Calculating deformation rings

Rebecca Bellovin

1 Introduction

We are interested in computing local deformation rings away from p. That is, if L is a finite extension of \mathbf{Q}_{ℓ} and V is a 2-dimensional representation of G_L over \mathbf{F} , where \mathbf{F} is a finite extension of \mathbf{F}_p , $\ell \neq p$, we wish to study the deformation rings R_V^{\square} and $R_V^{\psi,\square}$. Here $\psi: G_L \to \mathcal{O}^{\times}$ is a continuous unramified character, \mathcal{O} is the ring of integers of a finite extension E of \mathbf{Q}_p which has residue field \mathbf{F} , and $R_{V_{\mathbf{F}}}^{\psi,\square}$ is the quotient of $R_{V_{\mathbf{F}}}^{\square}$ corresponding to deformations with determinant $\psi\chi$, where $\chi: G_L \to \mathbf{Z}_p^{\times}$ is the cyclotomic character.

Note that $R_{V_{\mathbf{F}}}^{\psi,\square}$ exists: There is a natural determinant map from the universal 2-dimensional (framed) representation to the universal 1-dimensional (framed) representation, and we take the fiber over the closed point corresponding to $\chi\psi$.

We define the following two deformation problems:

- $D_V^{ur,\psi,\square}$ is the deformation functor which spits out unramified framed deformations with determinant ψ_X
- $L_V^{\chi,\square}$ is the deformation functor which spits out pairs (V_A, L_A) of framed deformations with determinant χ , together with a G_L -stable A-line with G_L acting via χ on L_A . That is, L_A is a projective rank 1 A-module such that V_A/L_A is a projective A-module with trivial G_L -action.

Most of this talk will be about the structure of the ring representing the second functor.

2 Lies I will tell, and auxiliary categories of rings

The minor lie I will tell is that I will entirely suppress the language of categories fibered in groupoids, and pretend we are working with functors. This will allow me to avoid 2-categorical language. But to make what I say literally true, one has to handle non-trivial isomorphisms of deformations via the language of groupoids.

The more major lie I will tell is that after I finish this section, I will try to avoid talking about the various categories of algebras that are involved.

The basic set-up is representing certain deformations of a fixed residual representation (in characteristic p). The deformations are a priori to finite local artinian rings with fixed residue field. But we want to be able to take generic fibers of our representing objects in a sensible way, so we need techniques for passing to characteristic 0 points.

To do this, we need a variety of confusing auxiliary categories of algebras. To demonstrate, let E/\mathbf{Q}_p be a finite extension with residue field containing \mathbf{F} , let $\mathcal{O} \subset \mathcal{O}_E$ be a discrete valuation ring finite over $W(\mathbf{F})$, and let D be a deformation functor on the category $\mathfrak{AA}_{\mathcal{O}}$ of finite local artinian \mathcal{O} -algebras with residue field $\mathcal{O}/\mathfrak{m}_{\mathcal{O}}$, and let E/\mathbf{Q}_p be a finite extension with residue field containing \mathbf{F} . We will be interested in the category \mathfrak{AA}_E of finite local $W(\mathbf{F})[1/p]$ -algebras with residue field E. We also introduce the following categories:

 $\widehat{\mathfrak{AR}}_{\mathcal{O}}$: $\widehat{\mathfrak{AR}}_{\mathcal{O}}$ is the category of complete local noetherian \mathcal{O} -algebras with residue field $\mathcal{O}/\mathfrak{m}_{\mathcal{O}}$.

 $\widehat{\mathfrak{AR}}_{\mathcal{O},(\mathcal{O}_E)}$: $\widehat{\mathfrak{AR}}_{\mathcal{O},(\mathcal{O}_E)}$ is the category of \mathcal{O} -algebras A in $\widehat{\mathfrak{AR}}_{\mathcal{O}}$ equipped with a map of \mathcal{O} -algebras $A \to \mathcal{O}_E$.

Int_B: Given $B \in \mathfrak{AR}_E$, Int_B is the category of finite \mathcal{O}_E -subalgebras $A \subset B$ such that $A \otimes_{\mathcal{O}_E} E = B$.

