
Lecture 21: Structure of ordinary-crystalline deformation ring for ` = p

1. Basic problem

Let Λ be a complete discrete valuation ring with fraction field E of characteristic 0,
maximal ideal m = (π), and residue field k of characteristic p > 0; we will ultimately be
interested in the case when k is finite (and in particular, perfect). Consider a complete local
noetherian Λ-algebra R with residue field k, so

R = Λ[[x1, . . . , xm]]/(f1, . . . , fs),

and suppose there is given a continuous representation

ρ : GK → GLn(R)

for a p-adic field K (i.e., K is a finite extension of Qp). Note that R[1/p] = R[1/π] = R⊗ΛE;
we call this the “generic fiber” of R over Λ, but beware that as an E-algebra this is typically
very far from being finitely generated. For shorthand, we write RE to denote this generic
fiber.

We are going to be interested in certain subsets of MaxSpec(RE). Recall from the lecture in
the fall on generic fibers of deformation rings that the maximal ideals of RE are precisely the
kernels of E-algebra homomorphisms RE → E ′ into finite extensions E ′/E, or equivalently
Λ-algebra homomorphisms R→ E ′, and that such maps are necessarily given by

h(x1, . . . , xm) 7→ h(a1, . . . , am)

for ai in the maximal ideal of the valuation ring Λ′ of E ′. In more geometric terms,
MaxSpec(RE) is identified with the zero locus

{(a1, . . . , am) ∈ Em | |ai| < 1, fj(a1, . . . , am) = 0 for all j}

taken up to the natural action by Gal(E/E) on this locus.

Remark 1.1. Loosely speaking, we view RE as an “algebraist’s substitute” for working di-
rectly with the rigid-analytic space {f1 = · · · = fs = 0} inside of the open unit polydisk over
E. There is a way to make this link more precise, by relating RE to the algebra of bounded
analytic functions on this analytic space, but we do not need such a result so we will pass
over it in silence; nonetheless, trying to visualize MaxSpec(RE) in terms of this analytic zero
locus is a good source of intuition.

In the fall lecture on generic fibers of deformation rings, we recorded a few basic algebraic
properties of RE and we recall them now. First, RE is noetherian and Jacobson; the latter
means that every prime ideal is the intersection of the maximals over it, or equivalently the
radical of any ideal is the intersection of the maximals over it. This ensures that focusing on
MaxSpec does not lose a lot of information, much like algebras of finite type over a field (the
classic example of a Jacobson ring). In contrast, a local ring of positive dimension (e.g., a
discrete valuation ring, or R as above when not artinian!) is never Jacobson! An additional
important property, already implicit in the preceding discussion, is that if x ∈ MaxSpec(RE)
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then the corresponding residue field E(x) = RE/mx is finite over E. It then makes sense to
consider the specialization of ρ at x:

ρx : GK
ρE→ GLn(RE)→ GLn(E(x)).

Especially when E is finite over Qp, we visualize ρ as a “family” of p-adic representations
{ρx} with varying coefficient fields E(x) of finite degree over E.

Remark 1.2. Note that each such ρx is continuous (and so is a p-adic representation of GK)
since x carries R into the valuation ring of E(x) via a local map and ρ is continuous when
R is given its local (i.e., max-adic) topology.

For a property P of (isomorphism classes of) GK-representations over finite extensions of
E and for any x ∈ MaxSpec(RE), let P(x) denote the condition that ρx satisfies property
P. (In practice, P is always insensitive to finite scalar extension on the coefficient field over
E.) It is useful to consider whether or not the locus

P(RE) = {x ∈ MaxSpec(RE) |P(x) holds}
is “analytic” in the sense that it is cut out by an ideal J of RE. That is, for a Λ-algebra map
x : R → E ′ to a finite extension E ′/E, does ρx satisfy P if and only if x(J) = 0? A given
ideal J in RE satisfies this condition if and only if its radical does (since E ′ is reduced), so
we may as well restrict attention to radical J . But since RE is Jacobson, a radical ideal
J in RE is the intersection of the maximals over it, so in other words there is exactly one
possibility for a radical J :

JP :=
⋂

P(x) holds

mx

where mx = ker(x : RE → E(x)). Note that if P(x) fails for all x ∈ MaxSpec(RE) then
JP = (1) (either by logic, convention, or the utiliarian reason that it is consistent with what
follows).

Turning this reasoning around, we take the above expression for JP as a definition, so
V (JP) := Spec(RE/JP) is the Zariski closure of the locus of x ∈ MaxSpec(RE) such that
P(x) holds. The analyticity question for P then amounts to the following question: does
every closed point of V (JP) satisfy P? It is by no means clear how one could answer this
question, and in the early days of modularity lifting theorems this was a serious problem
which had to be treated by ad hoc methods depending on the specific P.

One of the big achievements of Kisin’s introduction of integral p-adic Hodge theory into
Galois deformation theory is to provide systematic techniques for proving an affirmative
answer to this question for many interesting P involving conditions related to p-adic Hodge
theory (e.g., crystalline with Hodge-Tate weights in the interval [−2, 5]). In any situation for
which the P-analyticity question has an affirmative answer, to exploit it one needs to answer
a deeper question: how can we analyze properties of RE/JP, such as regularity, dimension,
connectedness of spectrum, etc.? Kisin’s methods also gave a way to address this question.
We will develop this for a special P that can be studied without the full force of p-adic Hodge
theory: the “ordinary crystalline” deformation problem, to be defined later.

A key insight that underlies Kisin’s strategy for answering both of these questions is to
use P to define a new moduli problem on arbitrary R-algebras (forgetting the topological
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structure of R) which is shown to be represented by a proper (even projective) R-scheme
Θ : XP → SpecR such that:

(1) the map ΘE : XP,E → Spec(RE) obtained by inverting p (equivalently, localizing by
Λ→ E) is a closed immersion whose image has as its closed points precisely the ones
which satisfy P (so this closed subscheme, after killing nilpotents, recovers JP and
provides an affirmative answer to the P-analyticity question),

(2) the Λ-scheme XP is “formally smooth” in a sense we will make precise later. (In
practice XP is very far from being finite type over Λ, just like R itself, so we cannot
naively carry over the notion of smooth morphism from algebraic geometry in terms
of a Jacobian criterion.)

An important consequence of condition (2) is that the generic fiber XP,E is “formally
smooth” over E, which is to say that it is regular and hence reduced. (In geometric language,
this says that the rigid-analytic space over E arising from RE/JP in the open unit polydisc
is smooth.) In particular, XP,E = V (RE/JP) (affine!), so the E-algebra RE/JP that we wish
to understand is the coordinate ring of the affine generic fiber XP,E of the (typically non-
affine!) moduli scheme XP over R which we can try to study by moduli-theoretic reasoning.
In fact, we will study the structure of the generic fiber over E by using moduli-theoretic
considerations with the schemes XP mod πR and XP mod mR which live in characteristic p!

Letting IP = ker(R → RE/JP) be the ideal of the Zariski closure in SpecR of the P-
locus in SpecRE, the quotient R/IP is reduced with generic RE/JP. In practice we will
think of R/IP as an “integral parameter space for the property P”. In particular, the formal
smoothness over Λ in (2) justifies viewing XP as a “resolution of singularities” of Spec(R/IP)
(for which it has the same E-fiber).

2. Some commutative algebra and algebraic geometry

Before we launch into the definition and study of Kisin’s moduli problems on R-algebras
and their applications to the study of the P-locus in MaxSpec(RE), we digress to explain
some general considerations in commutative algebra and algebraic geometry which will be
used throughout his method. It will be clearer to carry out these general considerations now
so that we will be ready for their applications later.

We consider the following general setup. Let (Λ, E, π, k, R) be as above, and let f : X →
SpecR be a proper R-scheme. There are two “reductions” of f that will be of interest: the
reductions

f : X := X mod π → Spec(R/πR), f0 : X0 := X mod mR → Spec k

modulo πR and modulo mR respectively. In particular, X0 is a proper (hence finite type)
scheme over the residue field k. The quotient R/πR is naturally a k-algebra (since k =
Λ/(π)), but X is typically “huge” (not finite type) when thereby viewed as a k-scheme.

