
REVIEW OF GALOIS DEFORMATIONS

SIMON RUBINSTEIN-SALZEDO

1. Deformations and framed deformations

We'll review the study of Galois deformations. Here's the setup. Let G be a
pro�nite group, and let ρ : G→ GLn(k) be a representation of G over a �nite �eld k
of characteristic p. Let Λ be a complete DVR with residue �eld k, and let CΛ denote
the category whose objects are artinian local Λ-algebras with residue �eld k, and
whose morphisms are local homomorphisms. Let ĈΛ denote the category of complete
noetherian local Λ-algebras with residue �eld k, which is the completion of CΛ under
limits. Frequently, Λ will be W (k), the ring of Witt vectors over k.
We now de�ne two deformation functors associated to ρ. The �rst is the deforma-

tion functor Def(ρ) : ĈΛ → Sets given by

Def(ρ)(A) = {(ρ,M, φ)}/ ∼=,
where M is a free A-module of rank n, ρ : G → AutA(M), and φ : ρ ⊗A k → ρ is

an isomorphism. The second is the framed deformation functor Def�(ρ) : ĈΛ → Sets
given by

Def�(ρ)(A) = {(ρ,M, φ,B) | (ρ,M, φ) ∈ Def(ρ)(A)}/ ∼=,
where B is a basis of M which is sent to the standard basis for kn under φ.
We can compute both Def and Def� at the level of its artinian quotients: if m is

the maximal ideal of A, then

Def(ρ)(A) = lim←−Def(ρ)(A/mi),

Def�(ρ)(A) = lim←−Def�(ρ)(A/mi).

The functors Def and Def� are not always representable. However, we impose
some restrictions to guarantee that at least Def� will be. We say that G satis�es the
p-�niteness condition if for every open subgroup H ⊂ G of �nite index, there are only
�nitely many continuous homomorphisms H → Z/pZ. From now on, we'll assume
that G satis�es the p-�niteness condition. This is a reasonable assumption, since it
holds in cases we're likely to care about. For example, if K is a global �eld not of
characteristic p and S is a �nite set of places, then GK,S satis�es the p-�niteness
condition for all p. Also, if K is a local �eld of residue characteristic p, then GK

satis�es the `-�niteness condition for all ` 6= p.
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In this case, Def�(ρ) is representable; call its representing object R�(ρ). If Def(ρ)
is also representable, call its representing object R(ρ). These are the framed defor-
mation ring and the deformation ring, respectively. Concretely, when Def�(ρ) or
Def(ρ) is representable, this means that there is some ring R�(ρ) or R(ρ) so that any
deformation factors uniquely through the map

G→ GLn(R�(ρ)) or G→ GLn(R(ρ)).

Schlessinger's criterion tells us when functors CΛ → Sets are (pro)-representable.
When we apply it to the case of the deformation functor, we get the following:

Proposition 1. If G satis�es the p-�niteness condition and EndG(ρ) = k (ρ is ab-
solutely irreducible, meaning that ρ⊗k k

′ is irreducible for all �nite extensions k′/k),
then Def(ρ) is representable.

For another example of representability of deformation functors, we review ordinary
defomrations. Let K be a p-adic �eld, and let ψ : GK → Z×

p be the p-adic cyclo-
tomic character. An n-dimensional representation ρ of G is said to be (distinguished)
ordinary if there exist integers e1 > e2 > · · · > en−1 > en = 0 so that

ρ |IK
∼


ψe1 ∗ · · · ∗
0 ψe2 · ∗
0 0

. . . ∗
0 0 · · · ψen = 1

 .

For �xed e1, . . . , en which are distinct modulo p−1, the ordinary deformation functor
Deford(ρ) is the subfunctor of Def(ρ) consisting of only the distinguished ordinary
lifts of ρ for that choice of e1, . . . , en.

Proposition 2. If a two-dimensional residual representation ρ is non-split, then
Deford(ρ) is representable. More generally, if ρ is n-dimensional, and every 2 × 2
diagonal minor is non-split, then Deford(ρ) is representable.