Note that Int_B is a subcategory of $\widehat{\mathfrak{AR}}_{\mathcal{O},(\mathcal{O}_E)}$ (A obviously has a map to E, and by finiteness or the same sort of arguments as in Brian's talk, it actually lands in \mathcal{O}_E), and there is a natural functor $\widehat{\mathfrak{AR}}_{\mathcal{O},(\mathcal{O}_E)} \to \widehat{\mathfrak{AR}}_{\mathcal{O}}$.

Also note that we can canonically extend D to a groupoid on $\widehat{\mathfrak{AR}}_{\mathcal{O}}$, by setting $D(\varprojlim R/\mathfrak{m}_R^{n+1}) = \varprojlim D(R/\mathfrak{m}_R^{n+1})$.

Now fix some $\xi \in D(\mathcal{O}_E)$, which makes sense by the preceding comment. We define a groupoid $D_{(\xi)}$ on $\widehat{\mathfrak{AR}}_{\mathcal{O},(\mathcal{O}_E)}$ by setting $D_{(\xi)}$ to be the fiber over ξ . More precisely, $D_{(\xi)}(A)$ consists of objects of D(A) together with morphisms (in D) covering the given map $A \to \mathcal{O}_E$.

Finally, we can extend $D_{(\xi)}$ to \mathfrak{AR}_E . We note that $B \in \mathfrak{AR}_E$ can be exhausted by objects in Int_B , so we set $D_{(\xi)}(B) = \varinjlim_{A \in \operatorname{Int}_B} D_{(\xi)}(A)$.

Now Kisin proves two crucial lemmas about these groupoids (which he calls a lemma and a proposition). The first tells us how to get universal deformation rings for the groupoids on \mathfrak{AR}_E , and the second relates those groupoids to the ones we would naively expect (for some deformation problems we already care about):

Lemma 2.1. If D is pro-represented by a complete local \mathcal{O} -algebra R, then $D_{(\xi)}$ is pro-represented (on \mathfrak{AR}_E) by the complete local $\mathcal{O}[1/p]$ -algebra \hat{R}_{ξ} obtained by completing $R \otimes_{\mathcal{O}} E$ along the kernel I_{ξ} of the map $R \otimes_{\mathcal{O}} E \to E$ induced by ξ .

Lemma 2.2. Fix a residual representation V over \mathbf{F} , and carry out the above program for D_V and D_V^{\square} . Then there are natural isomorphisms of groupoids

$$D_{V,(\xi)} \tilde{\to} D_{V_{\xi}} \text{ and } D_{V,(\xi)}^{\square} \tilde{\to} D_{V_{\xi}}^{\square}$$

3 Main result

The main result we will prove is the following:

Theorem 3.1. Let V be any 2-dimensional representation of G_L (over \mathbf{F}). Fix a continuous unramified character $\psi: G_L \to \mathcal{O}^{\times}$ and consider $R_V^{\psi,\square}$, the quotient of R_V^{\square} corresponding to deformations of V with determinant $\psi\chi$. Then Spec $R_V^{\psi,\square}[1/p]$ is 3-dimensional, and it is the scheme-theoretic union of formally smooth components.

There are several claims implicit in this theorem, namely the existence, smoothness, connectedness, and dimension of $R_V^{\mathrm{ur},\psi,\square}$ and $R_V^{\chi\gamma,\gamma,\square}$, as well as the connectedness of $R_V^{\psi,\square}$. We assume these for the moment and go on with the proof.

Proof. Let E'/E be a finite extension, let $x: R_V^{\psi,\square}[1/p] \to E'$ be a point of Spec $R_V^{\psi,\square}[1/p]$ with residue field E' (so that it is actually an E'-point), and let V_x be the induced representation with coefficients in E'. We know (from Brian's talk on characteristic 0 points of deformation rings) that the completion of $R_V^{\psi,\square}[1/p]$ at the maximal ideal $\mathfrak{m}_x = \ker x$ represents deformations of V_x . The tangent space at x is $H^1(G_L, \operatorname{ad}^0 V_x)$. Obstructions to deforming representations live in H^2 groups, so $R_V^{\psi,\square}[1/p]$ at x will be formally smooth at any point x where $H^2(G_L, \operatorname{ad}^0 V_x)$ vanishes.

Given any framed deformation problem D^{\square} (with coefficients in some unspecified field H), there is a natural morphism $D^{\square} \to D$ to the unframed problem given by "forgetting the basis". This morphism is formally smooth in the sense that artinian points of D can be lifted.

