
LOCAL PROPERTIES OF MODULAR GALOIS REPRESENTATIONS

ANDREW SNOWDEN

1. Introduction

Let f be a cuspidal eigenform of weight 2 and level Γ0(N). Let p be a prime, which we assume does not
divide N . We have stated (though have not proved) that there exists a Galois representation ρ : GQ,S →
GL2(Qp), where S is the set of primes dividing pN , which satisfies and is characterized by the following two
properties: (1) the determinant of ρ is the cyclotomic character χ = χp; and (2) for a prime ` - pN the trace
of ρ(Frob`) is equal to the eigenvalue of the Hecke operator T` acting on f . We have also stated (and not
proved) that for ` | N the representation ρ|GQ`

corresponds under local Langlands to the local component
of the automorphic representation of f at `. We have not yet examined the local representation ρ|GQp

. For
the purposes of this seminar, we will need only one result: if f is ordinary (in the sense of modular forms)
then ρ|GQp

is crystalline and ordinary (in the sense of Galois representations). The definitions of ordinary
are recalled below.

The purpose of this lecture is to sketch the construction of ρ and the proofs that it satisfies the above
local conditions, at least for ` - N . The representation ρ is found as a quotient of the Jacobian J0(N) of the
modular curve X0(N), and is not difficult to construct. To establish the properties of ρ at the unramified
places and at p, we use the Eichler-Shimura relation. To formulate and prove this identity, we use the
reduction of X0(N) modulo p. This requires us to introduce some of the theory of moduli of elliptic curves
over integers; fortunately, we are in a rather easy situation. At the end of these notes, we explain a bit
about what happens in the Hilbert modular case.

I should say here that I am not extremely familiar with this material. I believe I have the main points
correct, but I might have some details wrong. Certainly, some details have been omitted. For certain topics,
more complete treatments can be found in the references.

2. Moduli of elliptic curves

In this section we define moduli spaces of elliptic curves and establish some of their basic properties.

2.1. The moduli space. Let S be a scheme. An elliptic curve over S is a smooth proper group scheme
E → S whose geometric fibers are connected genus 1 curves. Let Y be the functor which assigns to a scheme
S the groupoid Y (S) of elliptic curves over S; that is, Y (S) is the category whose objects are elliptic curves
over S and where morphisms are isomorphisms of group schemes over S. We call Y the moduli space of
elliptic curves.

Proposition 1. The functor Y is a stack.

Proof. Let E/S be an elliptic curve. The zero section 0 : S → E defines an ample divisor D on E (in the
relative sense) and 3D is very ample. Let AE be the projective coordinate ring of E in this embedding,
that is, AE is

⊕
n≥0 f∗(O(3nD)) where f : E → S is the structure map. Then AE is a quasi-coherent

sheaf of graded rings on S and E is identified with Proj(AE). The functor E 7→ AE identifies Y (S) with
a subcategory of the category of quasi-coherent graded algebras on S. The latter forms a stack in the fppf
topology by Grothendieck’s theory of flat descent. It is easy to conclude from this that Y itself forms a
stack. More precisely, let Ei be elliptic curves on a cover Ui of a scheme S and let fij be an isomorphism
of Ei and Ej on Uij satisfying the 1-cocycle condition. Then AEi

and Afij
define descent data for algebras

on S. By flat descent, one obtains a quasi-coherent graded algebra A on S. Put E = Proj(S). One has a
canonical identification E|Ui = Ei, which allows one to establish the geometric properties required of E, as
these properties are fppf local. (One must say a bit more along the same lines to get the zero section and
group law on E.) �
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Proposition 2. The functor Y is formally smooth (over Z).

