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1. Statement of theorem

The goal of this lecture is to sketch a proof of the following modularity lifting theorem.

Theorem 1. Let F/Q be a totally real number field and let ρ : GF → GL2(Qp) be a continuous represen-

tation of its absolute Galois group, with p > 5. Assume that ρ satisfies the following conditions:

• ρ ramifies at only finitely many places.

• ρ is odd, i.e., det ρ(c) = −1 for all complex conjugations c ∈ GF .

• ρ is potentially crystalline and ordinary at all places above p.
• ρ|GF (ζp)

is absolutely irreducible.

• There exists a parallel weight two Hilbert modular form f such that ρf is potentially crystalline and

ordinary at all places above p and ρ = ρf .

Then there exists a Hilbert modular form g such that ρ = ρg.

We will prove this theorem by proving an R = T theorem, where R is a deformation ring of ρ with
certain local conditions imposed and T is a certain Hecke algebra. Clearly, if we have an appropriate R = T

theorem then we get a modularity lifting theorem, as ρ defines a homomorphism R → Qp and thus (by

R = T), a homomorphism T → Qp, which is the same as a modular form.

2. Initial reductions

As we have previously explained, by using base change we may pass to totally real solvable extensions of
F . The hypotheses of the theorem imply that det ρ is of the form χpψ where ψ is a finite order character of
GF . It is not difficult to see that there is a totally real solvable extension F ′/F such that ψ|GF ′

= (ψ′)2 for
some finite order character ψ′ of GF . Thus (ψ′)−1ρf |GF ′

has determinant χp. Since twisting by a character

does not affect modularity, it is enough to show that (ψ′)−1ρ|GF ′
is modular. We may therefore assume

det ρ = χp. Similarly, after possibly another base change, we can assume that det ρf = χp as well.

Let v ∤ p be a place of F . Call a representation GFv
→ GL2(Qp) Steinberg if it is of the form

(
χp ∗

1

)
.

If ρv : GFv
→ GL2(Qp) is any continuous representation, then there is a finite extension F ′

v/Fv such that
ρv|GF ′

v
is either unramified or Steinberg. We may thus make a global solvable extension F ′/F such that

ρ|GF ′
and ρf |GF ′

are unramified or Steinberg at all places away from p. Let S be the set of places (away
from p) at which ρ is ramified (and thus Steinberg), and let S′ be the corresponding set for ρf . By making
another solvable extension, we may assume that ρ|GFv

and ρf |GFv
are crystalline at v | p. Finally, we may

pass to another solvable extension and assume that ρ|GFv
and ρf |GFv

are trivial at all places v above p or
in S ∪ S′.

Now, we will not be able to prove the strongest possible form of an R = T theorem. We must impose
the following hypothesis: the local deformation spaces used to construct R must be connected. Practically
speaking, this means that ρ|GFv

and ρf |GFv
must lie on the same irreducible component of the universal

semi-stable deformation space of ρ|GFv
. What are the components of this space? For v | p there are

three components: ordinary crystalline, ordinary non-crystalline and non-ordinary. Thus our “ordinary and
crystalline” hypotheses ensure that there is no problem at the places above p. Unramified representations
always lie on the same component, so there is no problem outside of S ∪ S′. However, if v ∤ p then the
universal semi-stable deformation space of the trivial representation has two components: unramified and
Steinberg. We must therefore assume S = S′, which is a non-trivial assumption that may not be satisfied
by the ρf that is given to us. However, one can always find a congruence with a form f ′ which does satisfy
this condition. (Finding this f ′ is not at all trivial, but occurs outside the scope of the R = T theorem, and
we will not discuss it further in this lecture.)
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By making a further base change, we may assume that F has even degree over Q and that S has even
cardinality.

3. The R = T theorem: set-up

We begin by precisely stating the situation in which we have placed ourselves. We have a representation

ρ : GF → GL2(k)

where k is a finite field of characteristic p, a finite set S of places of F away from p and a modular
representation ρf lifting ρ. Let Sp denote the places of F above p. We assume the following hypotheses:

(A1) ρf is crystalline and ordinary at all places in Sp, Steinberg at all places in S and unramified at all
other places.

(A2) det ρf = χp.
(A3) ρ|GF (ζp)

is absolutely irreducible.

(A4) ρ|GFv
is trivial for v ∈ Sp ∪ S.

