
Warning – these notes were written for AV’s personal use and have
not been checked in any way whatsoever, nor have they been edited for
coherence beyond adding one or two sentences. AV makes absolutely no
warranty of correctness and these should be used with extreme caution.
The talk sketched a proof of Jacquet-Langlands between the quaternion
algebra ramified at {∞, 11} and GL2 at level 11.

1. The adelic quotient associated to a quaternion algebra

D the quaternion algebra ramified at {11,∞}. This is represented by x + yi +
zj + wk, where i2 = −11, j2 = −11, k2 = −1; also ij = 11k, jk = i, ki = j.

We want to have some “concrete” understanding of the adelic quotient Q×\(D⊗
A)×/A×U , where U is a maximal compact subgroup of (D ⊗ A)×. It comes with
Hecke operators Tp for each prime p.

The maps1 q 7→ Cliff0(q), E 7→ End(E) give bijections:
• Maximal orders in D, i.e. quaternion rings2 of discriminant −11.
• Isomorphism classes of supersingular elliptic curves over F11;
• (Definite) ternary quadratic forms of 1

2 -discriminant −11.
This set is equipped with the structure of a p+ 1-valent directed graph from the

Hecke operators; they are represented by matrices

A2 =
(

1 3
0 2

)
, A3 =

(
2 3
2 1

)
, A5 =

(
4 3
2 3

)
, A7 =

(
4 6
4 2

)
.

Exercise. Why are these matrices not symmetric?
We describe each of the three realizations in turn.

1.1. Maximal orders.– Write o = Z[ 1+j2 ]. Then o[k] is a maximal order.

O1 :=
x+ yi+ zj + wk

2
x ≡ z, y ≡ w(2).

The group of units (elements of norm 1) is simply {±1,±k}.
Write ω = 2+i+k

4 , a cube root of 1, and ν = 1+i−j−k
2 , with norm 6. Then

O2 := Z + Zj + Zω + Zν

is another maximal order. The group of units is {±1,±ω,±ω2}.
O1 and O2 intersect in an order that has index 2 in both. We can describe the

passage from O1 to O2 as follows (with q = 2ω):

O2 =
q

2
+ 〈z ∈ O : tr(zq) even〉.

The element q has the property that tr(q) = 0,N(q) ≡ 0 modulo 2.
More generally: Given any maximal order B, there exist p + 1 neighbours B′.

Namely, there exist exactly p+ 1 elements of B/pB of trace and norm 0. For each
such x, let x∗ ∈ B be a lift that has norm divisible by p2. Set B′ = x∗

p + (x∗)⊥.

1Given a ternary quadratic form q the even Clifford algebra gives a ternary quadratic form of
the same discriminant. For instance

ax2 + by2 + cz2 7→ 〈i, j, k|i2 = −bc, j2 = −ac, k2 = −ab〉
Note that upon composition with “trace form” we get the map “multiplication by disc,” at least

over a field.
2A quaternion ring over R is free of rank 4 together with an involution x 7→ x∗ so that the

characteristic polynomial is as expected (roots x, x∗ with multiplicty 2).
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1.2. Supersingular elliptic curves.–
The p-neighbour operation is described thus: For each supersingular elliptic

curve and prime p 6= 11, we can consider the p + 1 different curves formed by
quotienting by a subgroup of order p. This gives a δ× δ matrix whose columns add
up to p+ 1, a “Brandt matrix.”

There are two supersingular j-invariants in characteristic 11, namely, 1728 and
0. Over C these are represented by points i, ω. The j-invariant of all points
3i, i/3, (i+1)/3, (i+2)/3 satisfy the equation x2−153542016x−1790957481984 = 0,
which has roots {0, 1728} in F11. On the other hand, j(3ω) = −12288000, as are
two of the other Hecke translates; the other Hecke translate (ω+1)/3 has j-invariant
zero.

There is a 2-isogeny from y2 = x3 − x to y2 = x3 + 1 in characteristic 11.

x 7→ 6x2 + 5x+ 1
x− 1

, y 7→ y
x2 + 9x+ 10

(x− 1)2
.

1.3. Quadratic forms. – There are two quadratic forms, represented by q1 :=
x2 + y2 + 3z2 − xz, x2 + y2 + xy − yz − zx+ 4z2, and they have respectively 8 and
12 automorphisms. The total mass of the genus is 5/24.

Example of q1. The associated quaternion algebra spanned by 1, i = e2e3, j =
e3e1, k = e1e2 has relations

i2 = −3, j2 = −j − 3, k2 = −1, jk = i∗, ki = j∗, ij = 3k∗

For instance e3e1e3e1 = e23e
2
1 + 2e23〈e1, e3〉 = −3 − e3e1. Note that we can write

this as (x− z/2)2 + y2 + 11z2/4; in other terms, in terms of the basis e′1 = e1, e
′
2 =

e2, e
′
3 = 2e3 + e1 it is x2 + y2 + 11z2. Note that k′ := e′1e

′
2 = k, j′ := e′3e

′
1 =

2j + 1, i′ := e′2e
′
3 = 2i− k. These satisfy

j′2 = −11, k′2 = −1, i′2 = −13− 2(ik + ki) · · · = −11, . . .

