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In the first (and main) part of these notes, I review the representation theory we have done this semester,
highlighting the points that are of most relevance to us. Then I will state a modularity lifting theorem and
make a few remarks about how the rerpesentation theory is used in the proof. In my next talk, I will give
an outline of the proof of this modularity lifting theorem.

1. Representation theory

The lectures we have had on representation theory centered around these topics:

• The theory of admissible representations of GL(2,Qp) (or more generally, GL(2, F ) with F/Qp a
finite extension).

• The theory of automorphic representations of GL(2); in particular, the correspondence between
Hecke eigenforms in the classical sense and automorphic representations.

• The Jacquet-Langlands correspondence, relating automorphic forms on GL(2) with those on a divi-
sion algebra.

• Base change, relating automorphic forms on GL(2) over two different fields (one a solvable extension
of the other).

I will go through each of these four topics and remind us of the key points for our applications. I will also
throw in some material abouth the Langlands correspondence (both local and global) that we may not have
covered.

1.1. Admissible representations. Let F/Qp be a finite extension and let G be the group GL(2, F ). Fix
an algebraically closed field K of characteristic zero (one always takes K to be the complex numbers or the
closue of some Qℓ). A representation of G on a K-vector space V is smooth if the stabilizer of any vector in
V is an open subgroup of G; it is admissible if it is smooth and for every open subgroup U of G the space V U

is finite dimensional. We are most interested in irreducible admissible representations. Here “irreducible”
has its usual sense: the only stable subspaces are 0 and the whole space.

An easy way to construct admissible representations is through induction. Let α, β : F× → K× be two
continuous characters. Continuity amounts to the condition that the restriction of α and β to the group of
units UF should factor through a finite quotient of UF . Let V = V (α, β) be the space of all locally constant
functions f : G → K which satisfy the identity
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for all a, b ∈ F×, x ∈ F and g ∈ G. We let G act on V by right translation: (gf)(g′) = f(g′g). It is quite
easy to see that this makes V into an admissible representation of V . A more difficult result is the following:
if αβ−1 is not equal to | · | or | · |−1 then V is irreducible. Here | · | is the norm character of F×, which takes
a ∈ F× to q− val a where q is the cardinality of the residue field. These irreducible admissible representations
are called the principal series.

When αβ−1 is equal to | · |±1 the representation V (α, β) is no longer irreducible. Rather, it is indecompos-
able and has two Jordan-Holder constituents. One of these constituents is one dimensional while the other
is infinite dimensional. Precisley, say αβ−1 = | · | and write α = γ| · |1/2 and β = γ−1| · |−1/2. Then V (α, β)
has a unique irreducible subrepresentation St(γ) which is infinite dimensional. The quotient V (α, β)/ St(γ)
is one dimensional and G acts on it through the character g 7→ γ(det g). Write St in place of St(γ) where γ
is the trivial character. The representation St is called the Steinberg representation. One has St(γ) = St⊗γ.

We have thus completely analyzed the representations V (α, β). There are many irreducible admissible
representations of G which do not appear inside of these reperesentations, however; these are called the
supercuspidal representations of G. We now have the following classification of the irreducible representations
of G.

Theorem 1.1. Let V be an irreducible admissible representation of G over K. Then V is equivalent to one
and only one of the following:
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• An irreducible principal series V (α, β) with αβ−1 6= | · |±1.
• A one dimensional representation corresponding to a character g 7→ γ(det g).
• A twist St⊗γ of the Steinberg representation St.
• A supercuspidal representation.

This theorem almost follows by our definition of supercuspidal. The one part that does not is its assertion
that the principal series and twists of Steinbergs are inequivalent. The one dimensional representations are
often counted as principal series. We will sometimes treat them as such and sometimes not.

An irreducible admissible representation V of G is called unramified if it has a vector which is invariant
under the maximal compact subgroup GL(2, OF ). It is a theorem that V is unramified if and only if it is a
principal series of the form V (α, β) with α and β unramified characters of F× (where here unramified means
trivial on UF ), or a one dimensional principal series given by g 7→ γ(det g) with γ unramified. Note that an
unramified character of F× is determined by a single number, namely, its value on any uniformizer.