Let's recall some properties of deformation rings. An important property of defor-
mation rings is that they commute with �nite extension of residue �elds. That is,
suppose k′/k is a �nite extension. Let ρ be an absolutely irreducible residual repre-
sentation of k; we can extend scalars to k′ to get an absolutely irreducible residual
representation of k′. Then, if W (k) denotes the ring of Witt vectors over k, we have

R�(ρ)⊗W (k) W (k′) ∼= R�(ρ⊗k k
′),

R(ρ)⊗W (k) W (k′) ∼= R(ρ⊗k k
′).

Suppose ρ is an absolutely irreducible residual representation of dimension N , and
let det : GLN(k)→ GL1(k) be the determinant map. Then there is a natural homo-
morphism

R(det(ρ))→ R(ρ).
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More generally, if δ : GLN → GLM is a homomorphism of group schemes, we get a
natural map of deformation rings

R(δ(ρ))→ R(ρ).

Deformation rings also commute with tensor products of representations. Let π, ρ
be two absolutely irreducible residual representations whose tensor product is also
absolutely irreducible. Then we get a natural map

R(π ⊗ ρ)→ R(π)⊗̂R(ρ).

If π is a one-dimensional representation, i.e. a character, we call this map twisting
by π.
Deformation rings are also functorial in the choice of pro�nite group. Let φ : G→

G′ be a group homomorphism, and let ρ be a residual representation of G′. Then
composition with φ gives a residual representation of G. This gives us a map

RG(ρ)→ RG′(ρ).

An important example of deformations comes from looking at the Zariski tangent
space. Let k[ε] denote the dual numbers. If F : ĈΛ → Sets is a functor, its tangent
space is F (k[ε]) =: tF .
Let V ∈ tDef(ρ). Then V/εV ∼= ρ, so we have a short exact sequence

0→ εV → V → ρ→ 0.

As G-modules, εV ∼= ρ, so

tDef(ρ)
∼= Ext1

k[G](ρ, ρ) = H1(G,Ad(ρ)) = (m/(m, p))2

for ρ absolutely irreducible. Here, Ad(ρ) is de�ned as follows: it is the representation
of G whose underlying vector space is MN(k), and whose G-action is given by g.m =
ρ(g)−1mρ(g).
Let G be GK if K is a local �eld, or GK,S for some �nite set of places S if K is a

global �eld. Fix a residual representation ρ : G → GLn(k). If a deformation functor
F for ρ is represented by R, then we have

tF = F (k[ε]) = HomΛ(R, k[ε]) = HomΛ(R/(m2
R + mΛ), k[ε]).

Since we also have
R

m2
R + mΛ

= k ⊕ mR

m2
R + mΛ

,

and the second summand has square zero, we have

tF = Homk

(
mR

m2
R + mΛ

, k

)
= t∗R,

where for A ∈ ĈΛ, we set
tA =

mA

m2
A + mΛ

,
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and t∗A is its dual.

2. Why study Galois deformations?

We're mostly interested in the case of G = GK,S for some �nite set of places S of
a number �eld K. There are several reasons that this is a good idea.

(1) We can specify a residual representation ρ : GK,S → GLN(k) using only a
�nite amount of data, and there are only �nitely many such representations,
for K, S, N , and k �xed. When ρ is absolutely irreducible, we saw that we
have a universal deformation, so all the lifts of ρ can be packaged together
into a single complete noetherian local ring with residue �eld k.

(2) We might sometimes be interested in studying those deformations of ρ that
have particular properties. For example, we mentioned ordinary deformations
earlier. Another possibility that's relevant to us would be to look at modu-
lar deformations: those representations coming from modular forms. These
correspond to quotients of the universal deformation ring. Placing such condi-
tions on the representations at least conjecturally amounts to imposing local
conditions at the rami�ed primes. We'll discuss this a bit more later.