Note ki = j∗, so also i∗k∗ = j, that is ik = j. So ki+ik = j+j∗ = −1 and so on. In
particular, Bq is isomorphic to the suborder of D spanned by k, (j−1)/2, (i+k)/2.

2. The cusp form of weight 11

There is precisely weight 2 one cusp form of weight 11, viz.

q
∏

(1− qn)2
∏

(1− q11n)2 = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 . . .

(Note that it is congruent to ∆ modulo 11.) This corresponds to the elliptic curve

y2 + y = x3 − x2,

which is in fact X1(11) not X0(11). We denote by N(p) the number of points on
this curve modulo p. So N(2, 3, 5, 7) = 5, 5, 5, 10 . . . whereas ap = −2,−1, 1,−2.

Exercise. Why are all the numbers are all divisible by 5?
The trace formula. – By the Lefschetz formula, the number of fixed points of Tp

is 2(p+ 1− ap). (So, 10, 10, 10, 20.)
The contribution of each cusp is 2.
The fixed points of Tp on X0(11) are parameterized by pairs (E,Λ) together with

a cyclic p-isogeny ψ : E → E that fixes Λ. In other terms, E has CM by some order
o that has an element of norm p. Once we fix o and an element t ∈ o of norm p,
the remaining question is whether t acting on o/11 fixes a line; if we suppose that
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the p 6= 11 and that 11 is unramified in o, this will be so just when o is split at 11;
if so, there are two such points.

The orders of small discriminant split at 11 are Z[
√
−2] and Z[

√
−7]. These

orders are both of class number 1.
In all cases each solution (up to sign) contributes +2 if unramified at 11, +1

else.
Example. There is an element of norm 2 in Z[

√
−2], namely ±

√
−2; also

± 1+
√
−7

2 .
Example. Norm 3: ±1±

√
−2, 1±

√
−11

2 .
Example. Norm 5. We need to solve 20 = x2+dy2; the solutions are ±1±

√
−19

2 , ±3±
√
−11

2 .
Example. Norm 7. We need to solve 28 = x2 + dy2. The solutions are ±1 ±√
−6, ±3±

√
−19

2 ,
√
−7. But 1 +

√
−6 contributes +4 (class number two) and

√
−7

also does (two orders). Total 8 + 4 + 4 = 16.
Example. Norm 13. ±1±

√
−51

2 , same for 43. Class numbers are 2 and 1. Total
+12. Finally

√
−13 gives +4 – class number two. total 20. Correct (a13 = 4).

3. The trace of Brandt matrices

The trace of Tp on the split side is a summation

−
∑
o,λ

h(o)(1 +
(
−11
d

)
).

I’ll sketch why the trace of Tp on the quaternionic side is

(1) p+ 1 +
∑
o,λ

h(o)(1−
(
−11
d

)
).

Why are these equal? We need to check∑
o,λ

h(o) = p+ 1,

and there are two ways to proceed:

(1) Compute the trace of Tp on forms of weight 2, level 1.
(2) Use the fact that (

∑
qn

2
)3
∑
qn

2
= (
∑
qn

2
)4.

Sketch of proof of (1): I’ll explain it in terms of CM elliptic curves: Suppose o
is inert or ramified at 11 and λ ∈ o has norm p. (Let H be the Hilbert class field,
and choose a prime above p). For each ideal class J of o, the elliptic curve EJ ,
when reduced mod p, comes equipped with a p-isogeny EJ → EJ , i.e., a loop in
the adjacency graph.

Example. Let us reconsider norm 3 from this perspective. It is the norm of√
−3, 1±

√
−11

2 in inert orders.
First,

√
−3. It gives rise to the CM elliptic curve with j-invariant 0, y2 = x3−1.

However, there are two CM-maps over F11, namely x 7→ ζx and x 7→ −ζx.
On the other hand,

√
−11 gives rise a CM elliptic curve of j-invariant −32768.

Explicitly, with a = 4 × 24 × 539 and b = 16 ∗ 5392, it is y2 = x3 − ax − b,
a curve of j-invariant −215. This curve is the minimal model (!!) and it has
conductor 243272112. On the other hand, over Q(

√
−11) it becomes the curve
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y2 = 4x3 − 24x−
√

539, which does have good reduction at the prime above 11; it
has j invariant 1728 ∈ F11.

Remark. You can construct the curve with conductor 121 by twisting. It is

y2 = x3 − 9504x+ 365904.

Alternate. If you are proficient with ternary quadratic forms [...]
The file contained a section concerning computations at level 121 (esp. local

representations at 11). These have been commented out.