Since f is proper, it carries closed points of X into closed points of SpecR. But there is
only one closed point of the local SpecR, and X0 is closed in X, so we conclude that the
closed points of X coincide with those of X0. Moreover, if x0 ∈ X is a closed point then
since it is closed in the scheme X0 of finite type over k we see that the residue field κ(x0) of
X at x0 (or equivalently, of X0 at x0) is of finite degree over k,
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Now assume that k is perfect (e.g., finite). Consider a closed point x0 ∈ X, so κ(x0)/k
is a finite separable extension. Let Λ(x0) be the unique (up to unique isomorphism) finite
unramified extension of Λ with residue field κ(x0)/k. The completed local ring O∧X,x0

is a
Λ-algebra with residue field κ(x0)/k, so by Hensel’s Lemma it admits a unique structure of
Λ(x0)-algebra over its Λ-algebra structure. (This application of Hensel’s Lemma crucially
uses that we are working with the completed local ring and not the usual algebraic local ring
OX,x0 ; this latter Λ-algebra is typically not a Λ(x0)-algebra in a compatible manner.)

Hypothesis (∗): assume that O∧X,x0
' Λ(x0)[[T1, . . . , Tn]] as Λ(x0)-algebras, for all closed

points x0 ∈ X0.

This hypothesis can be checked by means of functorial criteria, and that is how it will be
verified in later examples of interest. It follows from (∗) that the completion O∧X,x0

is regular,
Λ-flat, and reduced modulo π for all x0. These are the properties we will use to prove:

Proposition 2.1. Under hypothesis (∗), the base change X over R/(π) is reduced and the
total space X is regular and Λ-flat.

Proof. We first handle the Λ-flatness, and then turn to the claims concerning reducedness
modulo π and regularity. The π-power torsion in OX is a coherent ideal whose formation
commutes with passage to stalks and completions thereof (by flatness of completion). For
all closed points x0, the completion of OX,x0 is Λ-flat by inspection of its assumed structure.
Hence, the π-power torsion ideal has vanishing stalks at all closed points, so it vanishes on
an open subset of X which contains all closed points. Such an open subset must be the
entire space, so X is Λ-flat.

By hypothesis (∗), each quotient O∧
X,x0

= O∧X,x0
mod π is reduced, so the proper scheme

X over the complete local noetherian ring R = R/(π) has reduced local rings at the closed
points. Thus, the coherent radical of the structure sheaf of OX has vanishing stalks at all
closed points, so exactly as for the Λ-flatness above we conclude that X is reduced.

If the non-regular locus on X is closed then since the local rings on X at all closed points
are regular (by inspection of their completions) it would follow that the non-regular locus
is empty. That is, X is regular if the non-regular locus is closed. It remains to prove that
the non-regular locus in X is Zariski-closed. The closedness of this locus in general locally
noetherian schemes (and likewise for other properties defined by homological conditions) is a
deep problem which was first systematically investigated by Grothendieck. His big discovery
was that for a class of schemes called excellent the closedness always holds. He also proved
that “most” noetherian rings which arise in practice are excellent.

We refer the reader to [4, Ch. 13] for an elegant development of the basic properties
of excellence (including the definition!), and here we just record the main relevant points:
excellence is a Zariski-local property, it is inherited through locally finite type maps, and
every complete local noetherian ring (e.g., every field, as well as R above) is excellent. Hence,
the scheme X is excellent, so its non-regular locus is Zariski closed. �

Now we come to a very useful result which can be applied under the conclusions of the
preceding proposition.
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Lemma 2.2 (Reduced fiber trick). Let X be a Λ-flat R-scheme which is proper and for
which X = X mod π is reduced. If X is connected and non-empty then X0 = X mod mR

and the generic fiber XE = X ⊗Λ E are both connected and non-empty.
In general (without connectedness hypotheses), there is a natural bijective correspondence

between connected components C0 of X0 and CE of XE by the requirement that CE is the
E-fiber of the unique connected component of X with mod-mR fiber C0.

Proof. Since X is non-empty and Λ-flat, XE is non-empty. The theorem on formal functions,
applied to the proper X over the complete local noetherian ring R, identifies the idempotents
on X with those on X0. In particular, X0 is non-empty, and each connected component of
X0 uniquely lifts to a connected component of X. Hence, by passing to the connected
components of X it suffices to prove that if X is connected then so is XE.

The Λ-flatness of X implies that the ring O(X) of global functions on X injects into its
localization O(X)[1/π] = O(X)E = O(XE) which is the ring of global functions on XE. We
assume that the latter contains an idempotent e and seek to prove e = 0 or e = 1. We can
write e = e′/πn for a minimal n ≥ 0 and a global function e′ on X. If n = 0 then e′ is
idempotent on X and hence e = e′ ∈ {0, 1} since X is connected. Thus, we assume n ≥ 1
and seek a contradiction to the minimality of n.

Since e2 = e on XE, we can clear denominators (via Λ-flatness) to get e′2 = πne′ on X.
Thus, for e′ = e′ mod π we have e′2 = 0 on X. But X is reduced, so e′ = 0 on X. This says
that e′ is divisible by π locally on X. Since X is Λ-flat, the local π-multiplier to get e′ is
unique and hence globalizes. That is, e′ = πe′′ for some e′′ ∈ O(X). It follows that on XE

we have

e =
e′

πn
=

e′′

πn−1
,

contrary to the minimality of n. �

Inspired by the two preceding results, we are led to wonder: how can we ever verify
Hypothesis (∗)? We now present a functorial criterion.

Proposition 2.3. Hypothesis (∗) holds if and only if for every artin local finite Λ-algebra
B, X(B)→ X(B/J) is surjective.

Proof. Fix a closed point x0 ∈ X and let k′/k be a finite Galois extension which splits
k0 := κ(x0). Let Λ0 = Λ(x0), and let Λ′ be the finite unramified extension of Λ corresponding
to k′/k. Thus,

(2.1) Λ′ ⊗Λ Λ0 '
∏

j:k0→k′

Λ′j

where Λ′j denotes Λ′ viewed as a Λ(x0)-algebra via the unique Λ-embedding Λ0 → Λ′ lifting
the k-embedding j : k0 → k′.

Recall from above that O∧X,x0
is canonically a Λ0-algebra. Let B be an artin local finite

Λ0-algebra. A complete local noetherian Λ0-algebra with residue field k0 is a formal power
series ring over Λ0 if and only if it is Λ0-flat with residue field k0 and is regular modulo π.
These properties hold if and only if the finite étale scalar extension by Λ0 → Λ′ yields the
analogous properties using the residue field k′, so it is equivalent to prove that this scalar
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extension is a formal power series ring over Λ′. In particular, the functorial criterion for the
latter condition is precisely that the natural map of sets

(2.2) HomΛ0(O
∧
X,x0

, B)→ HomΛ0(O
∧
X,x0

, B/J)

is surjective for any artin local finite Λ′-algebra B with residue field of finite degree over k0

and any square-zero ideal J in B.
We will reformulate this surjectivity in terms which are more easily related to the functor

of points of X as we vary (B, J) with B an artin local finite Λ′-algebra. Since B is artin
local and Λ-finite, the natural restriction map

HomΛ(O∧X,x0
, B)→ HomΛ(OX,x0 , B) = Xx0(B)

is bijective, where Xx0(B) denotes the set of Λ-maps SpecB → X whose image is x0. Using
the Λ′-algebra structure on B and the canonical Λ′-algebra structure on O∧X,x0

, we also have
the alternative description

HomΛ(O∧X,x0
, B) = HomΛ′(Λ′ ⊗Λ O∧X,x0

, B) = HomΛ′((Λ′ ⊗Λ Λ0)⊗Λ0 O∧X,x0
, B).