Key points : (1) The irreducible admissible representations of G fall into three classes: principal series,
twists of Steinberg and supercuspidal. (2) The unramified representations of G are exactly the principal
series representations coming from unramified characters. These are parameterized by (unordered) pairs of
numbers (elements of K×).

1.2. The local Langlands correspondence. Keep the notation of the previous section. We have an exact
sequence

0 → IF → Gal(F/F )
val
→ Ẑ → 0

where IF is the inertia subgroup of the Galois group. The Weil group of F is by definition the subgroup of
Gal(F/F ) given by val−1(Z). We call a representation of WF on a K-vector space V Frobenius semi-simple
if some fixed Frob in WF acts semi-simply. Recall that a Weil-Deligne representation of F with coefficients
in K is a pair (V, N) where:

• V is a K vector space with an action of WF which is Frobenius semi-simple and under which inertia
acts through a finite quotient.

• N is an endomorphism of V which satisfies

gNg−1 = qval gN

where q denotes the cardinality of the residue field of F . Equivalently, N defines a WF -equivariant
map V (1) → V where V (1) is the twist of V by the character g 7→ qval g.

The collection of all Weil-Deligne representations forms a category and this cateogry is abelian. The following
theorem is not difficult:

Theorem 1.2. Let ℓ 6= p be a prime number. There is then an equivalence of categories:
{

Weil-Deligne representations
with coefficients in Qℓ

}
↔

{
Continuous Frobenius semi-simple representa-
tions of WF on Qℓ vector spaces

}

Sketch of proof. Let (V, N) be a Weil-Deligne representation. Let ρ denote the action of WF on V . Define
a new representation ρ′ of WF on V by

ρ′(Frobng) = ρ(Frobng) exp(Ntℓ(g)).

Here Frob ∈ WF is a fixed Frobenius element, g is an element of the inertia subgroup IF of WF and
tℓ : IF → Zℓ is the tame ℓ-adic character. One easily verifies that ρ′ is a continuous Frobenius semi-simple
representation. We have thus defined a map of categories. One must then check that it is in fact an
equivalence, which is not difficult. �

It is not difficult to classify two dimensional Weil-Deligne representations:

Theorem 1.3. Let (V, N) be a two dimensional Weil-Delgine representation of F with coefficients in K.
Then (V, N) falls into exactly one of the following three cases:

• V is a direct sum of two characters of WF and N = 0.
• V is irreducible under WF and N = 0.
• V is a direct sum W ⊕ W (1) where W is one dimensional (and thus acted on by a character γ of

WF ); N kills W (1) and maps W isomorphically onto W (1).



3

We can now state a version of the local Langlands correspondence for GL(2).

Theorem 1.4. There is a natural bijection
{

Irreducible admissible represen-
tations of GL(2, F ) over K

}
↔

{
Two dimensional Weil-Deligne repre-
sentations with coefficients in K

}
.

Under thie bijection, the principal series correspond to direct sums of characters, the supercuspidals to
irreducibles and the twists of Steinberg to the Weil-Deligne representations with non-zero N . More precisely,
the principal series V (α, β) corresponds to the representation α′ ⊕ β′ where α′ and β′ correspond to α and
β by class field theory. One can make a similar statement for twists of Steinberg.

Key points : (1) Two dimensional Weil-Deligne representations fall into three classes. (2) There is a natural
bijection between two dimensional Weil-Deligne representations and irreducible admissible representations of
GL(2, F ). This bijection preserves the trichotomy on each side and on principal series and twists of Steinberg
can be computed in terms of class field theory. (3) Weil-Deligne representations basically correspond to
continuous ℓ-adic representations of the Weil group for any ℓ 6= p, and these are almost the same thing as
representations of the absolute Galois group.