Furthermore, the fibers of the morphism of tangent spaces $D^{\square}(H[\varepsilon]) \to D(H[\varepsilon])$ are principal homogeneous spaces under $\operatorname{ad}/\operatorname{ad}^{G_L}$. Specifically, given a residual representation V_H and a choice of (unframed) deformation $V_{H[\varepsilon]}$, $\ker(\operatorname{GL}_2(H[\varepsilon]) \to \operatorname{GL}_2(H)) = 1 + \varepsilon M_2(H[\varepsilon]) \cong \operatorname{End}_H V_H$ acts (via conjugation) on the fiber over $V_{H[\varepsilon]}$. Then it is easy to check that $1 + \varepsilon M$ acts trivially on the fiber if and only if M is in $\operatorname{ad}^0 V_H$.

Counting dimensions,

$$\dim_F D^{\square}(\mathbf{F}[\varepsilon]) = \dim_F D(\mathbf{F}[\varepsilon]) + \dim_F \operatorname{ad} - \dim_F H^0(G_L, \operatorname{ad})$$
 (3.1)

Using this formula, we see that the tangent space to Spec $R_V^{\psi,\square}[1/p]$ at x has E'-dimension

$$\dim_{E'} H^{1}(G_{L}, \operatorname{ad}^{0} V_{x}) + \dim_{E'} \operatorname{ad} V_{x} - \dim_{E'} H^{0}(G_{L}, \operatorname{ad} V_{x})$$

$$= \dim_{E'} H^{1}(G_{L}, \operatorname{ad}^{0} V_{x}) + \dim_{E'} \operatorname{ad} V_{x} - (\dim_{E'} H^{0}(G_{L}, \operatorname{ad}^{0} V_{x}) - 1)$$

$$= - \left(\dim_{E'} H^{2}(G_{L}, \operatorname{ad}^{0} V_{x}) - \dim_{E'} H^{1}(G_{L}, \operatorname{ad}^{0} V_{x}) + \dim_{E'} H^{0}(G_{L}, \operatorname{ad}^{0} V_{x}) \right)$$

$$+ \dim_{E'} H^{2}(G_{L}, \operatorname{ad}^{0} V_{x}) + \dim_{E'} \operatorname{ad} V_{x} - 1$$

$$= \dim_{E'} H^{2}(G_{L}, \operatorname{ad}^{0} V_{x}) + 3$$

the last step following by the Euler characteristic formula for p-adic coefficients. Thus, if $H^2(G_L, \operatorname{ad}^0 V_x) = 0$, x will be a formally smooth point of Spec $R_V^{\psi,\square}[1/p]$ with a 3-dimensional tangent space.

Now suppose $H^2(G_L, \operatorname{ad}^0 V_x) \neq 0$. By the *p*-adic version of Tate local duality, $\dim_{E'} H^2(G_L, \operatorname{ad}^0 V_x) = \dim_{E'} H^0(G_L, (\operatorname{ad}^0 V_x)^*)$, which is $\dim_{E'} H^0(G_L, \operatorname{ad}^0 V_x(1))$

(because ad^0 is self-dual). Now we have the split exact sequence of G_L -modules

$$0 \to \operatorname{ad}^0 V_x(1) \to \operatorname{ad} V_x(1) \to E'(1) \to 0$$

which gives us an exact sequence in cohomology:

$$0 \to H^0(G_L, \operatorname{ad}^0 V_x(1)) \to H^0(G_L, \operatorname{ad} V_x(1)) \to H^0(G_L, E'(1))$$

But $H^0(G_L, E'(1)) = 0$ so

$$H^0(G_L, \operatorname{ad}^0 V_x(1)) = H^0(G_L, \operatorname{ad} V_x(1)) = H^0(G_L, \operatorname{Hom}(V_x, V_x(1)))$$

In particular, if $H^2(G_L, \operatorname{ad}^0 V_x) \neq 0$, there is a non-zero homomorphism (of G_L -modules) $V_x \to V_x(1)$. It has 1-dimensional $(G_L$ -stable) image and kernel, so there is some character γ such that $0 \to \gamma \to V_x \to \gamma(1) \to 0$ is exact. But such extensions are classified by $H^1(G_L, E'(-1))$, which is 0: the Euler characteristic formula says that $\dim_{E'} H^0(G_L, E'(-1)) - \dim_{E'} H^1(G_L, E'(-1)) + \dim_{E'} H^2(G_L, E'(-1)) = 0$, but $H^0(G_L, E'(-1))$ is clearly zero, and $H^2(G_L, E'(-1))$ is dual to $H^0(G_L, E'(2))$, which is zero, so $H^1(G_L, E'(-1))$ is zero as well. So this extension splits.