Using (2.1), this is identified with the disjoint union∐
j:k0→k′

HomΛ′(Λ′ ⊗j,Λ0 O∧X,x0
, B) =

∐
j:k0→k′

HomΛ0(O
∧
X,x0

, Bj)

where Bj denotes B viewed as a Λ′-algebra via any g ∈ Gal(k′/k) lifting j on k0.
The preceding identifications of Hom-sets are all functorial in B. In the final disjoint union

above, as we vary through all pairs (B, J) with B an artin local finite Λ′-algebra and J a
square-zero ideal in B, the simultaneous surjectivity of (2.2) for all pairs (Bj, Jj)’s is thereby
identified with the surjectivity of the natural map

Xx0(B)→ Xx0(B/J)

as B varies through artin local finite Λ′-algebras. Recall that k′/k is an arbitrary but fixed
finite Galois extension which splits k0 = κ(x0). Thus, if X(B) → X(B/J) is surjective for
all artin local finite Λ-algebras B and square-zero ideals J ⊂ B then Hypothesis (∗) holds.

Conversely, if (∗) holds then for any such (B, J) we claim that X(B) → X(B/J) is
surjective. Pick a point in X(B/J). As a Λ-map Spec(B/J) → X we claim that it hits
a closed point x0. Since B/J has residue field of finite degree over k, it suffices to show
that this map lands in X0 (as X0 is a finite type k-scheme). Since the composite map
Spec(B/J) → Spec(R) over Λ lifts a point of R valued in a finite extension of k, it suffices
to check that the only such point is the evident one which kills mR. Expressing R/(π) as the
quotient of a power series ring over Λ, it suffices to prove that the only local k-algebra map
from k[[x1, . . . , xm]] into a finite extension of k is “evaluation at the origin”. This is verified
by restriction to the k-subalgebras k[[xi]] for i = 1, . . . ,m.

The chosen point in X(B/J) identifies the residue field κ of B/J as a finite extension of
the residue field k0 at x0, so B/J and hence B is thereby equipped with a natural structure
of Λ0-algebra over its Λ-algebra structure. The chosen point in X(B/J) is thereby identified
with a Λ-algebra map Spec(B/J)→ X hitting x0 and lifting the specified extension structure
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κ/k0. This map corresponds to a local Λ-algebra map OX,x0 → B/J lifting k0 → κ, which
in turn uniquely factors through such a local Λ-map

O∧X,x0
→ B/J.

This latter map is a Λ0-algebra map (as may be checked on residue fields). By (∗), the
completion O∧X,x0

is a formal power series ring over Λ0, so its map to B/J lifts to a Λ0-
algebra map O∧X,x0

→ B. Running the procedure in reverse, this gives a Λ-map SpecB → X
which lifts the chosen point in X(B/J). �

Remark 2.4. The criterion in Proposition 2.3 is what was used in the verification of power
series properties in the preceding lecture on the case ` 6= p. In Kisin’s papers, he expresses
things in terms of a much more general theory of formal smoothness for maps of topological
rings, and he thereby invokes some very deep results of Grothendieck in this theory.

For example, a noetherian algebra over a field of characteristic 0 is formally smooth (for
the discrete topology) over that field if and only if it is regular. We will speak in the language
of regularity and avoid any need for the theory of formal smoothness because we will appeal
to general results in the theory of excellence (as was done in the proof of Proposition 2.1).

The reader who is interested in reading up on the general theory of formal smoothness
(such as its flatness aspects) should look at [5, Ch. 28], §17.5 in EGA IV4, and §19–22
(esp. 19.7.1 and 22.1.4) in Chapter 0IV of EGA. Certainly if one goes deeper into Kisin’s
techniques (beyond the “ordinary crystalline” deformation condition to be considered below)
then it becomes important to use formal smoothness techniques in the generality considered
by Kisin.

The final topic we take up in this section is the algebro-geometric problem of giving a
convenient criterion to prove that the proper map

fE : XE → Spec(RE)

is a closed immersion. More specifically, we want to give a criterion involving points valued
in finite E-algebras C. Keep in mind that even though RE is a gigantic E-algebra in general,
it is Jacobson and its maximal ideals have residue field of finite E-degree. In particular, the
artinian quotients of RE at its maximal ideals are examples of such E-algebras C. The same
goes for the RE-proper XE at its closed points (which lie over MaxSpec(RE), due to the
properness of fE).

Proposition 2.5. If fE is injective on C-valued points for all E-finite C then fE is a closed
immersion.

Proof. We will first prove that fE is a finite map (i.e., XE is the spectrum of a finite RE-
algebra), so then we can use Nakayama’s Lemma to check the closed immersion property.
Since fE is proper, it suffices to prove that it is quasi-finite. For any map of finite type
between noetherian schemes, the locus of points on the source which are isolated in their
fibers (i.e., the “quasi-finite locus”) is an open set: this is a special case of semi-continuity
of fiber dimension. Thus, if fE has finite fibers over MaxSpec(RE) then the open quasi-
finite locus of fE contains all closed points of XE (as these are precisely the points over
MaxSpec(RE), due to properness of fE). But XE is a Jacobson scheme since it is finite type
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over the Jacobson ring RE, and (as for any noetherian topological space) the only open set
in XE which contains all closed points is the entire space. Hence, if fE has finite fibers over
MaxSpec(RE) then fE is a quasi-finite and therefore finite map.

Letting C vary through the finite extension fields E ′/E, the injectivity of fE on E ′-valued
points implies that the fiber of fE over each y ∈ MaxSpec(RE) has only finitely many closed
points. (Here we use that f−1

E (y) is closed in XE and is of finite type over E(y), with E(y)
finite over E.) But a scheme of finite type over a field has finitely many closed points if
and only if it is finite. Thus, fE indeed has finite fibers over MaxSpec(RE). This argument
even shows that such fibers have at most one physical point (since if a fiber contains two
distinct points x′ 6= x then using E ′ containing E(x) and E(x′) makes fE fail to be injective
on E ′-valued points).

Now consider the finite map fE : XE → SpecRE. To prove that the corresponding
module-finite map of coordinate rings is surjective (so fE is a closed immersion), it suffices
to check surjectivity after localizing at maximal ideals of RE. By Nakayama’s Lemma, it
is equivalent to check that the scheme-theoretic fiber SpecC → SpecE(y) of fE over each
y ∈ MaxSpec(RE) satisfies C = 0 or C = E(y). The two composite maps

Spec(C ⊗E(y) C)⇒ SpecC → SpecE(y)

coincide, so for the E-finite algebra C ′ = C ⊗E(y) C we see that the composites

Spec(C ′)⇒ SpecC = XE ×Spec(RE) Spec(E(y)) ↪→ XE

have the same composition with fE : XE → Spec(RE). By hypothesis, fE is injective on
C ′-valued points! Hence, the projections Spec(C ′)⇒ Spec(C) coincide, which is to say that
the two inclusions C ⇒ C ′ = C ⊗E(y) C coincide. This easily forces C = E(y) if C 6= 0 (by
consideration of an E(y)-basis of C containing 1). �

3. The ordinary crystalline deformation problem

Now assume that k is finite! Let E ′/E be a finite extension and Λ′ its valuation ring. Fix
a continuous representation ρ : GK → GL2(E ′) with cyclotomic determinant χ. We already
know what it means to say that ρ is ordinary: this means that there is a GK-equivariant
quotient line with action by an unramified character η. Such a quotient line is unique, as the
Λ×-valued det ρ = χ is ramified, so it is equivalent to say that ρ admits an IK-equivariant
quotient line with trivial IK-action. This notion of ordinarity can be expressed in terms of
a GL2(Λ′)-valued conjugate of ρ by using saturated Λ′-lines.

