
Calculating deformation rings

Rebecca Bellovin

1 Introduction

We are interested in computing local deformation rings away from p. That
is, if L is a finite extension of Qℓ and V is a 2-dimensional representation
of GL over F, where F is a finite extension of Fp, ℓ 6= p, we wish to study

the deformation rings R�

V and Rψ,�
V . Here ψ : GL → O

× is a continuous
unramified character, O is the ring of integers of a finite extension E of Qp

which has residue field F, and Rψ,�
VF

is the quotient of R�

VF
corresponding to

deformations with determinant ψχ, where χ : GL → Z×
p is the cyclotomic

character.

Note that Rψ,�
VF

exists: There is a natural determinant map from the uni-
versal 2-dimensional (framed) representation to the universal 1-dimensional
(framed) representation, and we take the fiber over the closed point corre-
sponding to χψ.

We define the following two deformation problems:

• Dur,ψ,�
V is the deformation functor which spits out unramified framed

deformations with determinant ψχ

• Lχ,�V is the deformation functor which spits out pairs (VA, LA) of framed
deformations with determinant χ, together with aGL-stableA-line with
GL acting via χ on LA. That is, LA is a projective rank 1 A-module
such that VA/LA is a projective A-module with trivial GL-action.

Most of this talk will be about the structure of the ring representing the
second functor.
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2 Lies I will tell, and auxiliary categories of

rings

The minor lie I will tell is that I will entirely suppress the language of cate-
gories fibered in groupoids, and pretend we are working with functors. This
will allow me to avoid 2-categorical language. But to make what I say lit-
erally true, one has to handle non-trivial isomorphisms of deformations via
the language of groupoids.

The more major lie I will tell is that after I finish this section, I will try to
avoid talking about the various categories of algebras that are involved.

The basic set-up is representing certain deformations of a fixed residual rep-
resentation (in characteristic p). The deformations are a priori to finite local
artinian rings with fixed residue field. But we want to be able to take generic
fibers of our representing objects in a sensible way, so we need techniques for
passing to characteristic 0 points.

To do this, we need a variety of confusing auxiliary categories of algebras.
To demonstrate, let E/Qp be a finite extension with residue field containing
F, let O ⊂ OE be a discrete valuation ring finite over W (F), and let D be a
deformation functor on the category AAO of finite local artinian O-algebras
with residue field O/mO, and let E/Qp be a finite extension with residue
field containing F. We will be interested in the category ARE of finite local
W (F)[1/p]-algebras with residue field E. We also introduce the following
categories:

ÂRO: ÂRO is the category of complete local noetherian O-algebras with
residue field O/mO.

ÂRO,(OE): ÂRO,(OE) is the category of O-algebras A in ÂRO equipped with a map
of O-algebras A→ OE .

IntB: Given B ∈ ARE , IntB is the category of finite OE-subalgebras A ⊂ B
such that A⊗OE

E = B.

Note that IntB is a subcategory of ÂRO,(OE) (A obviously has a map to E,
and by finiteness or the same sort of arguments as in Brian’s talk, it actually
lands in OE), and there is a natural functor ÂRO,(OE) → ÂRO.
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Also note that we can canonically extend D to a groupoid on ÂRO, by setting
D(lim
←−

R/mn+1
R ) = lim

←−
D(R/mn+1

R ).

Now fix some ξ ∈ D(OE), which makes sense by the preceding comment. We

define a groupoid D(ξ) on ÂRO,(OE) by setting D(ξ) to be the fiber over ξ.
More precisely, D(ξ)(A) consists of objects of D(A) together with morphisms
(in D) covering the given map A→ OE .

Finally, we can extend D(ξ) to ARE . We note that B ∈ ARE can be ex-
hausted by objects in IntB, so we set D(ξ)(B) = lim

−→A∈IntB
D(ξ)(A).

Now Kisin proves two crucial lemmas about these groupoids (which he calls a
lemma and a proposition). The first tells us how to get universal deformation
rings for the groupoids on ARE , and the second relates those groupoids to
the ones we would naively expect (for some deformation problems we already
care about):

Lemma 2.1. If D is pro-represented by a complete local O-algebra R, then
D(ξ) is pro-represented (on ARE) by the complete local O[1/p]-algebra R̂ξ

obtained by completing R⊗O E along the kernel Iξ of the map R⊗O E → E
induced by ξ.