(A5) F has even degree over Q and S has even cardinailty.

Note that the representation we had previously called ρ has completely disappeared from the set-up. It may
not be absolutely necessary to assume (A4), but it does not cost us anything to do so, and makes study of
the local deformation rings a bit easier.

We now define the ring R. Let R̃ be the universal deformation ring of ρ unramified outside of S ∪Sp and
with determinant χp. (Here we take coefficients in some fixed O/Zp with residue field k.) For a place v let

R̃v be the universal deformation ring of ρ|GFv
with determinant χp. For v ∈ Sp let Rv be the quotient of R̃v

classifying ordinary crystalline representations. For v ∈ S let Rv be the quotient of R̃v classifying Steinberg

representations. We then let R be the tensor product of R̃ with ⊗Rv over ⊗R̃v. The latter tensor products
are over S ∪ Sp and we should complete these tensor products.

We now define the Hecke algebra. Let D be the unique quaternion algebra over F ramifying at all the
infinite places and the places in S (and nowhere else). This exists by (A5). For a compact open set U of

(D ⊗ A
f
F )× let S2(U) denote the set of functions

X(U) = D×\(D ⊗ A
f
F )×/((Af

F )× · U) → O.

For places v at which U is maximal and D unramified, there is a Hecke operator Tv acting on S2(U).

Let U◦ be “the” maximal compact open subgroup of (D ⊗ A
f
F )×. Let T(p) be the subalgebra of

End(S2(U
◦)) generated by the Hecke operators Tv for v 6∈ Sp ∪ S. Let T be the subalgebra generated

by the Tv for v 6∈ S. Thus T contains the Hecke operators above p and T(p) does not. By the Jacquet-
Langlands correspondence and conditions (A1) and (A2), our modular form f can be transferred to an
element of S2(U

◦) which is an eigenform for T. The form f defines a homomorphism T → O, the kernel of
which is contained in a unique maximal ideal m. The form f is actually irrelevant; all that matters is the
ideal m. It has the following two properties (which characterize it uniquely):

• For v 6∈ S ∪ Sp, the image of Tv in T/m is equal to tr ρ(Frobv).
• For v ∈ Sp, the Hecke operator Tv does not belong to m.

The first condition means that m is associated to the representation ρ; the second is the ordinarity condition.
We regard m as an ideal of T(p) by contraction. (Remark: we need the group U◦ to satisfy a certain smallness
condition which our group U◦ does not. To get a correct definition of U◦ one picks an auxiliary place vaux

with certain nice properties and takes U◦
vaux

to be sufficiently small; away from vaux the group U◦ is maximal.
One must also modify the definition of R to allow for ramification at vaux. We will ignore this subtlety for
now.)

As we have seen, there is a representation

GF → GL2(T
(p)
m ),

which lifts ρ. This induces a surjection R̃ → T
(p)
m . The above representation is Steinberg at all the places

in S (since D ramifies at S and local and global Langlands are compatible). However, it is not necessarily
ordinary at the places in Sp (though it is automatically crystalline). This should not be surprising, as we
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have not told T
(p)
m anything about what is happening at p. There is a map T

(p)
m → Tm; composing this with

the above representation gives a representation

GF → GL2(Tm).

This representation is ordinary at the places above p; one should think that the Hecke operators at p

specify the local component of the deformation space at p. Thus the map R̃ → Tm factors through R.
Unfortunately, this map is no longer surjective. However, it is not very far from being surjective and the
problem can be controlled locally at p: for v ∈ Sp there is a modified local deformation ring R′

v which is a
finite Rv-algebra and isomorphic to Rv after p is inverted. Define R′ to be like R but use R′

v for v ∈ Sp.
Then there is a natural surjection R′ → Tm. Our goal is to prove:

Theorem 2. The map R′[1/p] → Tm[1/p] is an isomorphism and R′ is finite over O.

The ring Tm is torsion-free by consturction. This theorem does not allow us to control the torsion in R′,
except to say that it is finite. One expects that R′ is torsion free; this may actually be proved in the case we
are in (the ordinary case), but I do not know for certain. One can modify the proof of the above theorem
to show that R is finite over O, which is often more relevant but does not seem to follow formally from the
finiteness of R′.