In terms of a GK-stable Λ′-lattice, we get an upper-triangular form for ρ, or equivalently
for ρ|IK , and this extension structure identifies ρ|IK with a class in

H1(IK ,Λ
′(1)) = lim←−H1(IK , (Λ

′/(pn))(1))

with Λ′/(pn) a finite free Z/(pn)-module since [k : Fp] is now assumed to be finite. This rank
is equal to the Zp-rank of the finite free Zp-module Λ′. By computing with a Zp-basis of Λ′,
the natural map

Λ′ ⊗Zp H1(IK , µpn)→ H1(IK , (Λ
′/(pn))(1))

is an isomorphism, and we can pass this tensor product through an inverse limit to get

H1(IK ,Λ
′(1)) = Λ′ ⊗Zp H1(IK ,Zp(1)).
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The “crystalline” property of ρ is now going to be defined in terms of a description of
H1(IK ,Zp(1)) and the identification of ρ|IK as a class in Λ′⊗Zp H1(IK ,Zp(1)). (After making
the definition, we will make it more concrete in terms of matrices.) We note at the outset
that the definition we will give is in fact equivalent to a special case of a general notion of
“crystalline” defined in p-adic Hodge theory, but we have avoided any discussions of p-adic
Hodge theory and so will likewise have no need to delve further into the justification for our
choice of terminology. A reader who pursues the subject in greater depth will eventually
meet the general concept of “crystalline”, but it is logically unnecessary for our purposes.

Let K ′ denote the completion of the maximal unramified extension Kun, so

K ′ = W (F)⊗W (F) K

where F is the finite residue field of K. Thus, IK = GK′ and OK′ is a complete discrete
valuation ring with uniformizer given by one for OK . In particular, 1 + mK′ is p-adically
separated and complete as a multiplicative Zp-module. By Kummer theory,

(3.1) H1(GK′ ,Zp(1)) = lim←−K
′×/Kun×pn

= Zp × (1 + mK′)

where the Zp-factor corresponds to powers of a fixed uniformizer of K (or K ′). This direct
product decomposition is not canonical: the direct factor of Zp depends on a choice of
uniformizer. However, the “Zp-hyperplane” of 1-units 1 + mK′ (a multiplicative Zp-module)
is canonical.

Definition 3.1. The ordinary representation ρ : GK → GL2(Λ′) is crystalline if its class in
H1(IK ,Λ

′(1)) lies in the Λ′-hyperplane

(1 + mK′)⊗Zp Λ′.

Equivalently, ρ : GK → GL2(E ′) corresponds to a class in H1(IK , E
′(1)) lying in the E ′-

hyperplane (1 + mK′)⊗Zp E
′.

In view of the formulation over E ′, the crystalline condition is intrinsic to the E ′-linear
representation space for GK , so it does not depend on a specific choice of GK-stable Λ′-lattice.

Example 3.2. The concrete meaning of the crystalline condition is as follows. In terms
of a choice of GK-stable Λ′-lattice, consider ρ|IK mod pn for each n ≥ 1. This is upper
triangular unipotent, with upper-right entry given by a Λ′-linear combination of 1-cocycles
g 7→ g(u1/pn

)/u1/pn
on IK , with u ∈ O×K′ . Loosely speaking, Kummer theory shows that

ρ|IK is given by a Tate-curve type of construction with Λ′-coefficients, and the crystalline
condition is that the “q-parameter” can be chosen to be a unit (or equivalent a 1-unit, since

F
×

is uniquely p-divisible).

Now we fix a residual representation ρ0 : GK → GL2(k) with cyclotomic determinant, and
we seek to study its ordinary crystalline deformations with coefficients in p-adic fields or
valuation rings thereof. In order to make good sense of these notions in deformation theory,
we need to generalize the definition of “ordinary crystalline” to the case of more general
coefficients.

Remark 3.3. We will later need to consider coefficients in rings like R[T ] that are not mR-
adically separated and complete, so this will create some delicate problems when we work
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with finite type R-schemes such as P1
R that we want to use in the construction of a moduli

scheme for an “ordinary crystalline” deformation problem. The creative use of proper (gener-
ally non-finite) R-schemes in Galois deformation theory is one of the innovations introduced
by Kisin’s work.

Consider the universal deformation ρ : GK → GL2(R) or universal framed deformation
ρ� : GK → GL2(R�) of ρ0 with cyclotomic determinant. We want to study the locus of
“ordinary crystalline points” in MaxSpec(RE). The formalism for this study will not really
use the universality at all, so to keep the picture clear we now consider any continuous
ρ : GK → GL2(R) as at the outset such that det ρ is cyclotomic, and we continue to assume
that the residue field k of R is finite. For any R-algebra A, let

ρA : GK → GL2(A)

denote the composition of ρ with R→ A on matrix entries. Note that there is no meaningful
continuity condition for ρA for general A, since we are not assuming that A carries an
interesting topology compatible with the one on R.

In the special case that A is an R/mn
R-algebra, ρA is continuous for the discrete topology on

A (and the Krull topology on GK) since ρ mod mn
R is continuous for the discrete topology on

R/mn
R. Beware that if we take A = R/(pn) with the discrete topology then ρA is typically not

continuous. It will therefore be important that we can work modulo powers of the maximal
ideal of R and bootstrap back up to geometric objects over R via limit procedures.

Example 3.4. Our work with ρA for R/mn
R-algebras A will involve some Galois cohomology

with A-coefficients viewed discretely, so we record here the useful fact that for any Z/(pn)-
module M viewed discretely (such as M = A) the natural map

M ⊗Zp H1(IK ,Zp(1))→ H1(IK ,M(1))

is an isomorphism.
To prove this, we can use direct limits in M to reduce to the case when M is a finitely

generated Zp-module. Hence, M is a finite direct sum of modules of the form Z/(pr) with
r ≤ n, so it suffices to treat the case M = Z/(pr). Then the assertion is that the natural
map

H1(IK ,Zp(1))/(pr)→ H1(IK , µpr)

is an isomorphism for all r ≥ 1. For K ′ denoting the discretely-valued completion of Kun

we have IK = GK′ and 1 + mK′ is p-adically separated and complete (as a multiplicative
Zp-module), so Kummer theory and the description of H1(IK ,Zp(1)) in (3.1) yields the result.

In the special case that A is the valuation ring of a finite extension of E, we have defined
what it means to say that ρA is ordinary crystalline (in Definition 3.1). That definition
involved the p-adic topology of the valuation ring. We wish to define this concept for R/mn

R-
algebras A, avoiding any use of nontrivial topologies on rings.

Definition 3.5. Let A be an R-algebra killed by mn
R for some n ≥ 1. The representation

ρA of GK on VA := A2 is ordinary crystalline if there is a GK-stable A-submodule LA ⊂ VA
such that LA and VA/LA are locally free of rank 1 (equivalently, projective of rank 1) and:
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(1) the IK-action on VA/LA is trivial, or equivalently the continuous action of GK on
VA/LA is through an unramified character η : GK → A× and on LA is through χη−1;

(2) under the “valuation” map Kun× � Z, the class in

H1(IK , A(1)) = H1(IK ,Zp(1))⊗Zp A = (Kun×/(Kun×)p
n

)⊗Z/(pn) A

describing ρA|IK is carried to 0 ∈ A (i.e., the class arises from integral units of Kun).

We call the A-line LA ⊂ VA an ordinary crystalline structure on ρA.

Remark 3.6. In the “crystalline” condition (2) in this definition, we have invoked the coho-
mology computation in Example 3.4. Also, in general there may be more than one choice of
LA (if any exist at all!). For example, if A = k and ρk has trivial GK-action (in particular,
the mod-p cyclotomic character is trivial) then every line in Vk = k2 is an ordinary crystalline
structure on ρk.

A fundamental insight of Kisin is that rather than trying to parameterize deformations
which admit an additional structure (such as an ordinary crystalline structure) that may
not be unique, it is better to parameterize the space of pairs consisting of a deformation
equipped with such an additional structure. To make reasonable sense of a parameter space
for such enhanced objects, we will have to leave the framework of complete local noetherian
rings and instead work with certain proper schemes over such rings.

The property in (2) in the preceding definition makes sense as a condition on classes in
H1(IK ,M(χ)) for any discrete Z/(pn)-module M for any n ≥ 1. (Note that M(χ) is a
discrete IK-module, and even a discrete GK-module.)

Definition 3.7. For any discrete Z/(pn)-module M equipped with a continuous unramified
GK-action (not necessarily trivial), the subgroup

H1
crys(K,M(χ)) ⊂ H1(K,M(χ))

consists of classes whose restriction to H1(IK ,M(χ)) = M ⊗Zp H1(IK ,Zp(1)) is killed by the
“valuation” mapping H1(IK ,Zp(1)) → Zp defined by Kummer theory. (In other words, the
IK-restriction is an M -linear combination of classes in H1(IK ,Zp(1)) arising from integral
units of the completion of Kun.)