Proof. Let S be an affine scheme and let S0 be a closed subscheme defined by a square zero ideal I. Let
E0 be an elliptic curve over S0. We must extend E0 to an elliptic curve over S. Note that any such curve
will have the same underlying topological space as E, just a different structure sheaf. Let U0,i be an open
affine cover of E0. Since smooth affine schemes always lift, we can find a smooth affine Ui over S extending
U0,i. We have thus extended OE0 to an OS-algebra on an open cover. These bigger algebras may not patch
together, but we can try to modify them so that they do. There is an obstruction class in H2(E0, TE0)
measuring if such a modification is possible; here TE0 is the tangent sheaf of E0. Now, since S0 is affine,
this cohomology group is equal to H0(S0, R

2f∗TE0), where f : E0 → S0 is the structure map. As E0 → S0

is a curve, R2f∗ vanishes. This shows that H2(E0, TE0) vanishes as well, and thus there is no obstruction
to the modification procedure. We have thus found a smooth scheme E over S such that ES0 is canonically
identified with E0. One then needs to extend the zero section from S0 to S; we leave this to the reader. �

2.2. Level structure in good characteristic. Let N be an integer. For an elliptic curve E/S we write
E[N ] for the N -torsion of E. It is a finite flat group scheme over S. If N is invertible on S then E[N ] is
a finite étale group scheme over S. We define three additional moduli spaces Y (N), Y1(N) and Y0(N) over
Z[1/N ], as follows:

• Y (N)(S) is the category of tuples (E,P,Q) where E/S is an elliptic curve P,Q ∈ E[N ] form a basis
of E[N ], i.e., the map ((Z/NZ)2)S → E[N ] defined by (P,Q) is an isomorphism of sheaves.

• Y1(N)(S) is the category of pairs (E,P ) where E/S is an elliptic curve and P ∈ E[N ] is a point of
exact order N , i.e., the map (Z/NZ)S → E defined by P is an injection of sheaves.

• Y0(N)(S) is the category of pairs (E,G) where E/S is an elliptic curve and G ⊂ E[N ] is a subgroup
scheme which is fppf locally isomorphic to (Z/NZ)S .

For N ≥ 3 the category Y (N) is discrete; the same holds for Y1(N) and Y0(N) for N large enough. We
assume from now on that N is sufficiently large for this to be the case. We now have the following result:

Proposition 3. Each of Y (N), Y1(N) and Y0(N) is a smooth affine curve over Z[1/N ]. The natural map
from each to Y is finite and étale.

Proof. We consider only Y (N), leaving the others to the reader. First, it follows easily from Proposition 1
that Y (N) is itself a stack; it is therefore a sheaf of sets since it is discrete. We now show that Y (N)→ Y
is relatively representable, finite and étale. Let S → Y be a map, corresponding to an elliptic curve E/S.
The fiber product Y (N)×Y S is then identified with the subsheaf of E[N ]×E[N ] consisting of those pairs
of sections which form a basis. This is clearly a finite étale scheme over S. This establishes the claim. The
formal smoothness of Y (N) now follows from Proposition 2.

Here is the main idea of one approach to get representability. The group G = GL(2,Z/3Z) acts on Y (3).
One can write down explicit equations for Y (3) demonstrating that it is a smooth affine curve over Z[1/3].
One can also show that G acts freely on Y (N)×Y Y (3) and that the quotient is identified with Y (N). Since
Y (N) is relatively representable and finite étale, the product Y (N) ×Y Y (3) is a smooth affine curve over
Z[1/3N ]. It follows that the same holds for the quotient by G, which establishes the required properties
of Y (N), at least over Z[1/3N ]. There is another explicit moduli problem and finite group one can use to
obtain the required properties over Z[1/2N ]. This implies the results over Z[1/N ]. (One can probably avoid
the use of Y (3) by appealing to more general results, such as Artin’s representability theorem.) �

Remark 4. The finite étale covers of Y provided by Y (N) show that Y is a Deligne-Mumford stack. The
same is true for Y (N), Y0(N) and Y1(N) when N is small.

2.3. Compactification. The modular curve Y constructed in the previous section is affine. We would now
like to compactify it. To do this we must add a few points to it. These points correspond to curves which are
limits of elliptic curves. To see what a “limit of an elliptic curve” is, it is useful to think about the situation
over the complex numbers: to degenerate an elliptic curve, one can take a few cycles on it and pinch them
each to a point. The result is a bunch of P1s glued together. This motivates the formal definitions which
follow.