We have shown that if $H^2(G_L, \operatorname{ad}^0 V_x) \neq 0$, then $V_x = \gamma \oplus \gamma \chi$ for some character $\gamma: G_L \to E'^{\times}$. If γ is unramified, then this implies that x is in the image of both $R_V^{\operatorname{ur}, \gamma^2, \square}$ and $R_V^{\chi\gamma, \gamma, \square}$.

So the only singular points of Spec $R_V^{\psi,\square}[1/p]$ lie in the intersection of two formally smooth components.

The definition of formal smoothness requires us to be able to lift through any square-zero thickening, but we only looked at what happens at artinian points of Spec $R_V^{\psi,\square}[1/p]$; the commutative algebra necessary to justify this is discussed in Brian's notes on $\ell = p$.

4 Unramified deformations

We've seen previously that for the unframed case, the tangent space at x for unramified deformations with fixed determinant is $H^1(G_L/I_L, (\operatorname{ad}^0 V_x)^{I_L})$,

and the obstruction space should be $H^2(G_L/I_L,(\operatorname{ad}^0V_x)^{I_L})=0$. We have the exact sequence

$$0 \to (\operatorname{ad}^{0} V_{x})^{G_{L}} \to (\operatorname{ad}^{0} V_{x})^{I_{L}} \xrightarrow{\operatorname{Frob-id}} (\operatorname{ad}^{0} V_{x})^{I_{L}} \to (\operatorname{ad}^{0} V_{x})^{I_{L}} / (\operatorname{Frob-id})(\operatorname{ad}^{0} V_{x})^{I_{L}} \to 0$$

This implies that $\dim_{E'} H^0(G_L, \operatorname{ad}^0 V_x) = \dim_{E'} H^1(G_L/I_L, (\operatorname{ad}^0 V_x)^{I_L})$. And since the tangent space for the framed case has dimension $\dim_{E'} H^1(G_L/I_L, (\operatorname{ad}^0 V_x)^{I_L}) + \dim_{E'} \operatorname{ad}^0 V_x - \dim_{E'} H^0(G_L, \operatorname{ad}^0 V_x)$ by the discussion in the previous section, this implies that the tangent space of $R_V^{ur,\psi,\square}$ has dimension $\dim_{E'} \operatorname{ad}^0 V_x = 3$.

So granting existence, $R_V^{ur,\psi,\square}$ is formally smooth and 3-dimensional.

5 $R^{\chi\gamma,\gamma,\square}$

We begin this section with a general lemma.

Lemma 5.1. Let \mathcal{O} be a local W(k)-algebra with residue field k, with K the fraction field of W(k), and let X be a proper residually reduced \mathcal{O} -scheme. Then the components of the fiber of X over the closed point of \mathcal{O} are in bijection with the components of X[1/p].

Proof. Consider a connected component of $X[1/p] = X \otimes_{W(k)} K$ and let e be the idempotent which is 1 on this component and 0 on the others. Then if ϖ is a uniformizer of W(k), there is some n such that $\varpi^n e$ extends to a global section of X. But $(\varpi^n e)^2 = \varpi^n(\varpi^n e)$, so if n > 0, as a function on the special fiber $X \otimes_{\mathcal{O}} k$, $\varpi^n e$ is nilpotent. This contradicts our reducedness hypothesis, so n = 0 and e is already a global section of X.

So we know that the components of $X \otimes_{W(k)} K$ are in bijection with the components of X itself. But if X^{\wedge} is the completion of X along its special fiber, the components of the special fiber $X \otimes_{\mathcal{O}} k$ are in bijection with the components of X^{\wedge} (because they have the same underlying topological space), and formal GAGA implies that the components of X^{\wedge} are in bijection with the components of X (X is proper over \mathcal{O} , so we can apply formal GAGA to see that the global idempotent functions on X and X^{\wedge} are in bijection).

5.1 Representability

Proposition 5.2. The morphism $|L_V^{\chi,\square}| \to |D_V^{\chi,\square}|$ is represented by a projective morphism $\Theta_V : \mathcal{L}_V^{\chi,\square} \to R_V^{\chi,\square}$.