It is immediate from the definition that if M = lim−→Mi for a directed system of unramified
discrete (Z/(pn))[GK ]-modules Mi then the equality

lim−→H1(K,Mi(χ)) = H1(K,M(χ))

carries lim−→H1
crys(K,Mi(χ)) isomorphically onto H1

crys(K,M(χ)). In other words, the forma-

tion of H1
crys(K,M(χ)) is compatible with direct limits in M . This will be very useful for

reducing some general assertions to the special case of M which are Zp-finite (whereas in
applications we will need to work with M which are not Zp-finite, such as (R/mn

R)[t]).

Example 3.8. Isomorphism classes of pairs (ρA, LA) as in Definition 3.5 correspond to ele-
ments in H1

crys(K,A(1)).
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Example 3.9. It is important to link Definition 3.5 and Definition 3.1. For ρ : GK → GL2(Λ′)
as in Definition 3.1 we claim that it is ordinary crystalline in that initial sense (which can
be checked over the fraction field E ′ of Λ′) if and only if the artinian quotients ρ mod πnΛ′

of ρ are ordinary crystalline in the sense of Definition 3.5 with R = Λ′ (i.e., each ρ mod πnΛ′

admits an ordinary crystalline structure).
It is obvious that if ρ is ordinary crystalline in the initial sense then each artinian quotient

ρ mod πnΛ′ admits an ordinary crystalline structure. To go in reverse, suppose that every
such artinian quotient admits an ordinary crystalline structure. Such structures are not
unique in general, but since k is finite there are only finitely many such structures for each
n ≥ 1. These finite non-empty sets form an inverse system in an evident manner, and so the
inverse limit is non-empty. (This is an elementary fact since the inverse system is indexed
by positive integers and not a general index set.)

An element of the inverse limit is precisely the data of a saturated GK-stable Λ′-line L in
ρ such that (i) ρ mod L has trivial IK-action (as may be checked modulo πn for all n ≥ 1),
and (ii) the class in H1(IK ,Λ

′(1)) = Λ′ ⊗Zp H1(IK ,Zp(1)) corresponding to (ρ|IK , L) has
image under the “valuation mapping” H1(IK ,Λ

′(1)) → Λ′ which vanishes (as this can also
be checked modulo πn for all n ≥ 1). The conditions (i) and (ii) say exactly that ρ is ordinary
crystalline in the sense of Definition 3.1.

The proof of a later “formal smoothness” result over Λ will rest on:

Lemma 3.10. For any n ≥ 1, the functor M  H1
crys(K,M(χ)) on discrete unramified

(Z/(pn))[GK ]-modules is right-exact.

This is analogous to the fact that H1(IK ,M(χ)) = M⊗Zp H1(IK ,Zp(1)) (see Example 3.4)
is right-exact in discrete pn-torsion abelian groups M with trivial IK-action.

Proof. By discreteness we can express any M as a direct limit of Zp-finite GK-submodules,
so any right exact sequence in M ’s is obtained as a direct limit of right-exact sequences of
Zp-finite object. Thus, the compatibility with direct limits in M reduces the problem to
right-exactness for M which are finite abelian p-groups.

There are two ways to settle the finite case. In [3, 2.4.2], Kisin does some work with
cocycles to derive an explicit description of H1

crys(K,M(χ)) which makes the right-exactness
evident by inspection. This is definitely the most elementary way to proceed.

For the reader who doesn’t like cocycle arguments and is familiar with the fppf topology,
here is an alternative explanation in such terms. This explanation is longer, but may be seen
as more conceptual (and clarifies the role of finiteness of the residue field).

The finite discrete GK-module M(χ) has unramified Cartier dual, so it is the generic
fiber of a unique finite flat OK-group scheme M(χ)′ with étale Cartier dual, and M(χ)′ is
functorial in M . If

0→M1 →M2 →M3 → 0

is an exact sequence of such unramified GK-modules then the complex of finite flat OK-group
schemes

0→M1(χ)′ →M2(χ)′ →M3(χ)′ → 0

is short exact (in particular, short exact as abelian sheaves for the fppf topology over OK),
as may be checked using the finite étale Cartier duals.
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It can be shown by a Kummer-theoretic argument in the fppf topology that

H1
crys(K,M(χ)) = H1

fppf(OK ,M(χ)′),

so it suffices to show that H1
fppf(OK ,M(χ)′) is right exact in M . Equivalently, a short exact

sequence in M induces a right-exact sequence in H1
fppf(OK ,M(χ)′). The long-exactness of

fppf cohomology then does the job provided that H2
fppf(OK ,M(χ)′) = 0 for any finite abelian

p-group M equipped with an unramified continuous GK-action.
The filtration by {pmM} reduces us to the case when M is p-torsion. If r = dimFp M and

k′/k is a finite Galois extension which splits M then for the corresponding finite unramified
extension K ′/K we have that M(χ)′OK′ = µrp. Thus, we have an OK-subgroup inclusion

M(χ)′ ↪→ ResOK′/OK
(M(χ)′OK′ ) = ResOK′/OK

(µrp),

where ResOK′/OK
denotes Weil restriction of scalars. This latter operation represented push-

forward at the level of fppf sheaves, and it is an exact functor because OK → OK′ is finite
étale (and hence a split covering étale-locally over Spec(OK)).

We conclude that M(χ)′ is contained in the OK-group scheme T ′ = ResOK′/OK
(Gr

m)
which is an OK-torus (as we see by working étale-locally to split the covering Spec(OK′)→
Spec(OK)). Hence, we have a short exact sequence

1→M(χ)′ → T ′ → T ′′ → 1

where T ′′ := T ′/M(χ)′ is another OK-torus. Thus, using the resulting long exact sequence
in fppf cohomology, to prove H2

fppf(OK ,M(χ)′) = 0 it suffices to prove that H2
fppf(OK , T

′)
vanishes and that any OK-torus (such as T ′′) has vanishing degree-1 cohomology. For the
latter, first recall that degree-1 cohomology with affine coefficients classifies fppf torsors, so
the degree-1 vanishing amounts to the triviality of such torsors when the coefficients are
smooth and affine with connected fibers (such as a torus). To build a section splitting such
a torsor over OK it suffices (by smoothness of the coefficients, and the henselian property for
OK) to find a section over the residue field. That is, we are reduced to proving the vanishing
of degree-1 cohomology over k with coefficients in a smooth connected affine group (such as
a torus). This is Lang’s theorem, since k is finite.

Finally, to prove that H2
fppf(OK , T

′) is trivial, by using the definition of T ′ this amounts
to vanishing of

H2
fppf(OK ,ResOK′/OK

(Gm)).

The exactness of the Weil restriction functor in this case implies (by a δ-functor argument)
that

Hj
fppf(OK ,ResOK′/OK

(·)) ' Hj
fppf(OK′ , ·)

for all j ≥ 0. Hence, we just have to check the vanishing of H2
fppf(OK′ ,Gm) By Grothedieck’s

work on Brauer groups, this is identified with Br(OK′), and since OK′ is henselian this in
turn is identified with Br(k′). But k′ is finite, so its Brauer group vanishes. �

Now we can prove the main existence result for a proper (even projective) R-scheme that
“classifies” ordinary-crystalline pushforwards of ρ.
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Theorem 3.11. For each n ≥ 1, the functor on R/mn
R-algebras given by

A {LA ⊂ VA |LA is an ordinary crystalline structure on ρA}

is represented by a closed subscheme Xn ⊆ P1
R/mn

R
.

There is a unique closed subscheme X ⊆ P1
R such that X mod mn

R = Xn for all n ≥ 1.