3. Galois cohomology

We now review some cohomology of local �elds. Let K be a �nite extension of Qp,
with Galois group GK . Let µ be the roots of unity of Ks. IfM is a �nite GK-module,
set M ′ = Hom(M,µ). Then for 0 ≤ i ≤ 2, the cup product

H i(K,M)⊗H2−i(K,M ′)→ H2(K,µ) ∼= Q/Z

is a perfect pairing.
We have a similar statement when M is an `-adic representation of GK . Let ` be

a prime, possibly equal to p, and let F be a �nite extension of Q`. Suppose T is
a free oF -module with a continuous oF -linear GK-action, and let V = T ⊗oF

F be
the corresponding Q`-vector space. Then GK acts on V as well. Let V ∗ be the dual
representation given by V ∗ = HomoF

(V, F (1)). Then we have the following duality
induced by the cup product: for 0 ≤ i ≤ 2,

H i(K,V )⊗H2−i(K,V ∗)→ H2(K,F (1)) ∼= F

is a perfect pairing.
If M is a �nite GK-module, then H i(K,M) is a �nite group for 0 ≤ i ≤ 2, and

H i(K,M) = 0 for i ≥ 3. Let hi(K,M) be the size of H i(K,M). Then, we de�ne the
Euler-Poincaré characteristic of M to be

χ(M) =
h0(K,M)h2(K,M)

h1(K,M)
.

We recall a few key properties of the Euler-Poincaré characteristic.
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• If 0 → M ′′ → M → M ′ → 0 is a short exact sequence of �nite GK-modules,
then χ(M ′′)χ(M ′) = χ(M).
• If (p,#M) = 1, then χ(M) = 1.
• More generally, if x ∈ oK , let ‖x‖K be the normalized absolute value of x, so
that

‖x‖K =
1

(oK : xoK)
.

If #M = n, then

χ(M) = ‖n‖K = p−[K:Qp] ordp(n).

Sometimes, we wish to talk about Euler-Poincaré characteristics when the GK-
module is a Qp-vector space or free Zp-module. In that case, it would not make
sense to talk about the sizes of the cohomology groups, but only about their ranks
or dimensions. We can make sense of this in the case of �nite modules instead, by
talking of their ranks as Fp-vector spaces. Let's write h̃

i(K,M) for the dimension of
H i(K,M) over Fp, and write

χ̃(M) = h̃0(K,M)− h̃1(K,M) + h̃2(K,M).

Then the above result is equivalent to

χ̃(M) = −[K : Qp] ordp(n).

If M is instead a Qp-vector space or a free Zp-module, we'll let h̃i(K,M) be the
dimension or rank of H i(K,M) as a Qp-vector space or Zp-module, and we'll de�ne
the Euler-Poincaré characteristic similarly.
Let V now be a Qp-vector space of dimension d. Find inside V a GK-stable lattice

T . Since T = lim←−T/p
rT and cohomology commutes with inverse limits, we have

H i(K,T ) = lim←−H
i(K,T/prT ) ∼= lim←−H

i(K,Mr),

where Mr is a GK-module of size pdr. By the above,

χ̃(Mr) = −dr[K : Qp].

Taking inverse limits gives us

χ̃(T ) = −d[K : Qp].

Tensoring doesn't change the dimensions of the cohomology groups, so we also have

χ̃(V ) = −d[K : Qp].



6 SIMON RUBINSTEIN-SALZEDO

4. Examples of Deformation Rings

It can be helpful to have a rough idea of what deformation rings look like. When
they exist, they tend to be quotients of power series rings over Zp. Let's look at some
examples.
Let S be a �nite set of places of Q, and let ρ : GQ,S → GL2(Fp) be a representation.

Let E be the �xed �eld of ker(ρ), and let H = Gal(E/Q). Let

V = coker

(
µp(E)→

⊕
v∈S

µp(Ev)

)
.