1.3. Automorphic representations. Now let F be a number field and let AF be its adele ring. An
automorphic form on GL(2) over F is a function f : GL(2,AF ) → C satisfying a number of properties, the
most important of which is that it is invariant on the left under GL(2, F ). The set of all automorphic forms

forms a vector space AF . This vector space carries an action of GL(2,Af
F ) by right translation. Furthermore,

the Lie algebra and the maximal compact of GL(2, F∞) act on AF (that is, AF is a Harish-Chandra module
for GL(2, F∞)). (The full group GL(2, F∞) does not act on AF as it destroys the K-finiteness condition.)
An automorphic representation of GL(2,AF ) is something of the form πf ⊗ π∞ where πf is an irreducible

admissible representation of GL(2,Af
F ) and π∞ is an irreducible Harish-Chandra module of GL(2, F∞) such

that πf ⊗ π∞ is equivalent to a submodule of AF . There is a certain condition called cuspidal that one
can impose on automorphic forms. The set of all cuspidal forms forms a vector subspace A ◦

F of AF which
is stable under the various actions of pieces of GL(2,AF ). An automorphic representation is cuspidal if it
appears inside this cuspidal space.

Say for the moment that F = Q. As we have discussed earlier in the semester, classical modular eigenforms
correspond bijectively to automorphic representations π for which π∞ is a discrete series representation.
More precisely, say f is a newform of level N and weight k and let π be the corresponding automorphic
representation. We can then write π = πf ⊗ π∞ and further decompose πf as a restricted tensor product
⊗πp, where πp is an irreducible admissible representation of GL(2,Qp). The Harish-Chandra module π∞ is
completely determined by the weight k. For primes p not dividing the level, πp is an unramified representation
of GL(2,Qp). As we have seen, such representations are determined by two numbers; the representation πp

corresponds to the eigenvalues of the Hecke operators Tp and Tp,p acting of f . (There is a precise formula to
take these two numbers and produce two characters α and β of Q×

p such that πp is equivalent to V (α, β).)
For primes p dividing N the representation πp is not unramified. I imagine that it is possible to determine
πp from a classical point of view; however, this is probably a bit complicated. This is one of the main
advantages of the formulation in terms of automorphic representations: the information at ramified primes
is more readily accessible.

When F 6= Q the discussion of the previous paragraph carries over but is a bit more complicated.
The reason that it becomes more complicated is that the corresponding classical picture becomes more
complicated. For example, in the setting of Hillbert modular forms the space which plays the role of the
modular curve can be disconnected: it will be a disjoint union of spaces of the form hn/Γi where h is the
upper half plane and the Γi are certain arithmetic groups. The proper analogue of a modular form is then
a tuple (fi) where fi is a function on hn invariant under Γi. The Hecke operators then permute the fi in
addition to acting in the usual fashion. This additional bookkeeping required makes the classical point of
view much more cumbersome to deal with. It is another reason for swithcing to the representation theoretic
perspective.

Key points : (1) Classical modular forms correspond to automorphic representations of GL(2,AQ) satisfying
a certain condition at infinity. (2) Automorphic representations are built out of irreducible admissible
representations at each finite place and a Harish-Chandra module at infinity. Almost all of these irreducible
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admissible representations are unramified and the two parameters that determine them correspond to the
two Hecke eigenvalues in the classical picture. (3) Automorphic representations are much better to deal with
for certain applications: even in the most basic case of classical modular forms they give easier access to
information at ramified primes; in more complicated situations, they remove the cumbersome bookkeeping
that is present in the classical picture.

1.4. The global Langlands correspondence. Let f be a modular form on the upper half plane of weight
k and level N which is an eigenform for the Hecke operators Tp and Tp,p away from N . As we discussed in
the first semester, there is a Galois representation

ρf,ℓ : GQ → GL2(Qℓ)

which satisfies and is uniquely determined by the following property: if p 6= ℓ is a prime not dividing N
then ρf,ℓ is unramified at p and the characteristic polynomial of ρf,ℓ(Frobp) is given by T 2 − apT + ap,p

where ap and ap,p are the eigenvalues of f under Tp and Tp,p. The representation ρf,ℓ is “odd,” that is, its
determinant on a complex conjugation is −1.