Proof. By the universal property of the projective line, Pn := P1
R/mn

R
represents the functor

carrying any R/mn
R-algebra A to the set of locally free A-submodules LA ⊂ VA = A2 of rank

1 such that VA/LA is also locally free of rank 1. Over Pn, consider the GK-action on O2
Pn

defined by ρ mod mn
R and the R/mn

R-algebra structure on OPn .
For each g ∈ GK and any A-point of Pn, the condition that A-pullback of the g-action

on O2
Pn

preserves the corresponding A-line in A2 is represented by a closed subscheme Zg of
Pn. To prove this, we may work Zariski-locally on Pn so that the universal line subbundle
is free and extends to a basis of O2. Then the vanishing of the resulting “lower left matrix
entry” function over the open in the base is what cuts out the g-stability condition over
such an open locus in Pn. These closed loci agree on overlaps and glue to the desired closed
subscheme Zg of Pn attached to g. Thus, the closed subscheme Zn = ∩gZg ⊆ Pn representing
the condition of GK preserving the universal line subbundle of O2.

Consider the character ηn : GK → O(Zn)× describing the GK-action on the universal
line subbundle over Zn. The Zariski-closed conditions ηn(g) = 1 for all g ∈ IK cut out
a closed subscheme Z ′n ⊆ Zn which represents the additional condition that the universal
line subbundle is not only GK-stable but has unramified GK-action. In other words, Z ′n
represents the functor of “ordinary structures” on ρn.

Over Z ′n, consider the further condition that the ordinary structure is crystalline. That
is, for an A-point of Z ′n, we consider the property that the resulting A-line LA in ρA is an
ordinary crystalline structure. The map

H1(IK , A(1))→ A

defined by the valuation Kun× → Z carries the class of (ρA, LA) to an element a ∈ A, and
this construction is functorial in A. Hence, by (the proof of) Yoneda’s Lemma it defines a
global function hn on Z ′n. The zero scheme of hn on Z ′n is clearly the desired Xn.

Having constructed Xn ⊂ Pn for each n ≥ 1, the behavior of moduli schemes with respect
to base change implies that the isomorphism

Pn ' Pn+1 ⊗R/mn+1
R

(R/mn
R)

carries Xn over to Xn+1 mod mn
R. In other words, {Xn} is a system of compatible closed

subschemes of the system {Pn} of infinitesimal fibers of the proper morphism P1
R → SpecR

over the complete local noetherian ring R. Now comes the deepest step: by Grothendieck’s
“formal GAGA” (EGA III1, §5), if R is any complete local noetherian ring and P is any
proper R-scheme, then the functor

Z  {Z mod mn
R}

from closed subschemes of P to systems of compatible closed subschemes of the infinitesimal
fibers of P over SpecR is a bijection. (Even for P = P1

R this is not obvious, and it fails
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miserably if we consider the affine line instead of the projective line.) Thus, we get the
existence and uniqueness of the desired X. �

Remark 3.12. Although each infinitesimal fiber Xn of X over SpecR has moduli-theoretic
meaning for points valued in arbitrary R/mn

R-algebras, we do not claim that X has a conve-
nient moduli-theoretic meaning for its points valued in arbitrary R-algebras. In particular,
XE = X ⊗R RE has no easy interpretation.

Nonetheless, it is XE which will be of most interest to us. Thus, to work with XE we need
a way to understand its properties by studying the Xn’s. This problem will be taken up in
the next section.

4. Properties and applications of the ordinary crystalline moduli scheme

The construction of the proper R-scheme f : X → SpecR is indirect, as formal GAGA is
very abstract, but we can artfully use the construction to infer global properties of X which
will be especially useful for the study of XE. Our analysis rests on the following hypothesis
which is in force throughout this section (unless we say otherwise):

Assume that det ρ : GK → R× is cyclotomic and that ρ is the universal framed cyclotomic-
determinant deformation ring of its reduction ρk. If ρk has only scalar endomorphisms, we
also allow that (ρ,R) is the universal deformation of ρk with cyclotomic determinant.

Proposition 4.1. The Λ-scheme X is regular and flat, and X mod π is reduced.

Proof. By Proposition 2.1, Lemma 2.2, and Proposition 2.3, it suffices to prove that X(B)→
X(B/J) is surjective for every artin local finite Λ-algebra B. Choose such a B, and let k′

be its residue field, so B is canonically an algebra over Λ′ = W (k′) ⊗W (k) Λ. It is harmless
to make the finite étale scalar extension by Λ→ Λ′ throughout (this is compatible with the
formation of X) to reduce to the case k′ = k.

The maximal ideal of B is nilpotent, say with vanishing nth power for some n ≥ 1, so
the map of interest on points of X coincides with the analogue for Xn. Thus, the task is to
show that if L is an ordinary crystalline structure on ρB/J then it lifts to one on ρB. Let

x0 ∈ X be the closed k-point corresponding to the specialization (ρk, Lk) of (ρB/J , L) over
the residue field k of B. Our problem is equivalent to showing that any local Λ-algebra
map O∧X,x0

→ B/J lifts to B. Thus, it is sufficient (and even necessary) to prove that O∧X,x0

is a formal power series ring over Λ. To do this, we need to give a deformation-theoretic
interpretation of this completion.

Since x0 is a closed point, R→ O∧X,x0
is a local map and its reduction modulo mn

R recovers
O∧Xn,x0

due to the relationship between X and the Xn’s. But Xn is an actual moduli scheme
over the ring R/mn

R (unlike X over R). In view of the assumed universal property of (ρ,R),
it follows that O∧Xn,x0

is the deformation ring for ordinary crystalline structures lifting Lk
on cyclotomic-determinant deformations of ρk (possibly with framing) having coefficients in
Λ-finite artin local rings whose nth power vanishes. Hence, O∧X,x0

is the analogous formal
deformation ring for arbitrary Λ-finite artin local coefficients (without restriction on the
nilpotence order of the maximal ideal).
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Our problem is therefore to prove that there is no obstruction to infinitesimal deformation
of (ρk, Lk) as ordinary crystalline structures with cyclotomic determinant. (There is no ob-
struction when we impose the additional data of a framing, as that amounts to simply lifting
some bases through a surjection of finite free modules.) That is, given such a representation
over B/J we wish to lift it to one over B. The given representation with ordinary crys-
talline structure over B/J has diagonal characters {χη−1, η} for some unramified continuous

η : GK → (B/J)×. Since GK/IK = Gk = Ẑ, we can lift η to an unramified continuous
η̃ : GK → B× (choose an arbitrary lift of η(Frobk) ∈ (B/J)×). We claim that this lifts to an
ordinary crystalline deformation to B with diagonal characters {χη̃−1, η̃}.

Thinking in terms of “upper-right matrix entries”, we have to prove the surjectivity of the
natural map

H1
crys(K,B(χη̃−2))→ H1

crys(K, (B/J)(χη−2)).

For M = B(η̃−2) we have M/JM = B(η−2), and these are unramified discrete GK-modules
killed by a power of p. By Lemma 3.10, the natural map

H1
crys(K,M(χ))→ H1

crys(K, (M/JM)(χ))

is surjective, so we are done. �

Proposition 4.2. The natural map fE : XE → Spec(RE) is a closed immersion, and
this regular closed subscheme meets MaxSpec(RE) in precisely the set of closed points x ∈
MaxSpec(RE) such that ρx : GK → GL2(E(x)) is ordinary crystalline in the sense of Defi-
nition 3.1. In particular, the locus of ordinary crystalline points in MaxSpec(RE) is Zariski-
closed.

Proof. By Proposition 2.5, it suffices to prove that fE is injective on C-valued points for
all E-finite C. We may assume C is local, so its residue field E ′ is E-finite. By Hensel’s
Lemma and the separability of E ′/E, the E-algebra structure on C uniquely extends to an
E ′-algebra structure lifting the residue field. Thus, C = E ′ ⊕ I for the nilradical I of C. In
particular, if Λ′ denotes the valuation ring of E ′ then Λ′ ⊕ I is a local Λ′-subalgebra of C,
though it is generally not Λ′-finite since the E ′-vector space I is generally nonzero.

To prove that the map X(C) → (SpecR)(C) between sets of C-valued points over Λ is
injective, we can first replace f : X → SpecR with its scalar extension by Λ → Λ′. This
scalar extension is compatible with the formation of X (as may be checked on infinitesimal
fibers over SpecR), so we may assume E ′ = E.