Lemma 2.2. Fix a residual representation V over F, and carry out the above
program for DV and D�

V . Then there are natural isomorphisms of groupoids

DV,(ξ)→̃DVξ and D�

V,(ξ)→̃D
�

Vξ

3 Main result

The main result we will prove is the following:

Theorem 3.1. Let V be any 2-dimensional representation of GL (over F).
Fix a continuous unramified character ψ : GL → O

× and consider Rψ,�
V ,

the quotient of R�

V corresponding to deformations of V with determinant ψχ.
Then SpecRψ,�

V [1/p] is 3-dimensional, and it is the scheme-theoretic union
of formally smooth components.

There are several claims implicit in this theorem, namely the existence,
smoothness, connectedness, and dimension of Rur,ψ,�

V and Rχγ,γ,�
V , as well

as the connectedness of Rψ,�
V . We assume these for the moment and go on

with the proof.
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Proof. Let E ′/E be a finite extension, let x : Rψ,�
V [1/p] → E ′ be a point of

SpecRψ,�
V [1/p] with residue field E ′ (so that it is actually an E ′-point), and

let Vx be the induced representation with coefficients in E ′. We know (from
Brian’s talk on characteristic 0 points of deformation rings) that the comple-
tion of Rψ,�

V [1/p] at the maximal ideal mx = ker x represents deformations
of Vx. The tangent space at x is H1(GL, ad

0 Vx). Obstructions to deforming
representations live in H2 groups, so Rψ,�

V [1/p] at x will be formally smooth
at any point x where H2(GL, ad

0 Vx) vanishes.

Given any framed deformation problem D� (with coefficients in some un-
specified field H), there is a natural morphism D� → D to the unframed
problem given by “forgetting the basis”. This morphism is formally smooth
in the sense that artinian points of D can be lifted.

Furthermore, the fibers of the morphism of tangent spaces D�(H [ε]) →
D(H [ε]) are principal homogeneous spaces under ad / adGL. Specifically,
given a residual representation VH and a choice of (unframed) deformation
VH[ε], ker(GL2(H [ε])→ GL2(H)) = 1+ εM2(H [ε]) ∼= EndH VH acts (via con-
jugation) on the fiber over VH[ε]. Then it is easy to check that 1 + εM acts
trivially on the fiber if and only if M is in ad0 VH .

Counting dimensions,

dimF D
�(F[ε]) = dimF D(F[ε]) + dimF ad− dimF H

0(GL, ad) (3.1)

Using this formula, we see that the tangent space to SpecRψ,�
V [1/p] at x has

E ′-dimension

dimE′H1(GL, ad
0 Vx) + dimE′ adVx − dimE′ H0(GL, adVx)

= dimE′ H1(GL, ad
0 Vx) + dimE′ adVx − (dimE′ H0(GL, ad

0 Vx)− 1)

= −
(
dimE′ H2(GL, ad

0 Vx)− dimE′ H1(GL, ad
0 Vx) + dimE′ H0(GL, ad

0 Vx)
)

+ dimE′ H2(GL, ad
0 Vx) + dimE′ adVx − 1

= dimE′ H2(GL, ad
0 Vx) + 3

the last step following by the Euler characteristic formula for p-adic coeffi-
cients. Thus, if H2(GL, ad

0 Vx) = 0, x will be a formally smooth point of
SpecRψ,�

V [1/p] with a 3-dimensional tangent space.

Now suppose H2(GL, ad
0 Vx) 6= 0. By the p-adic version of Tate local duality,

dimE′ H2(GL, ad
0 Vx) = dimE′ H0(GL, (ad

0 Vx)
∗), which is dimE′ H0(GL, ad

0 Vx(1))
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(because ad0 is self-dual). Now we have the split exact sequence of GL-
modules

0→ ad0 Vx(1)→ adVx(1)→ E ′(1)→ 0

which gives us an exact sequence in cohomology:

0→ H0(GL, ad
0 Vx(1))→ H0(GL, adVx(1))→ H0(GL, E

′(1))