A k[H]-module W is said to be prime-to-adjoint if there is some subgroup A
of H of order prime to p so that W and the adjoint k[H]-module M are relatively
prime as k[A]-modules (so they share no common ireducible subrepresentations as
A-modules).
Let ZS be the set of x ∈ Q× so that (x) is a pth power, and so that x ∈ E×p

v for
each v ∈ S. Then E×p ⊂ ZS. Let B = ZS/E

×p be the quotient Fp[H]-module.
We say ρ is tame if the size of the image of ρ is prime to p. We say ρ is regular

if it is absolutely irreducible, odd, and V and B are prime-to-adjoint.

Example. If ρ is tame and regular, then R(ρ) ∼= Zp[[T1, T2, T3]].

For a concrete example, let E be the splitting �eld of X3 − X − 1 over Q. Then
E is unrami�ed away from 23 and ∞. The Galois group Gal(E/Q) ∼= S3. Since S3

has a faithful representation in GL2(F23), we get an absolutely irreducible residual
representation

ρ : GQ,{23,∞} → GL2(F23).

Its universal deformation ring is isomorphic to Z23[[T1, T2, T3]].
If ρ is irregular, the situation is a bit more complicated.
Consider the residual representation

ρ : GQ,{3,7,∞} → GL2(F3)

coming from the elliptic curve X0(49). Then the universal deformation ring is iso-
morphic to Z3[[T1, T2, T3, T4]]/((1 + T4)

3 − 1).

Example. Let D be an integer congruent to −1 (mod 3) and also ± a power of 2,
and let E/Q be the elliptic curve de�ned by y2 = x(x2 − 4Dx + 2D2). Then E has
complex multiplication by Q(

√
−2). Let S = {2, 3}, and let ρ : GQ,S → GL2(F3) be

the representation associated to E. Then R(ρ) ∼= Z3[[T1, T2, T3, T4, T5]]/I, where I is
an ideal that takes a while to de�ne.

We can give bounds on the number of (pro�nite) generators and relations it takes
to present a deformation ring. Samit showed the following in his lecture in the fall:
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Theorem 3. Let K be a p-adic �eld, and let G = GK (for example). Let r =
dimZ1(G,Ad(ρ)) and s = dimH2(G,Ad(ρ)). Then R�(ρ) exists, and can be pre-
sented as

R�(ρ) ∼= oK [[T1, . . . , Tr]]/(f1, . . . , fs).

In the unframed case, we have dimR(ρ) ≥ 2− χ̃(G,Ad(ρ)).

We also have

dim(R/pR) ≥ dimH1(G,Ad(ρ))− dimH2(G,Ad(ρ)),

where the left side is the Krull dimension.

5. Characteristic zero points of deformation rings

Let S be a �nite set of places of Q. Fix an absolutely irreducible residual represen-
tation ρ : GQ,S → GLN(k), and let ρ : GQ,S → GLN(R) be its universal deformation.
We saw earlier that R looks something like Zp[[x]], but R[1/p] is still far from being
a local ring: in the case of R = Zp[[x]], R[1/p] = Zp[[x]][1/p] ( Qp[[x]], since the power
series on the left side need to have as denominators bounded powers of p. There are
many Qp-algebra homomorphisms Zp[[x]][1/p] � oK [1/p] for various �nite extensions
K/Qp, where the �rst map sends x to a uniformizer of K. Thus, R[1/p] has lots of
maximal ideals, in this case. Something similar holds for general universal deforma-
tion rings. The maximal ideals of R[1/p] correspond to deformations of ρ landing in
�nite extensions of Qp.
If W is a complete DVR, and R is a quotient of a power series ring in several

variables over W , and $ is a uniformizer of W , then R[1/$]/m is �nite over W [1/$]
for any m ∈ MaxSpec(R[1/$]).
We'd like to understand whatR[1/p] looks like. LetR = W [[x1, . . . , xn]]/(f1, . . . , fm).

Then, for any �nite extension A of W ,

Hom(R,A) = Hom(R[1/p], A[1/p] = Frac(A)),

where the �rst Hom is in the category of local W -algebras, and the second is in the
category of Frac(W )-algebras.