Let n be an integer. Let C be the scheme obtained by taking P1 × Z/nZ and identifying the point 0 in
the ith P1 with the point ∞ in the (i+ 1)st P1. We call C an n-gon. We let C◦ denote the smooth part of
C. The space C◦ is identified with Gm ×Z/nZ, and is thus naturally a group. Furthermore, the group law
on C◦ extends to an action on all of C.
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A generalized elliptic curve over a scheme S is a proper flat curve E → S together with a multiplication
map E◦ × E → E which gives E◦ the structure of a group scheme, in such a way that the fibers of E are
elliptic curves or polygons (respecting the obvious structure). Here E◦ denotes the open subset of E where
the fibers are smooth. We define X(S) to be the groupoid of generalized elliptic curves E/S whose fibers
are all irreducible, i.e., elliptic curves or 1-gons.

Proposition 5. The functor X is a proper smooth Deligne-Mumford stack over Z.

Proof. This is proved in [DR] using Artin’s representability theorem. I imagine one could give an argument
similar to the one we gave for Y . Properness can be seen from the valuative criterion. Let A be a valuation
ring with fraction field K and let E/K be an elliptic curve. The semi-stable reduction theorem implies that
there is a finite extension K ′/K such that the base change E′ of E to K ′ has good or multiplicative reduction
— that is, its minimal Weierstrass equation defines a scheme over A′ having semi-stable reduction. This
shows that the point of X(K) coming from E, when mapping into X(K ′), comes from an element of X(A′).
Thus X satisfies the valuative criterion for properness. (Note that this criterion is a little bit different than
the one for schemes: we are allowed to extend the field K.) �

We can also compactify the spaces Y (N), Y0(N) and Y1(N) over Z[1/N ]. To do this, we need to define
the notion of a level structure on a generalized elliptic curve. Thus let E/S be a generalized elliptic curve.
We let E[N ] be the N -torsion of the group E◦. The only subtlety concerning level structures is that we
require them to be ample, which amounts to them meeting every irreducible component of the fibers of E.
Thus a Γ0(N) structure is a subgroup G ⊂ E[N ] which is locally isomorphic to Z/NZ and such that G
meets each irreducible component of the fibers of E. Note that this imposes a restriction on what the fibers
can be: their component group must be a quotient of Z/NZ. We define X0(N) to be pairs (E,G) where E
is a generalized elliptic curve whose fibers are elliptic curves or N -gons and G ⊂ E[N ] is a Γ0(N) structure,
as defined above. The spaces X(N) and X1(N) are defined similarly.

Proposition 6. The functors X(N), X0(N) and X1(N) are smooth proper schemes over Z[1/N ] (assuming
N large enough).

2.4. The space X0(p) over Z. The compactified space X0(N) — and indeed, even the open curve Y0(N)
— has only been defined over Z[1/N ]. It is a bit tricky to formulate what these spaces should be over Z
since one has to specify what it means for a (non étale) group scheme to be cyclic. However, when N is a
prime, this is not hard: every group of order p should be considered cyclic! We thus define Y0(p)(S) (resp.
X0(p)(S)) to be the groupoid of pairs (E,G) where E is an elliptic curve (resp. generalized elliptic curve)
over S and G ⊂ E[p] is a finite flat subgroup scheme of order p which is ample (this condition is only relevant
for X0(p)). We then have the following result:

Proposition 7. The functor X0(p) is a proper flat curve over Z (for p large).

We will actually need to extend this a bit for our application. Let N be an integer prime to p. A cyclic
group of order Np decomposes canonically as a product of a cyclic group of order N and one of order p. We
thus have X0(Np) = X(N)×X X(p) over Z[1/Np]. We take this formula as the definition of X0(Np) over
Z[1/N ]. That is, X0(Np) consists of tuples (E,G,H) where E/S is a generalized elliptic curve whose fibers
are elliptic curves or pN -gons, G ⊂ E[N ] is a group locally isomorphic to Z/NZ and H ⊂ E[p] is a finite
flat subgroup such that GH meets every irreducible component of the fibers of E. We then have:

Proposition 8. The functor X0(pN) is a proper flat curve over Z[1/N ] (for Np large).