But H0(GL, E
′(1)) = 0 so

H0(GL, ad
0 Vx(1) = H0(GL, adVx(1)) = H0(GL,Hom(Vx, Vx(1)))

In particular, if H2(GL, ad
0 Vx) 6= 0, there is a non-zero homomorphism

(of GL-modules) Vx → Vx(1). It has 1-dimensional (GL-stable) image and
kernel, so there is some character γ such that 0 → γ → Vx → γ(1) →
0 is exact. But such extensions are classified by H1(GL, E

′(−1)), which
is 0: the Euler characteristic formula says that dimE′ H0(GL, E

′(−1)) −
dimE′ H1(GL, E

′(−1)) + dimE′ H2(GL, E
′(−1)) = 0, but H0(GL, E

′(−1)) is
clearly zero, and H2(GL, E

′(−1)) is dual to H0(GL, E
′(2)), which is zero, so

H1(GL, E
′(−1)) is zero as well. So this extension splits.

We have shown that if H2(GL, ad
0 Vx) 6= 0, then Vx = γ ⊕ γχ for some

character γ : GL → E ′×. If γ is unramified, then this implies that x is in the

image of both Rur,γ2,�
V and Rχγ,γ,�

V .

So the only singular points of SpecRψ,�
V [1/p] lie in the intersection of two

formally smooth components.

The definition of formal smoothness requires us to be able to lift through
any square-zero thickening, but we only looked at what happens at artinian
points of SpecRψ,�

V [1/p]; the commutative algebra necessary to justify this
is discussed in Brian’s notes on ℓ = p.

4 Unramified deformations

We’ve seen previously that for the unframed case, the tangent space at x for
unramified deformations with fixed determinant is H1(GL/IL, (ad

0 Vx)
IL),
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and the obstruction space should be H2(GL/IL, (ad
0 Vx)

IL) = 0. We have
the exact sequence

0→ (ad0 Vx)
GL → (ad0 Vx)

IL Frob− id
−→ (ad0 Vx)

IL → (ad0 Vx)
IL/(Frob− id)(ad0 Vx)

IL → 0

This implies that dimE′ H0(GL, ad
0 Vx) = dimE′ H1(GL/IL, (ad

0 Vx)
IL). And

since the tangent space for the framed case has dimension dimE′ H1(GL/IL, (ad
0 Vx)

IL)+
dimE′ ad0 Vx−dimE′ H0(GL, ad

0 Vx) by the discussion in the previous section,
this implies that the tangent space of Rur,ψ,�

V has dimension dimE′ ad0 Vx = 3.

So granting existence, Rur,ψ,�
V is formally smooth and 3-dimensional.

5 Rχγ,γ,�

We begin this section with a general lemma.

Lemma 5.1. Let O be a local W (k)-algebra with residue field k, with K the
fraction field of W (k), and let X be a proper residually reduced O-scheme.
Then the components of the fiber of X over the closed point of O are in
bijection with the components of X [1/p].

Proof. Consider a connected component of X [1/p] = X ⊗W (k) K and let e
be the idempotent which is 1 on this component and 0 on the others. Then
if ̟ is a uniformizer of W (k), there is some n such that ̟ne extends to a
global section of X . But (̟ne)2 = ̟n(̟ne), so if n > 0, as a function on
the special fiber X ⊗O k, ̟

ne is nilpotent. This contradicts our reducedness
hypothesis, so n = 0 and e is already a global section of X .

So we know that the components of X⊗W (k)K are in bijection with the com-
ponents of X itself. But if X∧ is the completion of X along its special fiber,
the components of the special fiber X ⊗O k are in bijection with the compo-
nents of X∧ (because they have the same underlying topological space), and
formal GAGA implies that the components of X∧ are in bijection with the
components of X (X is proper over O, so we can apply formal GAGA to see
that the global idempotent functions on X and X∧ are in bijection).
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5.1 Representability

Proposition 5.2. The morphism |Lχ,�V | → |D
χ,�
V | is represented by a projec-

tive morphism ΘV : Lχ,�V → Rχ,�
V .

Proof. Given an A-point of Rχ,�
V , the A-points of Lχ,�V should be certain line

bundles on SpecA, so we will cut Lχ,�V out of P1

R
χ,�
V

.