Proposition 4. If K ′/K is a �nite extension, then any K-algebra map R[1/p]→ K ′

is given by sending the Xi's to various xi ∈ mK′ ⊂ oK′ ⊂ K ′. Hence the image of R
lands in the valuation ring.

Fix such a map x : R[1/p] � K ′. Let

ρx : G
ρ→ GLN(R)→ GLN(R[1/p])→ GLN(K ′)

be the induced representation. We'd like to understand dimR[1/p]mx = dimR[1/p]∧mx
.
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Theorem 5. Let ρuniv
x : G → GLN(R[1/p]∧mx

) be induced from ρ by the natural map
R→ R[1/p]∧mx

. Then the diagram

G
ρuniv

x//

ρx &&LLLLLLLLLLLL GLN(R[1/p]∧mx
)

��
GLN(K ′)

commutes, and ρuniv
x is universal for continuous deformations of ρx.

This theorem is relevant for (at least) two reasons:

(1) We have R[1/p] ∼= K ′[[T1, . . . , Tn]] if and only if each R[1/p]∧mx
is regular,

if and only if the deformation functor is formally smooth, if and only if
H2(G,Ad(ρx)) = 0.

(2) We have (mx/m
2
x)
∨ ∼= H1

cts(G,Ad(ρx)) by the continuity condition on the
deformations in the theorem.

Let ρ : G = GQ,S → GLn(K) for some p-adic �eld K be a representation with
absolutely irreducible reduction. Then H1(G,Ad(ρ)) is also equal to the tangent
space of the deformation ring R(ρ) at the reduction of the closed point of R[1/p]
corresponding to ρ. Hence, the completion of R[1/p] at that point (with scalars
extended to K, if necessary), is the deformation ring for ρ.

6. Wiles product formula

Recall the de�nition of unrami�ed cohomology. Let K be a p-adic �eld. If M is a
K-module, then the unrami�ed cohomology is

H i
nr(K,M) = H i(Gal(Knr/K),M IK ).

If K is a global �eld, then for every place v of K, we have a map GKv ↪→ GK ,
and if M is a GK-module, we have a restriction map H i(GK ,M) → H i(GKv ,M)
for each i. Let L = (Lv) be a collection of subgroups Lv ⊂ H1(GKv ,M) so that
Lv = H1

nr(GKv ,M) for almost all v. Let

H1
L(GK ,M) = {c ∈ H1(GK ,M) | resv(c) ∈ Lv for all v}.

Let LD = (LD
v ), where LD

v is the annihilator of Lv under the Tate local pairing. We
call the Lv the local conditions.

Theorem 6 (Wiles Product Formula). Suppose M is a �nite GK-module, M ′ =
Hom(M,µ), and L is a family of local conditions. Then

#H1
L(K,M)

#H1
LD(K,M ′)

=
#H0(K,M)

#H0(K,M ′)

∏
v

#Lv

#H0(Kv,M)
.
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We'll soon get to situations in which the denominator on the left-hand side of the
Wiles Product Formula is 1. Thus, we'll have a formula for the size of the global
H1 in terms of sizes of H0 as well as local terms. The local terms we'll be able to
compute by studying various local deformation rings.

7. Example

Note: I don't really understand this example. I more or less copied Brian's email,
but I'm including it for other people, who can probably understand it.
Let K be a p-adic �eld (p odd), and let ω : GK → k× be the mod-p cyclotomic

character. Let ρ : GK → GL(V ) be a residual representation, where V is a 2-
dimensional k-vector space. Suppose the inertia group IK acts nontrivially on V .
Then let D be the subspace �xed by IK . With respect to a suitable basis, then, we
have

ρ =

(
θ2 ∗
0 θ1

)
,

where θ1 and θ2 are characters. We can write θ1 and θ2 uniquely in the form

θ1 = ωαε1, θ2 = ωβε2,

where α, β ∈ Z/(p − 1)Z, and ε1 and ε2 are unrami�ed characters GK → k. Hence
the restriction of ρ to IK is

ρ |IK
=

(
ωβ ∗
0 ωα

)
.