3. Elliptic curves in characteristic p

We now examine elliptic curves in characteristic p and their moduli. We establish the Eichler-Shimura
relation.

3.1. Group schemes. Let k be a finite field. Let G/k be a finite commutative group scheme. We say that
G is local if it is connected. There is a canonical exact sequence

1→ G◦ → G→ Get → 1

where G◦ is local and Get is étale. If the order of G is prime to p then G is automatically étale.
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Define a functor G∨ by G∨(T ) = Hom(GT , (Gm)T ). Then G∨ is again a finite group scheme over k. We
call G∨ the Cartier dual of G. Cartier duality is an anti-equivalence of categories. The properties “local”
and “étale” interact in an interesting manner with Cartier duality. First of all, if G has order prime to p
then G∨ does as well and both are étale. However, the dual of p-power étale group is never étale, and is
always connected: for example, (Z/pZ)∨ = µp. The converse to this is not true: for example, if αp is the
kernel of Frobenius on Ga, i.e., Spec(k[x]/xp), then αp is connected and self-dual. We thus find that we can
define four classes of groups: étale-étale, étale-local, local-étale and local-local depending on the properties
of G and G∨. Here are examples from the respective classes: Z/NZ with N prime to p, Z/pZ, µp and αp.
Every group canonically decomposes as a sum of four groups of these types, so in many circumstances, it
suffices to consider groups of only one type. Each type of group forms an abelian category, and with the
exception of the étale-étale case, each has only one simple object over k (the examples we have listed).

Let G/k be a group scheme. We then have the relative Frobenius map F : GF → G, which is a map
of groups. Here GF is the Frobenius twist of G; note that (GF )∨ = (G∨)F . The Cartier dual of the
relative Frobenius map is a map G∨ → (G∨)F . This is not the Frobenius map on G∨ (it goes in the wrong
direction), but a new map, called Verschebung, and denoted V . Precisely, this is the Verschebung for G∨.
The Verschebung for G is defined by taking the Cartier dual of the Frobenius map on G∨; it is a map
V : G → GF . Here are some examples, with k = Fp (note then that GF = G for any G). On Z/pZ the
Frobenius is the identity. On µp and αp the Frobenius is the zero map; these groups are by definition the
kernel of Frobenius on Gm and Ga. Since Z/pZ and µp are Cartier dual, it follows that V = 0 on Z/pZ
while V is the identity on µp. As αp is self-dual, V = 0 on it. Clearly, on the étale-étale groups, F and V
are both the identity.

The Frobenius and Vershebung maps in fact allows us to determine which of the four types G is. For
instance, G is local if and only if F is nilpotent (meaning Fn : GF n → G is zero for n� 0) and étale if and
only if F is an isomorphism. Thus G∨ is local is and only if V is nilpotent on G and étale if and only if V
is an isomorphism on G.

Let A be an abelian variety over k. Then the p-torsion A[p] is an example of a finite group. The
Frobenius map on A[p] is nothing other than the Frobenius map on A restricted to A[p]. This Frobenius
map F : AF → A is an isogeny, and thus has a dual V : A∨ → (AF )∨. We can thus define a map V : A→ AF

by taking the dual to Frobenius on A∨. The map induced on A∨[p] by V is in fact the dual of the Frobenius
map on A[p] since Cartier duality and abelian variety duality interact nicely. This is useful when dealing
with the torsion groups of abelian varieties, as we will below.

3.2. Elliptic curves. Let E be an elliptic curve over k. The group scheme E[p] is finite of order p2. The
Weil pairing

E[p]× E[p]→ µp ⊂ Gm

implies that E[p] is its own Cartier dual. This implies that there are two possibilities for E: either it is
a sum of a local-étale group and an étale-local group each of order p and dual to each other, or else it is
local-local. In the first case, E[p] has k points while in the second case it does not. We call E ordinary in
the first case and supersingular in the second.