Consider P, the projectivization of the universal rank 2 Rχ,�
V -module. That

is, if VR is the universal rank 2 Rχ,�
V -module (equipped with a representation

of GL), then P := Proj SymVR ∼= ProjRχ,�
V [x0, x1].

If A is an an Rχ,�
V -algebra with residue field F, a morphism SpecA → P

(over Rχ,�
V ) is the same as a surjection (of sheaves) A2 → L→ 0.

Given a morphism f : SpecA → P, there is a natural GL-action on the
quotient L if and only if g∗f = f for all g ∈ GL. The g∗-fixed locus of P is
Hg defined by the Cartesian square

Hg −−−→ Py
y(id,g∗)

P
∆
−−−→ P×

R
χ,�
V

P

Since P is separated, Hg is a closed subscheme of P. Thus, the intersec-
tion H := ∩g∈GHg is a closed subscheme of P parametrizing GL-equivariant
quotients A2 → L→ 0.

Now if A is a complete localW (F)-algebra, there is a natural map from H to
the universal deformation of the residually trivial 1-dimensional representa-
tion, given (in the language of the functor of points) by sending A2 → L → 0
to L. Then we can take the fiber over the (closed) point corresponding to
the trivial representation to get a closed subscheme of P representing Lχ,�V
on ARW (F).

Now take limits to get representability of Lχ,�V on AugW (F).

5.2 Smoothness and connectedness

Next we want to study smoothness and connectedness.
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Proposition 5.3. Lχ,�V is formally smooth over W (F). Furthermore, the
W (F)[1/p]-scheme Lχ,�V ⊗W (F) W (F)[1/p] is connected.

Proof. First, we will show that for any finite group M of p-power order, the
natural map H1(GL,Zp(1)) ⊗Zp

M → H1(GL,Zp(1) ⊗Zp
M) is an isomor-

phism. It suffices to consider the case M = Z/pnZ. In that case, we have
the exact sequence

0→ Zp(1)
·pn

−→ Zp(1)→ M → 0

Then the long exact sequence in group cohomology shows that

0→ H1(GL,Zp(1))/p
nH1(GL,Zp(1))→ H1(GL,M)→ H2(GL,Zp(1))[p

n]

is exact. The middle arrow is the natural map we started with, so we wish
to show that H2(GL,Zp(1))[p

n] is 0. But by Tate local duality (as in Simon’s
talk), H2(GL,Zp(1)) is Pontryagin dual to Qp/Zp, so has no pn-torsion.

Thus, for any artinian algebra A, the composition

Ext1
Zp[GL]

(Zp,Zp(1))⊗Zp
A→ H1(GL,Zp(1))⊗Zp

A→ H1(GL,Zp(1)⊗Zp
A)→ Ext1

Zp[GL]
(A,A(1))

is an isomorphism.

To prove smoothness, it suffices to show that for any surjection of artinian
rings A→ A′, the map |Lχ,�V |(A)→ |L

χ,�
V |(A

′) is a surjection. Now consider a
pair (VA′ , LA′) in |Lχ,�V |(A

′). It corresponds to an element of Ext1
Zp[GL]

(A,A(1)),
so by the isomorphism we just proved, it corresponds to an element of
Ext1

Zp[GL]
(Zp,Zp(1))⊗Zp

A′. But such an element clearly lifts to an element

of Ext1
Zp[GL]

(Zp,Zp(1))⊗Zp
A, which is to say, an element of |Lχ,�V |(A).

Now we wish to prove connectedness after inverting p, and for this we use
the lemma on connected components. Specifically, since Lχ,�V is smooth, its
special fiber Lχ,�V ⊗W (F) F is reduced, so to show Lχ,�V [1/p] is connected, it
suffices to show that the special fiber L ⊗

R
χ,�
V

F is connected.

But the special fiber is simply the fiber over the residual representation. If
F ∼= F(1) and the representation is split (i.e., the residual representation is
trivial), any line in F2 is GL-stable with GL-acting by χ = id, so the fiber is
a full P1

F
. Otherwise, there is at most one GL-line with GL acting via χ, and

this is true for any A-point of the fiber, so it is either empty or it consists of
a single reduced point. So the special fiber is connected.
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The next proposition will show that Lχ,�V [1/p]→ SpecRχ,�
V [1/p] is a monomor-

phism. More precisely, it shows that this morphism is injective on artinian
points, but, as before, Brian’s notes on ℓ = p explain why this is sufficient to
let us conclude that it is actually a monomorphism.