As we have seen, in certain situations it is better to use automorphic representations in place of modular
forms. This is one of those situations! The above result can be generalized and refined, and to state the
improved version it is better to use automorphic representations. Let F be a totally real number field and
let π be an automorphic representation of GL(2,AF ) such that π∞ is a discrete series representation. Then
there is a Galois representation

ρπ,ℓ : GF → GL2(Qℓ)

which satisfies and is uniquely determined by the following property: if v is a place of F which does not
lie above ℓ then ρπ,ℓ|GF,v corresponds to πv under the local Langlands correspondence. The representation
ρπ,ℓ is also odd: its determinant on any complex conjugation is −1. (Note that the condition that π∞ be
discrete series is equivalent to the condition that the corresponding classical modular form be holomorphic.)

The above result is clearly more general than the first one since it permits F to be a totally real field rather
than just Q. However, even for F = Q it is a stronger result: it specified the local Galois representation
everywhere except at ℓ in terms of the corresponding local component of the automorphic representation. The
local Galois representation at ℓ is much more subtle: it is not determined by the corresponding component
of the automorphic representation.

It is expected that the ρπ,ℓ give all the Galois representations which are odd, ramified at finitely many
places and satisfy some local condition at ℓ (coming from ℓ-adic Hodge theory). This has basically been
proved for F = Q but is still open for all other F . The most critical intermediate result in the proof for
F = Q is a modular lifting theorem; we will prove such a theorem in this seminar.

Key point : Given an automorphic representation π of a toally real number field which is discrete series at
infinity, there is a corresponding Galois representation ρπ,ℓ. (Or rather, one for each ℓ.) The restriction
of ρπ,ℓ to a decomposition group away from ℓ corresponds to the local component of π under the local
Langlands correspondence. Furthermore, ρπ,ℓ is an odd representation.

1.5. The Jacquet-Langlands correspondence. Let F be a number field. Let G be the algebraic group
GL(2) over F . Let D be a quaternion algebra over F and let G′ be its unit group, regarded as an algebraic
group (so G′(A) = (D ⊗F A)×). One then has the notion of an automorphic representation of G′. The
global Jacquet-Langlands correspondence is the following theorem:

Theorem 1.5. The is a natural bijection:

{Automorphic representations of G′ } ↔

{
Automorphic representations of G
which are essentially square integrable
at all places where D ramifies

}

(An irreducible admissible representation of GL(2, Fv) is essentially square integrable if it is a twist of the
Steinberg or supercuspidal, i.e., not principal series.) Furthermore, if π′ is an automorphic representation of
G′ and π the corresponding automorphic representation of G then πv is determined completely by π′

v. Two
special cases: (1) if D splits at v and we identify Dv with M2(Fv) then π′

v is identified with πv; (2) if π′
v is

the trivial representation then πv is the Steinberg representation.
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Assume that D is ramified at all infinite places; this is the case we care most about. For a compact open

subgroup U of (D ⊗ A
f
F )× let S2(U) denote the space of all functions

D×\(D ⊗ A
f
F )×/U → C.

Note that the double quotient above is a finite set; we really do mean all possible functions, there is no
possible continuity condition to impose. For a place v of F at which U is maximal compact and D is
split there is a natural Hecke operator Tv that acts on S2(U). The Jacquet-Langlands correspondence
implies that if f is a parallel weight 2 holomorphic cuspidal Hilbert eigenform whose associated automorphic
representation is essentially square integrable at the places where D is ramified then there is an element
g of S2(U) which is an eigenvector for all the Hecke operators and has the same eigenvalues as f . (Here
U is determined from the level of f .) Therefore, as long as we are in a situation where the appropriate
local conditions are in place, we can work with S2(U) instead of the space of Hilbert modular forms. This
is advantageous because functions on a finite set are very easy to think about! For instance, there is an
obvious integral structure on S2(U) (take integral valued functions) and so the notion of a mod p modular
form on D is evident.

Key points : (1) One can move automorphic forms and representations between GL(2) and quaternion
algebras; the only obstructions are local and fairly simple. (2) By taking D to be ramified at infinity,
automorphic forms on D can be thought of as functions on a finite set.