4. Taylor-Wiles primes

The basic idea to the proof of Theorem 2 (called the Taylor-Wiles method) is to find a tower of maps
Rn → Tn lifting R′ → Tm and then build a sort of inverse limit R∞ and T∞ out of the Rn and Tn, which
is a nice ring. We can then prove that R∞[1/p] → T∞[1/p] is an isomorphism and deduce from this the
statement we want. Actually, the Hecke algebras will not be so important; they will be replaced by spaces
of modular forms.

We find the rings Rn be introducing certain auxiliary deformation rings. By a TW set of places we mean
a finite set Q of places of F satisfying the following conditions:

• Q is disjoint from Sp and S. (And does not contain vaux.)
• N v = 1 (mod p) for all v ∈ Q.
• The eigenvalues of ρ(Frobv) are distinct and belong to k.

(The “belong to k” part is not serious — we can replace k by its quadratic extension and then all eigenvalues
of all Frobenii belong to k.) Given such a set Q of places, we define RQ similarly to R′ except we allow
ramification at the places in Q. Note that R∅ = R′. We will typically write R∅ in place of R′ for notational
uniformity.

Although we did not impose any deformation conditions at the places in Q, the conditions on the places
in Q has strong consequences. Let v ∈ Q. Then the universal deformation GF → GL2(RQ) restricted to GFv

is a sum of two characters η1 ⊕ η2. These characters are necessarily tamely ramified, since their reduction is
unramified, and in fact the image of inertia is p-power. By class field theory, η1 defines a map F×

v → R×
Q.

We thus get a map (OFv
/pv)

× → R×
Q, which factors through the maximal p-power quotient of (OFv

/pv)
×.

Define ∆Q to be the product of the maximal p-power quotients of (OFv
/pv)

× for v ∈ Q. Then we have
just given RQ the structure of an O[∆Q]-algebra. This was not quite canonical, since we had to choose η1.
Define a TW datum to be a pair (Q, {αv}) where Q is a TW set of primes and αv is a chosen eigenvalue
of ρ(Frobv) for each place v ∈ Q. Given such a datum we get a canonical O[∆Q]-algebra structure on RQ,
since we can take η1 to correspond to αv. The following result is not difficult:

Proposition 3. The canonical map RQ → R∅ is surjective. Its kernel is aQRQ, where aQ is the augmen-

tation ideal of O[∆Q].

We now define the auxiliary Hecke algebras and spaces of modular forms. Thus let (Q, {αv}) be a TW-
datum. We define compact open subgroups UQ ⊂ VQ. At places v 6∈ Q, we define UQ,v = VQ,v = U◦

v . Let
v ∈ Q. We then define

VQ,v =

{(
a b
c d

)
∈ GL2(OFv

)

∣∣∣∣ c ∈ pv

}

and

UQ,v =

{ (
a b
c d

)
∈ GL2(OFv

)

∣∣∣∣ c ∈ pv and ad−1 maps to 1 in ∆Q

}
.
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Of course, V∅ = U∅ = U◦. Note that UQ is normal in VQ and VQ/UQ is identified with ∆Q.
Let T(VQ) be the subalgebra of End(S2(VQ)) generated by the Tv for v 6∈ S ∪Q, and let T+(VQ) be the

subalgebra generated by these Tv together with the Uv for v ∈ Q. We have a map T(VQ) → T(V∅) and can
thus regard m as an ideal of T(VQ). We also have a map T(VQ) → T+(VQ). Let nQ be the ideal of T+(VQ)
generated by m and Uv − αv for v ∈ Q. We then have the following result:

Proposition 4. We have an isomorphism S2(VQ)nQ
= S2(U

◦)m.

Proof. We just indicate the map S2(U
◦)m → S2(VQ)nQ

in the case that Q = {v} (it suffices to treat this
case by an inductive argument). By Hensel’s lemma we have a factorization

X2 − TvX + N v = (X −A)(X −B)

for A and B in T(U◦)m, with A mapping to αv modulo m. We thus have a map

S2(U
◦)m → S2(VQ), f 7→ Af −

(
1

̟v

)
f.

Here ̟v denotes a uniformizer at v and the operator Uv is defined using the double coset of

(
̟v

1

)
.