Proposition 5.4. Let E/Qp be a finite extension, and let ξ refer to both an
OE-valued point of Rχ,�

V and an OE-valued point in the fiber of Lχ,�V above
it. Then the morphism of groupoids (functors) on ARE Lχ,�Vξ → Dχ,�

Vξ
is fully

faithful. If the representation over E Vξ corresponding to ξ is indecomposable,
then this is an equivalence.

Proof. Let B be an object of ARE , and let VB be an object of Dχ,�
Vξ

(B).
To prove the first assertion, we need to show that VB admits at most one
GL-stable B-line LB ⊂ VB such that GL acts trivially on VB/LB. But
HomB[GL](B(1), VB/LB) = {0} because the GL-action on the target is trivial,
so HomB[GL](B(1), VB) = HomB[GL](B(1), LB) and LB is unique.

Now suppose Vξ is indecomposable; we wish to show that VB actually does
admit a suitable B-line. We will do this by showing that VB is isomorphic
to the trivial deformation Vξ ⊗E B. Note that by Tate local duality

dimE H
1(GL, ad

0 Vξ) = dimE H
0(GL, ad

0 Vξ) + dimE H
0(GL, ad

0 Vξ(1)) = 0

the last equality following from indecomposability of Vξ. The result then
follows by induction on the length of B, since this calculation holds for any
indecomposable extension of A(1) by A.

But since we have a proper monomorphism of schemes Lχ,�V [1/p]→ SpecRχ,�
V [1/p],

it is a closed immersion.

Now we can prove the following proposition and corollary.

Proposition 5.5. Let SpecRχ,1,�
V be the scheme-theoretic image of the mor-

phism Lχ,�V → SpecRχ,�
V . Then

1. Rχ,1,�
V is a domain of dimension 4 and Rχ,1,�

V is formally smooth over
W (F).

2. If E/Qp is a finite extension, then a morphism ξ : Rχ,�
V → E factors

through Rχ,1,�
V if and only if the corresponding two-dimensional repre-

sentation Vξ is an extension of E by E(1).
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Proof. Since Rχ,1,�
V is smooth and connected, it is a domain. We will find

its dimension via a tangent space calculation. Suppose Vξ is indecomposable
(which we may assume, since most points on Rχ,1,�

V are indecomposable).
Then the dimension of Rχ,1,�

V [1/p] is

dimE |D
χ,�
Vξ
|(E[ε]) = dimE |D

χ
Vξ
|(E[ε]) + 4− dimE(adVξ)

GL

= dimE H
1(GL, ad

0 Vξ) + 3 = 3

So Rχ,1,�
V itself is 4-dimensional, and we have proven the first part.

The second part follows from the definition of Lχ,�V and Rχ,1,�
V .

Corollary 5.6. Let O be the ring of integers in a finite extension ofW (F)[1/p],
and γ : GL → O× a continuous unramified character. Write R�

V,O =

R�

V ⊗W (F) O. Then there exists a quotient Rχγ,γ,�
V,O such that

• Rχγ,γ,�
V,O is a domain of dimension 4 and Rχγ,γ,�

V,O [1/p] is formally smooth
over O.

• If E/O[1/p] is a finite extension, then a map ξ : R�

V,O → E factors

through Rχγ,γ,�
V,O if and only if Vξ is an extension of γ by γ(1).

Proof. This basically follows because universal deformation rings behave rea-
sonably well with respect to twisting by fixed characters, at least once the
question makes sense.

More precisely, we may replace F by the residue field of O (corresponding
to tensoring R�

V with O). Then twisting by γ−1 induces an isomorphism
R�

V,O→̃R
�

V×γ−1,O
(because twisting the residual representation by γ−1 doesn’t

change this deformation problem (except to multiply the determinant by
γ2), and the quotient Rχγ,γ,�

V,O corresponds to Rχ,1,�
V⊗γ−1 ⊗W (F) O under this

isomorphism.
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