1.6. Base change. Let π be an automorphic representation of GL(2,AF ) with F a number field, such that
π∞ is discrete series. As we have seen, there is then an associated Galois representation ρπ,ℓ. Given an
extension F ′/F we can restrict ρπ,ℓ to GF ′ . This is the sort of Galois representation that we expect is of
the form ρπ′,ℓ for some automorphic representation π′ of GL(2,AF ′). The automorphic representation π′

has been proven to exist when the extension F ′/F is solvable. Precisely we have the following:

Theorem 1.6. Let F ′/F be a solvable extension of number fields. There is a natural map of sets

BC :

{
Automorphic representations
of GL(2,AF )

}
→

{
Automorphic representations
of GL(2,A′

F )

}

such that if π′ = BC(π) then: (1) the local component π′
v can be computed in terms of πv; (2) if π∞ is

discrete series then so is π′ and ρπ′,ℓ = ρπ,ℓ|GF ′
.

There is a local base change map also: if F ′
v is a finite extension of Fv then there is a base change map

BC from irreducible admissible representations of GL(2, Fv) to those of GL(2, F ′
v). In fact, the meaning of

(1) in the above theorem is precisely that π′
v = BC(πv). Thus local and global base change are compatible.

The local base change map satisfies a property analogous to (2) above, namely, it commutes with the local
Langlands correspondence.

From the above properties of local base change, and what we know about local Langlands, it is easy to see
some examples of how local base change works. For example, the principal series V (α, β) corresponds under
local Langlands to the Galois representation α′ ⊕β′ where α′ and β′ correspond to α and β under class field
theory. Restricting this to GF ′

v
we simply get α′|GF ′

v
⊕ β′|GF ′

v
. Going the other way under local Langlands,

this corresponds to the principal series V (α′′, β′′) where α′′ and β′′ correspond to α′|GF ′
v

and β|GF ′
v

under

class field theory. Now, class field theory turns restriction to a larger number field into composition with
the norm. Thus α′′ = N∗α and β′′ = N∗β, where N : (F ′)× → F× is the norm map. We thus find

BC(V (α, β)) = V (N∗α, N∗β).

The base change of a principal series is always a principal series. Similarly, the base change of a twist of
Steinberg is again a twist of Steinberg — restricting to a bigger field will never turn a non-zero N zero or
vice versa. By this reasoning, the base change of a supercuspidal will never be a twist of Steinberg. However,
an irreducible Galois representation can certainly restrict to a reducible one. Thus it is possible for the base
change of a supercuspidal to be principal series. In fact, if π is any irreducible admissible representation of
GL(2, Fv) then one can find an extension F ′

v/Fv such that BC(π) is either unramified or Steinberg. Any
base change of Steinberg is still Steinberg, however.

The above local discussion has the following global application (when compbined with some global class
field theory). Given an automorphic representation π of GL(2,AF ) there exists a finite solvable Galois
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extension F ′/F such that the base change of π to F ′ is everywhere unramified or Steinberg. In fact, if F is
totally real (as it will be in our applications) then F ′ can be taken to be totally real as well.

There is a sort of converse to base change that will be useful for us, which we refer to as solvable descent.

Theorem 1.7. Let F be a totally real number field and let ρ : GF → GL2(Qp) be a Galois representation.
Assume that there exists a finite, totally real, solvable extension F ′/F and a parallel weight 2 automorphic
representation π′ of GL(2,AF ′) such that ρ|GF ′

= ρπ′,p and both are irreducible. Then there exists a parallel
weight 2 automorphic representation π of GL(2,AF ) such that ρ = ρπ,p.

In other words: if ρ becomes modular over a solvable extension then ρ is modular.

Key points : (1) There is an operation (“base change”) on automorphic representations and local repre-
sentations which corresponds to restriction on the Galois side, at least for solvable extensions. (2) Given
an automorphic representation, one can always make a solvable base change such that the result is either
unramified or Steinberg at all places. One cannot get rid of Steinbergs through base change, however. (3)
Given a Galois representation, one can check if it comes from an automorphic form by checkings over a
solvable extension (subject to some technicalities).

2. Modularity lifting

We will now state a modularity lifting theorem that we will later use and indicate how base change and
the Jacquet-Langlands correspondence are used in the proof. We must first make some Galois theoretic
definitions.