Proof. Given an A-point of $R_V^{\chi,\square}$, the A-points of $\mathcal{L}_V^{\chi,\square}$ should be certain line bundles on Spec A, so we will cut $\mathcal{L}_V^{\chi,\square}$ out of $\mathbf{P}^1_{R_V^{\chi,\square}}$.

Consider \mathbf{P} , the projectivization of the universal rank 2 $R_V^{\chi,\square}$ -module. That is, if V_R is the universal rank 2 $R_V^{\chi,\square}$ -module (equipped with a representation of G_L), then $\mathbf{P} := \operatorname{Proj} \operatorname{Sym} V_R \cong \operatorname{Proj} R_V^{\chi,\square}[x_0, x_1]$.

If A is an an $R_V^{\chi,\square}$ -algebra with residue field \mathbf{F} , a morphism $\operatorname{Spec} A \to \mathbf{P}$ (over $R_V^{\chi,\square}$) is the same as a surjection (of sheaves) $A^2 \to \mathcal{L} \to 0$.

Given a morphism $f: \operatorname{Spec} A \to \mathbf{P}$, there is a natural G_L -action on the quotient \mathcal{L} if and only if $g^*f = f$ for all $g \in G_L$. The g^* -fixed locus of \mathbf{P} is H_g defined by the Cartesian square

$$H_g \longrightarrow \mathbf{P}$$

$$\downarrow \qquad \qquad \downarrow^{(\mathrm{id},g^*)}$$
 $\mathbf{P} \stackrel{\Delta}{\longrightarrow} \mathbf{P} \times_{R_V^{\chi,\square}} \mathbf{P}$

Since **P** is separated, H_g is a closed subscheme of **P**. Thus, the intersection $H := \bigcap_{g \in G} H_g$ is a closed subscheme of **P** parametrizing G_L -equivariant quotients $A^2 \to \mathcal{L} \to 0$.

Now if A is a complete local $W(\mathbf{F})$ -algebra, there is a natural map from H to the universal deformation of the residually trivial 1-dimensional representation, given (in the language of the functor of points) by sending $A^2 \to \mathcal{L} \to 0$ to \mathcal{L} . Then we can take the fiber over the (closed) point corresponding to the trivial representation to get a closed subscheme of \mathbf{P} representing $L_V^{\chi,\square}$ on $\mathfrak{AR}_{W(\mathbf{F})}$.

Now take limits to get representability of $L_V^{\chi,\square}$ on $\mathfrak{Aug}_{W(\mathbf{F})}$.

5.2 Smoothness and connectedness

Next we want to study smoothness and connectedness.

Proposition 5.3. $\mathcal{L}_{V}^{\chi,\square}$ is formally smooth over $W(\mathbf{F})$. Furthermore, the $W(\mathbf{F})[1/p]$ -scheme $\mathcal{L}_{V}^{\chi,\square} \otimes_{W(\mathbf{F})} W(\mathbf{F})[1/p]$ is connected.

Proof. First, we will show that for any finite group M of p-power order, the natural map $H^1(G_L, \mathbf{Z}_p(1)) \otimes_{\mathbf{Z}_p} M \to H^1(G_L, \mathbf{Z}_p(1) \otimes_{\mathbf{Z}_p} M)$ is an isomorphism. It suffices to consider the case $M = \mathbf{Z}/p^n\mathbf{Z}$. In that case, we have the exact sequence

$$0 \to \mathbf{Z}_p(1) \xrightarrow{\cdot p^n} \mathbf{Z}_p(1) \to M \to 0$$

Then the long exact sequence in group cohomology shows that

$$0 \to H^1(G_L, \mathbf{Z}_p(1))/p^n H^1(G_L, \mathbf{Z}_p(1)) \to H^1(G_L, M) \to H^2(G_L, \mathbf{Z}_p(1))[p^n]$$

is exact. The middle arrow is the natural map we started with, so we wish to show that $H^2(G_L, \mathbf{Z}_p(1))[p^n]$ is 0. But by Tate local duality (as in Simon's talk), $H^2(G_L, \mathbf{Z}_p(1))$ is Pontryagin dual to $\mathbf{Q}_p/\mathbf{Z}_p$, so has no p^n -torsion.