We fix a map φ : SpecC → SpecR over Λ and seek to prove that it has at most one lift
to a map φ : SpecC → X. Consider the Λ-algebra map

Λ[[x1, . . . , xm]]/(f1, . . . , fs) = R→ C = E ⊕ I

corresponding to φ. Passing to the quotient C/I = E, this map carries each xj to (cj, yj) for
some yj ∈ I and cj ∈ (π). Thus, we can make the formal change of parameters xj 7→ xj − cj
to get to the case when xj 7→ yj ∈ I for all j. Since IN = 0 for some large N , any monomial
in the x’s with large enough degree maps to 0 in C. Hence, the image of R in C is contained

in C̃ := Λ ⊕ J for a finite Λ-submodule J ⊂ I, and we can increase J so that C̃ is a local

finite flat Λ-subalgebra of C. Note that C̃E = C.
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Now consider any φ lifting φ. The restriction of φ to the closed point of SpecC is a map
φ0 : SpecE → X over the specialization φ0 : SpecE → R over Λ. This latter specialization
is a Λ-algebra map R → E and hence lands in Λ. This resulting Λ-valued point of SpecR
uniquely lifts to a Λ-valued point of the R-proper X extending φ0, due to the valuative
criterion for properness. Consider an open affine SpecA in X around the image of the Λ-
valued point of X extending φ0. This open affine contains the image of φ since E = C/I
with I nilpotent. The resulting Λ-algebra map

A→ C = E ⊕ I

with A a finite type R-algebra lands in Λ ⊕ I by the choice of A, and so lands in C̃ upon
taking J big enough.

We have now constructed an R-map Spec C̃ → X that serves as an “integral model” (over
Λ) for φ. The choice of J can always be increased even further, so to prove the uniqueness

of φ (if one exists) it suffices to consider a pair of R-maps Spec C̃ ⇒ X over a common

local Λ-map Spec C̃ → R, and to show that the resulting “generic fiber” maps SpecC ⇒ X
coincide.

By locality of the Λ-map R → C̃ to the Λ-finite C̃, a cofinal system of open ideals in C̃

is given by the mn
RC̃. Using the formal GAGA construction of X from the Xn’s, it follows

that the pair of maps Spec C̃ ⇒ X corresponds to a pair of ordinary crystalline structures

on ρ eC (i.e., compatible such structures over each artinian quotient of C̃). These coincide

provided that the resulting pair of filtrations on ρC coincide, since a C̃-line in C̃2 is uniquely
determined by the associated C-line in C2 (via saturation of Λ-finite submodules in finite-

dimensional E-vector spaces, as C̃ is finite flat over Λ and C̃E = C).
Thus, the injectivity of fE on C-points is reduced to proving that if GK → GL2(C) is a

homomorphism admitting an upper triangular form(
χη−1 ∗

0 η

)
relative to some C-basis with η : GK → C× unramified then the χη−1-line is uniquely
determined. This C-line is precisely the locus of vectors on which IK acts through χ. Indeed,
to prove this it suffices to check that in the quotient C-line η the space of χ-isotypic vectors
for the IK-action vanishes. Since χ is valued in E× and C has an E-linear filtration by
ideals with successive codimension 1 over E, we just need to observe that χ 6= 1 in E× since
char(E) = 0. (In more sophisticated p-adic Hodge theory settings, the analogue of this step
requires results such as Tate’s isogeny theorem for p-divisible groups over Λ: uniqueness
results for integral structures in case of generic characteristic 0.)

To identify the closed points of XE within MaxSpec(RE), we will use Example 3.9. Closed
points of XE are obtained from E ′-valued points for finite extension fields E ′/E; let Λ′ be
the valuation ring of E ′. The preceding argument with the valuative criterion for properness
shows that any E ′-valued point of XE uniquely extends to a Λ′-valued point of X over
SpecR, and such a point corresponds precisely to a filtration on ρE′ as in Definition 3.1, due
to Example 3.9. This proves that the closed points of XE are the ordinary crystalline points
of MaxSpec(RE). �
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Corollary 4.3. Let ρ0 : GK → GL2(k) be an ordinary crystalline representation with cy-
clotomic determinant. Let ρ : GK → GL2(R) be the universal framed deformation with
cyclotomic determinant; if ρ0 has only scalar endomorphisms we allow alternatively that
(ρ,R) is the universal deformation of ρ0 with cyclotomic determinant.

The locus of ordinary crystalline points in MaxSpec(RE) is Zariski-closed, and if

Spec(Rord)

denotes the Zariski closure in Spec(R) of this locus in Spec(RE) then Rord
E is regular, and it

is a domain except precisely when (ρ0)k = ψ1 ⊕ ψ2 with ψ1 6= ψ2 and each ψi an unramified

k
×

-valued twist of ω := χ mod p.

Note that the exceptional cases at the end of the corollary do not include the case when
ρ0 makes GK act trivially. This is really useful: we will apply this corollary later for the
universal framed deformation ring of a 2-dimensional trivial residual representation (after
making a preliminary finite extension on K).

Proof. Apply the preceding theory to ρ, so we get the “moduli scheme” f : X → SpecR
that is regular and induces a closed immersion fE over E whose image on closed points is
the set of ordinary crystalline points of MaxSpec(RE). This gives the Zariski-closedness and
regularity claims, so the domain property amounts to the assertion that XE is connected. We
saw above that X mod π is reduced, so by Lemma 2.2 the connectedness of XE is equivalent
to the connectedness of the proper special fiber f0 : X0 → Spec k (since X0 is certainly
non-empty, due to its moduli-theoretic meaning and the fact that the ordinary crystalline
hypothesis on ρ0 provides a k-point of X0).

Loosely speaking, X0 is the moduli scheme of ordinary crystalline structures on ρk. That
is, it parameterizes all GK-stable lines in ρ0 on which IK acts by χ. By construction, the non-
empty X0 is a closed subscheme of P1

k, so it is connected except precisely when it is not the
entire projective line nor is a single geometric point (as we know X0(k) 6= ∅). The condition
X0 = P1

k says that every line in (ρ0)k is GK-stable and has IK-action by ω. In other words,
ρ0 is a scalar representation via an unramified twist of ω. Thus, the disconnectedness case
is when (ρ0)k has more than one – but only finitely many! – GK-stable line with action by
an unramified twist of ω. The number of such lines is therefore exactly two, by the Jordan-

Hölder theorem. Such cases are precisely when (ρ0)k is a direct sum of distinct k
×

-valued
characters of GK which are each an unramified twist of ω. �

Remark 4.4. There is a variant of the preceding considerations which is useful in practice:
require the determinant of ρ0 and its deformations to be χψ for a fixed unramified (possibly
nontrivial) continuous character ψ : GK → Λ×.

In such cases the conclusions of Corollary 4.3 hold, by essentially the same proof. The
point is that to prove these claims we can first make a scalar extension from Λ to the valuation
ring of a finite extension of E, so we can arrange that the unramified ψ : GK → Λ× admits
a square root. It is then harmless in the Galois deformation theory to twist everything by
the reciprocal of this square root, so we are thereby reduced back to the case ψ = 1 which
was treated above.
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The final application we take up is the determination of the dimension of the regular
Zariski closure XE of the locus of ordinary crystalline points in Spec(RE) for a framed
deformation ring R�,det=χψ

ρ0
. In some cases this Zariski closure is disconnected, but we claim

that its connected components are always of the same pure dimension:

Proposition 4.5. The E-fiber of the ordinary crystalline framed deformation ring

R�,ord,det=χψ
ρ0

has dimension 3 + [K : Qp] at all closed points.

Proof. As above, we may reduce to the case ψ = 1 by making a suitable finite extension on
E (which is harmless for our purposes). In view of the regularity, we just have to compute
the dimension of the tangent space at each closed point in characteristic 0. This will be a
Galois H1 with coefficients in a p-adic field.