One must show that the above map actually lands in S2(VQ)nQ
(which we think of as a summand of S2(VQ))

and that it is an isomorphism. Note in particular, that the proposition implies that S2(VQ)nQ
consists only

of old forms. We note that there is also an isomorphism T+(VQ)nQ
= Tm, though we will not need it. �

Let T+(UQ) be the subalgebra of End(S2(UQ)) generated by the Tv for v 6∈ S ∪Q and the Uv for v ∈ Q.
There is a natural map T+(UQ) → T′

+(VQ). We let mQ be the contraction of nQ under this map. We let
TQ be the localization T+(UQ)mQ

and we let MQ be the localization S2(UQ)mQ
. Note that T∅ = Tm and

that VQ/UQ = ∆Q acts on MQ. We then have

Proposition 5. The space MQ is free over O[∆Q]. There is a natural isomorphism MQ/aQMQ →M∅.

Proof. The map X(UQ) → X(VQ) is a Galois cover with group ∆Q. (This uses the smallness hypothesis on
U◦.) From this, one easily deduces that MQ is free over O[∆Q] and that MQ/aQMQ is naturally isomorphic
to S2(VQ)nQ

. To get the isomorphism with M∅ apply the previous proposition. �

We have a Galois representation GF → GL2(T
(p)
Q ), which yields a surjection R̃Q → T

(p)
Q (where R̃Q

is the universal deformation ring of ρ unramified outside S ∪ Sp ∪ Q). This Galois representation is not
necessarily ordinary at the places above p, but the induced representation GF → GL2(TQ) is. The resulting

map R̃Q → TQ is not longer surjective, but there is a natural surjection RQ → TQ of R̃Q-algebras.

In the next section, it will be important to have framed versions of everything. For v ∈ S ∪ Sp we let R�
v

be the framed local deformation ring. (It is actually the only one that makes sense; what we had called Rv

before does not really exist as a ring.) We let (R′
v)

� be the modification at places above p. We let B be the
tensor product of the R�

v for v ∈ S and the (R′
v)� for v ∈ Sp. We let R�

Q be like RQ but have framings at

all places in S ∪ Sp. It is an algebra over B. Finally, we define T�
Q = TQ ⊗RQ

R�
Q and M�

Q = MQ ⊗TQ
T�

Q .

5. The patching argument

For each TW set of primes we have constructed a ring RQ and given it the structure of a module over

O[∆Q], which is a ring of the form O[T1, . . . , Tn]/(T pai

i = 1) where n = #Q. We would like to use various
Q’s to build a ring R∞ which is an algebra over OJT1, . . . , TnK for some n (which does not obviously factor
through a large quotient). To do this, we need to hold #Q fixed and let its elements have norm congruent
to 1 modulo higher and higher powers of p. There will not be natural maps between the various RQ’s, but
we will nonetheless manage to find maps between pieces of these rings by a sort of pigeonhole principle.

We now assume that we can find integers h and g and for each n a TW set of primes Qn satisfying the
following conditions:

• #Qn = h
• N v = 1 (mod pn) for all v ∈ Qn

• R�
Qn

is topologically generated by g elements over B.
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We extend each Qn to a TW datum by arbitrarily choosing eigenvalues. We write R�
n in place of R�

Qn
, and

make this convention for other notations (e.g., M�
n ). We did not give motivation for the last condition, but

it is a natural condition to impose if we want patched ring R�
∞ to be finitely generated. We fix surjections

BJz1, . . . , zgK → R�
n for each n.

For a complete local ring A let mA denote its maximal ideal. Also, let m
(n)
A denote the ideal generated

by nth powers of elements of A; this is not the same as mn
A. Let ℓ = 4(#Sp + #S) − 1 and define

P = OJx1, . . . , xℓ, y1, . . . , yhK.

We make R�
n into a P -algebra by letting the xi be the framing variables and letting the yi act through a

chosen surjection OJy1, . . . , yhK → O[∆n]. For an integer n let cn be the ideal of P generated by

(πn, xpn

1 , . . . , xpn

ℓ , (y1 + 1)pn

− 1, . . . , (yh + 1)pn

− 1)

(where π is a uniformizer of O). Let s denote the rank of M0 over O. For an integer n let rn = snpn(h+ ℓ).
We remind the reader that R�

n is an algebra over B and that M�
n is an R�

n -module.
A patching datum of level n consists of the following:

• A complete local B-algebra D with m
(rn)
D = 0.

