiss. 134 (1983), Springer-Verlag, New York, Berlin, Heidelberg.
 - S. Shah. Framed Deformation and Modularity. Harvard Undergraduate Thesis (2009). Available at http://math.harvard.edu/theses/senior/shah/shah.pdf