By the proof of Proposition 4.2 (relating C-valued points and C̃-valued points) and the
lecture in the fall on charateristic-0 deformation rings, if we identify a closed point x ∈ XE

with an ordinary crystalline representation ρx : GK → GL2(E(x)) then the (regular) com-
pleted local ring of XE at x is the deformation ring of ρx relative to the conditions of having
determinant χ and being ordinary crystalline (in the sense of Definition 3.1, generalized in
the evident manner to allow coefficients in any finite E-algebra, not just finite extension
fields of E).

The method of the proof of the Corollary in §1 of Samit’s lecture in the fall shows (OK,
this should be revised for clarity!) carries over to characteristic-zero deformation theory, so
the dimension of the tangent space to the cyclotomic-determinant framed deformation func-
tor exceeds the dimension of the tangent space to the cyclotomic-determinant deformation
functor by dim PGL2 +h0(ad0(ρx)) = 3 +h0(ad0(ρx)). Thus, the problem is to prove that in
the tangent space H1(K, ad0(ρx)) to the cyclotomic-determinant deformation ring of ρx, the
space of first-order deformations which are ordinary crystalline has E(x)-dimension [K : Qp]
if the reducible ρx has only scalar endomorphisms and 1+[K : Qp] otherwise (the case when
ρx is a direct sum of characters, necessarily distinct due to ramification considerations). The
representation ρx has the form

ρx '
(
χη−1 ∗

0 η

)
for some unramified η : GK → O×E(x), and upon restriction to IK (which kills η and η−1)

the resulting class in H1(IK ,Zp(1)) arises from units in O∧Kun via Kummer theory (i.e., it is
killed by the natural map H1(IK ,Zp(1))→ Zp defined by the valuation map Kun× → Z and
Kummer theory). It is harmless to rename E(x) as E, so this is now a very concrete problem
in Galois cohomology and Kummer theory using the “explicit” upper-triangular description
of ρx.

The only method we know to carry out the dimension calculation in the general case is
to bring in deeper methods related to p-adic Hodge theory or p-divisible groups over very
ramified p-adic discrete valuation rings. But we will only apply the Proposition in the special
case that ρ0 is the trivial 2-dimensional residual representation. So now we will give a proof
only in this case. Note that the residual triviality forces the mod-p cyclotomic character ofGK

to be trivial, so there is a distinguished ordinary crystalline lift with cyclotomic determinant:
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ρχ := E(χ)⊕E. We have seen that for our ρ0, the ord-crystalline framed deformation ring R
with determinant χ has the property that RE is regular with connected spectrum. Provided
that the E(x)-dimension of its tangent space at any closed point x ∈ MaxSpec(RE) is
independent of x, it would suffice to carry out the dimension computation at a single x. For
example, we would be reduced to computing the E-dimension of the ord-crystalline subspace
of

H1(K, ad0(ρχ)) = Ext1
K(ρχ, ρχ)det=χ.

The equidimensionality of the tangent spaces on MaxSpec(RE) is a special case of:

Lemma 4.6. Let R be a quotient of a formal power series ring over Λ, and assume that RE

is normal with connected spectrum. Then all maximal ideals of RE have the same height.

Proof. Replacing R with the quotient by its nilradical has no effect on RE, so we can assume
that R is reduced. Likewise we can assume it has vanishing π-power torsion, so R is Λ-
flat. Hence, R is a domain (as RE is a domain, due to regularity and connectedness of its
spectrum). But R is excellent, so the normalization map R → R′ is module-finite. The
residue field may increase in the normalization process, so R′ is a quotient of a formal
power series ring over the valuation ring of some finite unramified extension E ′ of E. Then
RE = R′E = R′E′ , so we can replace (R,E) with (R′, E ′) to reduce to the case when R is a
normal domain.

There are now two ways to proceed: commutative algebra, or rigid-analytic geometry. For
the commutative algebra method, let p be a maximal ideal of RE = R[1/p]. The complete
local noetherian domain R is catenary ([5, 31.6(iv)]; in general, the catenary property is also
part of the definition of excellence), so dimRP + dim(R/P ) = dim(R) for any prime ideal P
of R. Taking P corresponding to p, we get

dim(RE)p = dim(RP ) = dim(R)− dim(R/P ),

so it suffices to prove that dim(R/P ) = 1 for all such P . The quotient R/P is a Λ-flat
quotient of a formal power series ring over Λ such that its generic fiber ring is RE/p, which
is a field of finite degree over E. Hence, the subring R/P lies in the valuation ring of this
finite extension of E, whence R/P is module-finite over Λ and so is of dimension 1. This
completes the commutative algebra proof.

We merely sketch the rigid-analytic method, which provides nice geometric intuition (and
can be made rigorous). By choosing a presentation

R ' Λ[[t1, . . . , tm]]/(f1, . . . , fs),

it is natural to associate to R the rigid-analytic space M over E defined by f1 = · · · = fs = 0
in the open unit m-disc over E. This construction is given in more intrinsic terms in [1,
7.1]. That exposition proves some very useful related facts: there is a natural bijective
correspondence between MaxSpec(RE) and the underlying set of M such that the completed
local rings at corresponding points are naturally E-isomorphic [1, 7.1.9], and RE is identified
with the ring of bounded global analytic functions on M (here we use the normality of R)
[1, 7.3.6]. Thus, the completed local rings on M are normal (as the excellent RE is normal,
by hypothesis, so its completed local rings are normal). But it is elementary to check that
a noetherian local ring is a normal domain if its completion is, so the analytic local rings
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on M are normal and the affinoid opens in M have normal coordinate ring. Moreover, M is
connected for the Tate topology since idempotents are bounded analytic functions and RE

is a domain (due to normality and connectedness of its spectrum).
Since the completed local rings of RE at its maximal ideals coincide with the completed

local rings on M , and completion preserves dimension for local noetherian rings, to prove
that all maximal ideals of RE have the same height it suffices to prove that all local rings on
M have the same dimension. More generally, any normal rigid-analytic space has pointwise
dimension that is locally constant for the Tate topology (and hence globally constant in the
connected case): this comes down to the fact that an affinoid space associated to a domain
has constant pointwise dimension, which is [2, Lemma 2.1.5].

As an alternative argument in the rigid-analytic case if we assume RE is regular (as
holds in the cases we need), regularity of M implies smoothness of M since char(E) =
0, so the coherent sheaf Ω1

M/E is locally free on M with rank dimm(M) at any m ∈ M .
But connectedness of M forces this rank to be globally constant, whence M has constant
pointwise dimension as desired. �

Returning to the proof of Proposition 4.5, we just have to prove that the ordinary crys-
talline subspace of Ext1

K(ρχ, ρχ)det=χ has E-dimension equal to [K : Qp]. Since ρχ =
E(χ)⊕ E, we have an equality of E-vector spaces

(4.1) Ext1
K(ρχ, ρχ) = Ext1

K(E(χ), E(χ))⊕ Ext1
K(E(χ), E)⊕ Ext1(E,E(χ))⊕ Ext1

K(E,E).

The condition that an E[ε]-deformation of ρχ has cyclotomic determinant amounts to the
condition that its Ext-class ξ on the left side of (4.1) has components in outer terms that
are Cartier dual to each other (as one checks with a direct 4 × 4 matrix calculation). The
ordinarity condition likewise amounts to the vanishing of the Ext1

K(E(χ), E) component.
The crystalline condition then says that the component in Ext1

K(E,E) = H1(K,E) is un-
ramified (a 1-dimensional subspace) and the component in Ext1

K(E,E(χ)) = H1(K,E(1)) is
crystalline.

Since ρχ = E(χ) ⊕ E has non-scalar endomorphisms, our problem is to prove that the
ordinary-crystalline Ext-space with cyclotomic determinant inside of the left side of (4.1)
has E-dimension 1+[K : Qp]. We have already accounted for one dimension, and it remains
to prove that H1

crys(K,E(1)) = H1
crys(K,Zp(1)) ⊗Zp E has E-dimension [K : Qp]. But

H1
crys(K,Zp(1)) is the multiplicative p-adic completion of O×K = k× × (1 + mK), which is

1 + mK . Via the logarithm, its Zp-rank as a multiplicative Zp-module is [K : Qp]. �
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