• A map of O-algebras P/cn → D.

• A surjection of B-algebras D → R�
0 /(cnR

�
0 + m

(rn)

R�
0

).

• A surjection of B-algebras BJz1, . . . , zgK → D.
• A D-module L which is finite free over P/cn of rank s.
• A surjection of BJz1, . . . , zgK modules L→M�

0 /cnM
�
0 .

The number of elements of D is finite (it can be bounded in terms of B and n). We thus find that, up to
the obvious notion of isomorphism, there are only finitely many patching data of a given level.

Let m ≥ n be integers. Put

Dn,m = R�

m/(cnR
�

m + m
(rn)

R�
m

), Ln,m = M�

m/cnM
�

m.

One verifies that (Dn,m, Ln,m) is a patching datum of level n. Since there only only finitely many patching
data of a given level, we can pass to a subsequence and assume Dn,m = Dn,n and Ln,m = Ln,n for all m ≥ n.
Denote the common value by Dn and Ln. Then the maps

Dn+1/(cnDn+1 + m
(rn)
Dn+1

) → Dn, Ln+1/cnLn → Ln

are isomorphisms.
Let R�

∞ be the inverse limit of the Dn and M�
∞ the inverse limit of the Ln. The space M�

∞ is a free
P -module of rank s. The ring R�

∞ is a P -algebra and a B-algebra, and there is a given surjection

BJz1, . . . , zgK → R�

∞.

Since P is a power series ring, the map P → R�
∞ can be lifted through the above surjection. We now have

the following lemma:

Lemma 6. Let R → S be a map of noetherian domains of the same dimension and let M be a non-zero

S-module which is finite projective over R. Then R → S is a finite map. If R and S are regular then M is

a finite projective faithful S-module.

Now, by the way we chose our deformation conditions, B is a domain and B[1/p] is smooth over Qp.
(These are theorems that we need to prove!) Note that B being a domain is the hypothesis mentioned at
the beginning of these notes, that our local deformation spaces needed to be irreducible. We now assume:

dimB = 1 + h+ ℓ− g.

We will address this assumption below. This dimension assumption implies that P and BJz1, . . . , zgK have
the same dimension. We conclude from the lemma that BJz1, . . . , zgK is finite over P and M [1/p] is a faithful

BJz1, . . . , zgK[1/p] module. The former implies that R�
∞ is finite over P while the latter implies that M�

∞[1/p]

is a faithful R�
∞[1/p] module (since the map BJz1, . . . , zgK → End(M�

∞) factors through R�
∞).

Now, by the construction of R�
∞ and M�

∞ we have isomorphisms

R�

∞/(y1, . . . , yh)R�

∞ → R�

0 , M�

∞/(y1, . . . , yh)M�

∞ →M�

0 .
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It follows that R�
0 is finite over OJx1, . . . , xℓK, which implies that R0 is finite over O. Since M�

0 is free
over P , we see that the action of R�

0 [1/p] on M�
0 [1/p] is still faithful. Since this action came via the map

R�
0 → T�

0 , we conclude that R�
0 [1/p] → T�

0 [1/p] is injective. Since we already knew this to be surjective, it
must be an isomorphism.

6. Resolving the assumptions

In the last section we proved Theorem 2 assuming the following: there exist integers h and g satisfying

dimB = 1 + h+ ℓ− g

such that for every integer n there is a set of primes Qn satisfying:

• #Qn = h
• N v = 1 (mod pn) for all v ∈ Qn

• RQn
is topologically generated by g elements over B.

In fact, one can find Qn as above with

h = dimH1(GF,S , ad◦ ρ(1))

g = h− [F : Q] + #S + #Sp − 1.

The proof of this will probably require its own talk; it is purely Galois theoretic and makes no use of modular
forms. It uses condition (A3), the assumption p > 5 and certain conditions on vaux that we did not state.
Now,

dimRv − dimO =

{
3 v ∈ S

3 + [Fv : Qp] v ∈ Sp

and so

dimB − dimO =
∑

v∈S

3 +
∑

v∈Sp

(3 + [Fv : Qp])

= 3#S + 3#Sp + [F : Q]

= h+ ℓ− g.

(Since B is the tensor product of the Rv over O, the relative dimension of B over O is the sum of the relative
dimensions of the Rv over O.) Therefore everything works!