Let F/Qp be a finite extension. We say that a Galois representation ρ : GF → GL2(Qp) is ordinary if it
is of the form (

αχp ∗
β

)

where α and β are finitely ramified characters, and, as always, χp denotes the p-adic cycloctomic character.
(One could allow for more general definitions of ordinary, replacing χp by χn

p ; for now we will stick with
this one.) Let E/F be an extension over which α and β become unramified. The representation ρ|IE

is an
extension of the trivial representation by χp and so defines an element of H1(IE ,Qp(χp)), which is identified

with Qp ⊗ (Eun)× by Kummer theory. (Here Eun is the maximal unramified extension of E and IE is the

inertia subgroup of GE .) We say that ρ is potentially crystalline if this class belongs to Qp ⊗ O
×

Eun . This is
idendependent of the choice of E.

Now let F/Q be a finite totally real extension. Recall that a representation ρ : GF → GL2(Qp) is odd if
det ρ(c) = −1 for all complex conjugations c ∈ GF . We can now state a modular lifting theorem.

Theorem 2.1. Let p > 5. Let ρ : GF → GL2(Qp) be an odd, finitely ramified representation such that
ρ|GF(ζp)

is absolutely irreducible and ρ is potentially crystalline and ordinary at all places above p. Assume

that there exists an automorphic representation π of GL(2,AF ) such that ρπ,p is potentially crystalline and
ordinary at all places above p and ρπ,p = ρ. Then there exists an automorphic rerpesentation π′ such that
ρ = ρπ′,p.

We will now indicate some ways in which base change and the Jacquet-Langlands correspondence come
up in the proof of this theorem. To begin with, we can use base change to make some immediate reductions
that simplify the situation. For example, our representation ρ is of the form

(
αχp ∗

β

)

at each place above p. By making a solvable base change, we can reduce to the case where α and β are
unramified. Even more drastically, we can make a solvable base change to reduce to the case where ρ|GFv

is
trivial at any given finite set of places. Moving to such a situation can make some of the local deformation
theory easier. Two other things we can do with base change: we can reduce to the case where det ρ is the
cyclotomic character (our hypotheses imply that it is a finite twist of the cyclotomic character); and we can
reduce to the case that F/Q has even degree, which is useful for finding quaternion algebras with prescribed
ramification.

The above applications of base change are very useful but fairly superficial. We now describe a more
serious application. In the hypotheses of the theorem, we have been given an automorphic rerpesentation
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π such that ρ = ρπ,p. In the proof, however, we need it to be the case that ρ and ρπ,p are potentially
unramified at the same set of places. This need not be the case for the π we have. Of course, we are free to
replace π with another form π′ such that ρπ,p = ρπ′,p, that is, one that is congruent to π modulo p (while still
maintaining the other hypotheses). So the question is: given π as in the theorem, can we find a congruent
π′ such that ρπ′,p and ρ are potentially unramified at the same set of places? Alternatively, we know that
ρπ′,p is potentially unramified precisely at the places where it is not Steinberg, so we could also ask if we
can replace π by a congruent form and prescribe the set of places at which this new form is Steinberg.

Clearly, this issue cannot be resolved with base change; in fact, it requires some real work. In the early
days of the modularity lifting theorem, these congruences were found using the geometry of the modular
curves. These proofs were difficult and fairly specific. Since then, new proofs have been found which are
easier and more general. The common theme of these proofs is to use the Jacquet-Langlands correspondence
and then do some computations with modular forms on quaternion algebras — which are just functions on
a finite set. It is much easier to manipulate these functions than forms on the modular curve!

To prove the theorem we identify a cerain universal deformation ring of the Galois representation ρ with
a certain Hecke algebra. Originally, this Hecke algebra was one for GL(2). However, by Jacquet-Langlands,
we can find the same Hecke algebra on a quaternion algebra, and as we have explained, it is often easier
to prove things in that setting. So we will in fact use a Hecke algebra on a quaternion algebra. Thus the
Jacquet-Langlands correspondence will be built into our proof at a very fundamental level.