The group scheme E[p] can be exactly determined over k. In the ordinary case, the étale quotient of
E[p] is isomorphic to Z/pZ and so the local part, its dual, must be µp. Thus E[p] = µp ⊕ Z/pZ. In the
supersingular case, E[p] is local-local, and so it is an extension

0→ αp → E[p]→ αp → 0.

There are four such (total spaces of) extensions up to isomorphism: the direct sum (on which F = 0 and
V = 0), the kernel of Frobenius on the Witt scheme W2 (on which F = 0 and V 6= 0), the kernel of the
square of Frobenius on Ga, namely αp2 (on which F 6= 0 and V = 0; it is Cariter dual to W2), and one other
(which can be described as the Yoneda sum of the other two non-trivial extensions and on which F and V
are each non-zero). The group E[p] is the last one: since F and V on E[p] are the restriction of degree p
isogenies on E, their kernels must be order p and therefore cannot be all of E[p]; thus F and V are each
non-zero on E[p].

3.3. The space X0(p). We now consider X0(p) over k. This is the space of generalized elliptic curves
together with a subgroup of order p (satisfying some condition in the generalized case, which we will ignore).
Let E/k be an elliptic curve. How many subgroups of order p does it have? If E is ordinary, then it has
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two: the local one and the étale one. It cannot have more than these two, because they are distinct simple
objects. If E is supersingular, then it has at most one subgroup of order p, since over k it is a non-trivial
extension of two simples.

The above discussion shows that we can define two maps i1, i2 : X → X0(p), by letting i1(E) be
(EF , kerF ) and i2(E) be (E, kerV ). It is clear that each map is injective; in fact, each is a closed im-
mersion. Furthermore, the previous discussion shows that they are jointly surjective. To be clear, say that
(E,G) is a point of X0(p). If E is supersingular, then G must coincide with kerV , since there is only one
subgroup of order p, and so (E,G) = i2(E). If E is ordinary and G is étale, then (E,G) = i2(E), while if E
is ordinary and G is local then (E,G) = i1(E′), where E′ is such that (E′)F = E. Note that if E is ordinary
then i1(E) and i2(E) are unequal, since in i1(E) the level structure is étale while in i2(E) it is local. If
E is supersingular so is EF and thus i1(E) = i2(EF ). We therefore find that X0(p) can be described as
two copies of X glued along their supersingular loci identified via (−)F (at the supersingular points there
are nodal singularities). The same discussion applies to X0(Np): it is two copies of X0(N) glued along
supersingular points by (−)F .

As a side comment, we note that this result shows that the genus of X0(p) is one less than the number
of supersingular curves.

3.4. Correspondences. We quickly review the basics of correspondences on curves. Let X be a regular
curve over a field k. A correspondence on X is a pair f = (f1, f2) where f1 and f2 are maps from some
reduced curve C (the total space) to X such that f1 is finite. Given two correspondences f and f ′ with total
spaces C and C ′ we define their sum, denoted f + f ′, to be the natural correspondence with total space
C q C ′. Given a correspondence f with total space C, we get a natural correspondence f̃ with total space
C̃, the normalization of C̃, coming from the finite map C̃ → C. We consider f and f̃ to be equivalent; note
that C̃ is always regular.