Thus, for any artinian algebra A, the composition

$$\operatorname{Ext}^1_{\mathbf{Z}_p[G_L]}(\mathbf{Z}_p, \mathbf{Z}_p(1)) \otimes_{\mathbf{Z}_p} A \to H^1(G_L, \mathbf{Z}_p(1)) \otimes_{\mathbf{Z}_p} A \to H^1(G_L, \mathbf{Z}_p(1) \otimes_{\mathbf{Z}_p} A) \to \operatorname{Ext}^1_{\mathbf{Z}_p[G_L]}(A, A(1))$$
 is an isomorphism.

To prove smoothness, it suffices to show that for any surjection of artinian rings $A \to A'$, the map $|L_V^{\chi,\square}|(A) \to |L_V^{\chi,\square}|(A')$ is a surjection. Now consider a pair $(V_{A'}, L_{A'})$ in $|L_V^{\chi,\square}|(A')$. It corresponds to an element of $\operatorname{Ext}^1_{\mathbf{Z}_p[G_L]}(A, A(1))$, so by the isomorphism we just proved, it corresponds to an element of $\operatorname{Ext}^1_{\mathbf{Z}_p[G_L]}(\mathbf{Z}_p, \mathbf{Z}_p(1)) \otimes_{\mathbf{Z}_p} A'$. But such an element clearly lifts to an element of $\operatorname{Ext}^1_{\mathbf{Z}_p[G_L]}(\mathbf{Z}_p, \mathbf{Z}_p(1)) \otimes_{\mathbf{Z}_p} A$, which is to say, an element of $|L_V^{\chi,\square}|(A)$.

Now we wish to prove connectedness after inverting p, and for this we use the lemma on connected components. Specifically, since $\mathcal{L}_V^{\chi,\square}$ is smooth, its special fiber $\mathcal{L}_V^{\chi,\square} \otimes_{W(\mathbf{F})} \mathbf{F}$ is reduced, so to show $\mathcal{L}_V^{\chi,\square}[1/p]$ is connected, it suffices to show that the special fiber $\mathcal{L} \otimes_{R_V^{\chi,\square}} \mathbf{F}$ is connected.

But the special fiber is simply the fiber over the residual representation. If $\mathbf{F} \cong \mathbf{F}(1)$ and the representation is split (i.e., the residual representation is trivial), any line in \mathbf{F}^2 is G_L -stable with G_L -acting by $\chi = \mathrm{id}$, so the fiber is a full $\mathbf{P}^1_{\mathbf{F}}$. Otherwise, there is at most one G_L -line with G_L acting via χ , and this is true for any A-point of the fiber, so it is either empty or it consists of a single reduced point. So the special fiber is connected.

The next proposition will show that $\mathcal{L}_V^{\chi,\square}[1/p] \to \operatorname{Spec} R_V^{\chi,\square}[1/p]$ is a monomorphism. More precisely, it shows that this morphism is injective on artinian points, but, as before, Brian's notes on $\ell = p$ explain why this is sufficient to let us conclude that it is actually a monomorphism.

Proposition 5.4. Let E/\mathbf{Q}_p be a finite extension, and let ξ refer to both an \mathcal{O}_E -valued point of $R_V^{\chi,\square}$ and an \mathcal{O}_E -valued point in the fiber of $\mathcal{L}_V^{\chi,\square}$ above it. Then the morphism of groupoids (functors) on \mathfrak{AR}_E $L_{V_\xi}^{\chi,\square} \to D_{V_\xi}^{\chi,\square}$ is fully faithful. If the representation over E V_ξ corresponding to ξ is indecomposable, then this is an equivalence.

Proof. Let B be an object of \mathfrak{AR}_E , and let V_B be an object of $D_{V_{\xi}}^{\chi,\square}(B)$. To prove the first assertion, we need to show that V_B admits at most one G_L -stable B-line $L_B \subset V_B$ such that G_L acts trivially on V_B/L_B . But $\operatorname{Hom}_{B[G_L]}(B(1), V_B/L_B) = \{0\}$ because the G_L -action on the target is trivial, so $\operatorname{Hom}_{B[G_L]}(B(1), V_B) = \operatorname{Hom}_{B[G_L]}(B(1), L_B)$ and L_B is unique.