We can normalize the exponents so that 0 ≤ α ≤ p− 2 and 1 ≤ β ≤ p− 1.

De�nition 7. If β 6= α+ 1, we say that ρ is peu rami�é. If β = α+ 1, we say that
ρ is très rami�é.

Let L be a line in H1(K,ω) not in the peu rami�é hyperplane. Let H be its
orthogonal hyperplane in H1(K, k) with respect to the Tate pairing. Thus, H is a
hyperplane not containing the unrami�ed line. We wish to �nd a rami�ed character
ψ : GK → Λ× of �nite order on IK that lifts the trivial residual character and so
that the image of H1(K, εψ) → H1(K,ω) contains L, where ε : GK → Z×

p is the p-
adic cyclotomic character. Varying through nonzero points of L gives us a collection
of non-isomorphic non-split extensions of a common reducible but indecomposable
GK-module, so gluing them together gives us a lifting result for 2-dimensional Galois
representations.
ψ allows for a lift of L if and only if L is in the kernel of the connecting map to

H2(K, εψ). Let F be the fraction �eld of Λ, and let $ be a uniformizer. This happens
if and only if connecting map

H0(K, (F/Λ)(ψ−1))→ H1(K, k)
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attached to the sequence

0→ k → (F/Λ)(ψ−1)
$→ (F/Λ)(ψ)→ 0

has image contained in H. So, let's �gure out exactly what the connecting map does
in order to see what it means on the rami�ed character ψ−1 of �nite order on IK that
the image is contained in some hyperplane not containing the unrami�ed line.
If x = u$−n for n > 0 and u ∈ Λ∗, we have x ∈ H0(K, (F/Λ)(ψ−1)) if and only if

ψ−1 ≡ 1 (mod $n). Since ψ (and hence ψ−1) is nontrivial, this only works for �nitely
many values of n, but including n = 1. The image of x under this connecting map is
the k-torsor of points

(u$−n)($−1 + Λ) mod Λ,

and the corresponding character GK → k = $−1Λ/Λ is

φn : g 7→ ($−1 + Λ)((ψ−1(g)− 1)$−n) mod Λ = (ψ−1(g)− 1)$−n−1 mod Λ.

Note that (ψ−1(g)−1)$−n ∈ Λ, and if n is not maximal with respect to this property,
then φn = 0. If we write

ψ−1 = 1 +$nχ

and χ0 = χ mod $, then χ0 is a nontrivial character GK → k, and 1+$nχ restricted
to IK is valued in the pth power roots of unity in Λ×. The condition on ψ−1 is that
χ0 is contained in H ⊂ H1(K, k).
More concretely, this is equivalent to the following. Let H be a hyperplane in

H1(K, k) not containing the unrami�ed line. We seek a continuous character ξ :
GK → 1 + mΛ with �nite order on IK and conductor n > 0 so that the nonzero
additive character (ξ − 1)$−n : GK → k lies in H. This character must be rami�ed.
We could have replaced $n with u$n for any u ∈ Λ×.
In order to make the construction, we need to start with a Λ containing a primitive

pth root of unity ζ. Let n = e/(p − 1), where e = e(Λ), so that ζ − 1 = $n. Fix a
nontrivial character ξ : o×K → µp, and extend it to an order p character φ on GK by
class �eld theory, so that φ ≡ 1 mod mn

A. The function

χ =
φ− 1

ζ − 1
: GK → k

is an additive character that is not identically zero, and it is rami�ed: there is an
element τ ∈ IK taken to ζ−1.
If χ ∈ H, we're done. If not, then H is a hyperplane not containing the unrami�ed

line, so any element not in H can be translated by a unique unrami�ed k-valued

character so that it does lie in H. For a unit u0 ≡ 1 mod m
e/(p−1)
A , twisting by the

unrami�ed character taking Frob to u0 has the e�ect of adding to χ the unrami�ed
character taking Frob to (u0 − 1)/(ζ − 1). Varying u0, this sweeps through all the
unrami�ed characters GK → k, so we can hit the one we need to land in H.