Let f : X → Y be a map of regular curves over k. We then have a map f∗ : Div(X) → Div(Y ). This
map is characterized by the following two properties: deg f∗(D) = degD and sup f∗(D) = f∗(sup(D)). If
k is algebraically closed, so that divisors correspond to points, then f∗([x]) is just [f(x)]. Now assume that
f is a finite map. Then we have a map f∗ : Div(Y ) → Div(X), (almost) characterized by two properties:
deg(f∗(D)) = deg(f) deg(D) and sup(f∗(D)) = f−1(sup(D)). (Here f−1 is just taken at the topological
level.) If k is algebraically closed, then for y ∈ Y (k) we have

f∗([y]) =
∑

x∈X(k)

lenx(Xy)[x]

where here Xy = X ×Y y. Note that Xy is a finite subscheme of X, but may not be reduced.
Now let f = (f1, f2) be a correspondence of X with total space C. We define a map f∗ : Div(X)→ Div(X)

by (f2)∗f∗1 . (If C is not regular, use f̃ .) This map carries principal divisors into principal divisors and
therefore induces a map f∗ : Pic(X) → Pic(X), and a map f∗ : Jac(X) → Jac(X). (We have only defined
these maps on field points, but they exist as maps of schemes.) Let g : X → X be a finite map of curves.
The f = (id, g) and f ′ = (g, id) are correspondences of X. The map f∗ of Jac(X) coincides with the map
g∗, while the map (f ′)∗ is the dual to g∗.

3.5. The Eichler-Shimura identity. There are two natural maps p1, p2 : X0(Np) → X0(N), taking
(E,G) to E or E/G, where here G is a subgroup of order p and the level N structure is implicit. These
two maps define a correspondence from X0(N) to itself over Z[1/N ], called the Hecke correspondence, and
denoted Tp. The Eichler–Shimura identity computes this correspondence in characteristic p:

Proposition 9. We have Tp = (F, 1) + (1, F ) as correspondences on X0(N). Thus (Tp)∗ = F + V as
endomorphisms of J0(N). (All of this takes place over Fp.)

Proof. Recall that we have defined maps i1, i2 : X0(N)→ X0(pN) and that the map

i1 q i2 : X0(N)qX0(N)→ X0(pN)

is the normalization of X0(pN). Thus, since we are allowed to replace the total space of a correspondence
with its normalization, the correspondence Tp is just the sum of the correspondences (p1 ◦ i1, p2 ◦ i1) and
(p1 ◦ i2, p2 ◦ i2), each with total space X0(N). Some short computations show that

p1 ◦ i1 = F, p1 ◦ i2 = id, p2 ◦ i1 = id, p2 ◦ i2 = F.
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Thus Tp = (F, 1) + (1, F ), as claimed. The correspondence (1, F ) induces the map F on the Jacobian while
the correspondence (F, 1) induces the dual map V . This completes the proof. �

4. Applications to modular Galois representations

We have defined correspondences Tp on X0(N) for all primes p not dividing N . These correspondences
induce endomorphisms of the abelian variety J0(N) and generate a commutative subalgebra T of End(J0(N))
which is finite over Z. Let f be a cuspidal weight 2 newform of level N . Let Kf ⊂ C be the coefficient field
of f . The action of T on f determines a homomorphism λ : T→ Kf . Let a be the kernel of λ, an ideal of
T, and let Af be the quotient of J0(N) by aJ0(N). We wish to understand Af as best we can. We begin
by computing its dimension:

Proposition 10. The dimension of Af is the degree of Kf .

Proof. The dimension of Af is the dimension of the space of global 1-forms on it. Global 1-forms on Af

correspond to global 1-forms on J0(N) which are killed by a. The latter space is precisely the space of
modular forms with eigenvalue some Aut(C) conjugate of λ. Thus the dimension of this space is the number
of conjugates of λ, which is equal to the degree of Kf . �

The abelian variety Af actually has an action of Kf by isogenies, that is, there is a canonical map
Kf → End(Af ) ⊗Q. We can therefore regard the Tate module T`(Af ) as a two dimensional vector space
over Kf ⊗Q`. The following proposition (combined with Faltings’ theorem on isogenies of abelian varieties)
determines Af up to isogeny.

Proposition 11. Let p be a prime not dividing N . Then Af has good reduction at p and the trace of Frobp

on any Tate module T`Af with ` 6= p is equal to ap, the eigenvalue of Tp on f .