Now suppose V_{ξ} is indecomposable; we wish to show that V_B actually does admit a suitable B-line. We will do this by showing that V_B is isomorphic to the trivial deformation $V_{\xi} \otimes_E B$. Note that by Tate local duality

$$\dim_E H^1(G_L, \operatorname{ad}^0 V_{\xi}) = \dim_E H^0(G_L, \operatorname{ad}^0 V_{\xi}) + \dim_E H^0(G_L, \operatorname{ad}^0 V_{\xi}(1)) = 0$$

the last equality following from indecomposability of V_{ξ} . The result then follows by induction on the length of B, since this calculation holds for any indecomposable extension of A(1) by A.

But since we have a proper monomorphism of schemes $\mathcal{L}_{V}^{\chi,\square}[1/p] \to \operatorname{Spec} R_{V}^{\chi,\square}[1/p]$, it is a closed immersion.

Now we can prove the following proposition and corollary.

Proposition 5.5. Let Spec $R_V^{\chi,1,\square}$ be the scheme-theoretic image of the morphism $\mathcal{L}_V^{\chi,\square} \to \operatorname{Spec} R_V^{\chi,\square}$. Then

- 1. $R_V^{\chi,1,\square}$ is a domain of dimension 4 and $R_V^{\chi,1,\square}$ is formally smooth over $W(\mathbf{F})$.
- 2. If E/\mathbf{Q}_p is a finite extension, then a morphism $\xi: R_V^{\chi,\square} \to E$ factors through $R_V^{\chi,1,\square}$ if and only if the corresponding two-dimensional representation V_{ξ} is an extension of E by E(1).

Proof. Since $R_V^{\chi,1,\square}$ is smooth and connected, it is a domain. We will find its dimension via a tangent space calculation. Suppose V_{ξ} is indecomposable (which we may assume, since most points on $R_V^{\chi,1,\square}$ are indecomposable). Then the dimension of $R_V^{\chi,1,\square}[1/p]$ is

$$\dim_E |D_{V_{\xi}}^{\chi,\square}|(E[\varepsilon]) = \dim_E |D_{V_{\xi}}^{\chi}|(E[\varepsilon]) + 4 - \dim_E (\operatorname{ad} V_{\xi})^{G_L}$$
$$= \dim_E H^1(G_L, \operatorname{ad}^0 V_{\xi}) + 3 = 3$$

So $R_V^{\chi,1,\square}$ itself is 4-dimensional, and we have proven the first part. The second part follows from the definition of $\mathcal{L}_V^{\chi,\square}$ and $R_V^{\chi,1,\square}$.

Corollary 5.6. Let \mathcal{O} be the ring of integers in a finite extension of $W(\mathbf{F})[1/p]$, and $\gamma: G_L \to \mathcal{O}^{\times}$ a continuous unramified character. Write $R_{V,\mathcal{O}}^{\square} = R_V^{\square} \otimes_{W(\mathbf{F})} \mathcal{O}$. Then there exists a quotient $R_{V,\mathcal{O}}^{\chi\gamma,\gamma,\square}$ such that

- $R_{V,\mathcal{O}}^{\chi\gamma,\gamma,\square}$ is a domain of dimension 4 and $R_{V,\mathcal{O}}^{\chi\gamma,\gamma,\square}[1/p]$ is formally smooth over \mathcal{O} .
- If $E/\mathcal{O}[1/p]$ is a finite extension, then a map $\xi: R_{V,\mathcal{O}}^{\square} \to E$ factors through $R_{V,\mathcal{O}}^{\chi\gamma,\gamma,\square}$ if and only if V_{ξ} is an extension of γ by $\gamma(1)$.

Proof. This basically follows because universal deformation rings behave reasonably well with respect to twisting by fixed characters, at least once the question makes sense.

More precisely, we may replace \mathbf{F} by the residue field of \mathcal{O} (corresponding to tensoring R_V^{\square} with \mathcal{O}). Then twisting by γ^{-1} induces an isomorphism $R_{V,\mathcal{O}}^{\square} \tilde{\to} R_{V\times\gamma^{-1},\mathcal{O}}^{\square}$ (because twisting the residual representation by γ^{-1} doesn't change this deformation problem (except to multiply the determinant by γ^2), and the quotient $R_{V,\mathcal{O}}^{\chi\gamma,\gamma,\square}$ corresponds to $R_{V\otimes\gamma^{-1}}^{\chi,1,\square} \otimes_{W(\mathbf{F})} \mathcal{O}$ under this isomorphism.