Proof. We consider only the case K = Q for simplicity. The abelian variety J0(N) has good reduction at p
since X0(N) is a smooth proper curve over Z[1/N ], from which it follows that the quotient Af does as well.
Working modulo p, we have Tp = F + V on J0(N), which implies the same on the quotient Af . On this
quotient, Tp acts by multiplication by the integer ap = λ(Tp). We thus find that F 2 − apF + p = 0 on Af ,
which shows that ap is the trace of F on T`Af . (There is a slight gap in this proof. In this section, we have
simply stated that T acts on J0(N) without explaining how. To prove the Eichler–Shimura correspondence,
we used a precise definition of the action of Tp on J0(N), and equated it with the action of the correspondence
gotten by passing to the normalization of the total space. One must show that these two actions of Tp on
J0(N) coincide to have a complete proof. We leave these details to the reader.) �

We now turn to ordinarity. We say that f is ordinary at p if its Tp eigenvalue is a p-adic unit. We say
that a Galois representation ρ : GQ → GL2(Qp) is ordinary at p if on inertia it is an extension of 1 by χp.
Furthermore, we say that ρ is ordinary crystalline if this extension class is represented by a unit in Kummer
theory. We now have the following result:

Proposition 12. If f is ordinary at p - N then TpAf is ordinary crystalline.

Proof. We again assume K = Q. As in the previous proposition, Af has good reduction at p and F 2−apF+p
holds as an endomorphism of Af , the reduction of Af modulo p. Assume for the moment that Af were
supersingular. Then we would have F 2 = 0 on Af [p] (since F = V in the supersingular case and FV = p),
and so apF would be zero on Af [p]. Since ap is a p-adic unit, and integer, this would imply that F vanishes
on Af [p]. This is impossible since the kernel of F has order p. Thus Af is ordinary. The result now follows
from the following proposition. �

Proposition 13. Let E/Zp be an elliptic curve with ordinary reduction. Then TpE is crystalline ordinary.

Proof. It is not difficult to see that E[p] is an extension of Z/p by µp over Zun
p . In fact, we have an extension

0→ µpn → E[pn]→ Z/pn → 0

over Zun
p . This shows that TpE is an extension of 1 by χp, and thus ordinary. To see that it is crystalline,

note that the above extension, regarded simply as an extension of sheaves of groups on the fppf site of Zun
p ,
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defines an element of H1
f (Zun

p , µpn). Here Hf is cohomology in the fppf site. We can compute this group via
Kummer theory. Since H1

f (Zun
p ,Gm) = 0, we have

H1
f (Zun

p , µpn) = (Zun
p )×/((Zun

p )×)pn

.

This isomorphism is compatible with Kummer theory over Qun
p , which shows that the extension class for

TpE is represented by a p-adic unit. �

5. Galois representations coming from Hilbert modular forms

Let f be a Hilbert cuspidal eigenform of parallel weight 2 for a totally real field F . We know that one
can associate a Galois representation to f , and that its local properties are determined by those of f . Can
this be proved in the same manner as the classical modular case?

If F has odd degree over Q or f is square-integrable at some finite place, then the Jacquet-Langlands
correspondence shows that f can be transferred to a Shimura curve X. The curve part is the key point.
One can then construct a quotient of the Jacobian of X, as we did for the Jacobian of J0(N), and obtain an
abelian variety Af . Everything goes through as before. (Some points may even be more simple, as Shimura
curves are naturally compact — that is, there is no need to add cusps.)

When F has even degree over Q and f is principal series at all finite places, this procedure does not
work. In fact, it is not known if the Galois representation associated to f appears as the Tate modular of an
abelian variety, though I imagine this is expected. However, the Galois representation has been constructed
and its local properties established, by more indirect means. If f is ordinary, then it can be put into a
p-adic family. Other members of this family have Galois representations which are easier to construct, and
the representation for f can be constructed as a limit. If f is not ordinary, this approach is not feasible.
However, one can find enough congruences between f and forms for which the Galois representation is known
to exist to construct the Galois representation of f . This was Richard Taylor’s thesis.
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