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Introduction

The goal of this talk is to make readers (somewhat) comfortable with statements like “*the*
quaternion algebra over Q ramified at 2,5,7,11.” Statements like this will come up all the time,
when we use Jacquet-Langlands.

The Basic Theorems

Definition 1. A central simple algebra (CSA) over a field k is a finite dimensional k-algebra
with center k and no non-trivial two-sided ideals.

Some examples:

• Any division algebra over k is clearly a central simple algebra since any non-zero element is
a unit. For example, we have quaternion algebras:

H(a, b) = spank{1, i, j, ij}

with multiplication given by
i2 = a, j2 = b, ij = −ji.

For example, when k = R, a = b = −1, we recover the familiar Hamilton quaternions H.

• Let G be a finite group and ρ : G→ GLn(k) be an irreducible k-representation. Then
EndG(ρ) is a division algebra by Schur’s Lemma. Hence, it is a CSA.

• Mn(k) is a CSA. Indeed the left ideals are of the form
∗ 0 ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ 0


and right ideals have a similar “transpose” shape.

A first step to understanding division algebras are the following basic theorems.

Double Centralizer Theorem 1. Let A be a k-algebra and V a faithful, semi-simple A-module.
Then

C(C(A)) = Endk(V ),

where the centralizers are taken in Endk(V ).
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Classification of simple k-algebras. Every simple k-algebra is isomorphic to Mn(D) for some
division k-algebra D.

Proof. Choose a simple A-module S (for example, a minimal left ideal of A).
A acts faithfully on S since the kernel of A→ Endk(S) is a two-sided ideal not containing 1.
Let D be the centralizer of A in the k-algebra Endk(S). By the double centralizer theorem,
A = C(D), i.e. A = EndD(S).
But S is a simple A-module. Thus for d ∈ D multiplication by d is an A-linear endomorphism
d : S → S and hence is either 0 or invertible, by Schur’s Lemma. Since the inverse is also A-linear
and D = C(A), it follows that D is a division algebra.
It follows that D is a division k-algebra and so S ∼= Dn for some n. Hence,

A = EndD(Dn) = Mn(Dopp).

Noether-Skolem Theorem. Let A be a simple k-algebra and B a semi-simple k-algebra. If

f, g : A→ B

are k-algebra maps, then there is an invertible b ∈ B such that

f(a) = bg(a)b−1

for all a ∈ A.

The Brauer Group

We note the two following facts:

Proposition. If A and B are CSAs over k, then A⊗k B is a CSA over k.

Proposition. Let A be a CSA over k. Then A⊗k Aopp ∼= Endk(V ).

We define an equivalence relation on the set of CSAs over k by

A ∼ BifA⊗k Mn(k) ∼= B ⊗k Mm(k)for some positive integersn,m.

This allows us to define the Brauer group of k,Br(k), to be the set of equivalence classes of
CSAs over k.
As of right now, this is only a Bruaer set. But we can endow it with a group operation
[A][B] = [A⊗k B].

• This operation is well-defined on equivalence classes since Mn(k)⊗k Mm(k) ∼= Mmn(k).

• It is clearly associative and commutative.

• [k] acts as the identity.

• [Aopp] is the inverse of [A]

Some examples of Baruer groups:
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• If k is algebraically closed, then Br(k) = 0. Indeed, any CSA A is isomorphic to Mn(D) for
some division k-algebra D. But for any element d ∈ D, k[d] is a finite field extension of k.
But k is algebraically closed! Hence, D = k. But then A ∼ k.

• Br(R) = {[R], [H]}.

• By a theorem of Wedderburn, all division algebras over finite fields are commutative. Hence,
Br(finite field) = 0.

Extension of Base Field

Proposition. Let A be a CSA over k,K ⊃ k a field extension. Then A⊗k K is a CSA over K.

In this statement, K need not necessarily be finite over k.

Corollary. If A is a CSA over k, then [A : k] is a square.

Proof.
[A : k] = [A⊗k k : k].

But A⊗k k is a CSA over k and so is isomorphic to Mn(k) for some n. Thus, [A : k] = n2.

Note that if L/k is any field extension, then

Br(k)→ Br(K) : A 7→ A⊗k L

defines a homomorphism. We let Br(L/k) denote its kernel.

Brauer Groups and Cohomology

There is a natural isomorphism H2(L/k) = H2(GL/k, L
×)→ Br(L/k). This is very handy, as it

allows Br(L/k) and H2(L/k) to play off each other. For example, it is not otherwise clear that
Br(k) is torsion or that H2(Gk, k

×) = H2(Gun
k , k

×) for a local field k.
Here is a slightly more general version of the double centralizer theorem that we’ll find useful.

Theorem. Let B be a simple k-subalgebra of A. Then D = CA(B) is simple, B = CA(D), and
[B : k][D : k] = [A : k].

Proposition. Let A be a CSA over k. Let L ⊂ A be a (commutative) field containing k. Then
TFAE:

(a) L = CA(L).

(b) [A : k] = [L : k]2

(c) L is a maximal commutative subalgebra of A.

Along with this criterion, the following is an exercise in using the double centralizer theorem.

Corollary (CFT, 3.6). Let A be a central simple algebra over k. A field L of finite degree over k
splits A iff there exists an algebra B representing the same Brauer group element containing L and
such that [B : k] = [L : k]2.
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We can give some additional information about splitting fields of A.
If A is any CSA over k with [A; k] = n2, there is a variety/k Isom(A,Mn) which represents the
functor

k-algebras→ Sets : R→ { isomorphisms A⊗k R→Mn(R)}.

Indeed, this is easy to represent, since a map of k-algebras is a linear map determined by a
non-vanishing determinant and preservation of the algebra’s structure constants, all algebraic
conditions. The variety is non-empty since it contains at least one k point (all CSAs split over an
algebraically closed field). Furthermore, it can be checked that this is smooth (by Grothendieck’s
functorial criterion for smoothness). Hence, the ksep points are dense. In particular, A-splits over
some finite separable extension.

CSAs and 2-cocycles

This entire section follows Milne’s treatement in CFT almost verbatim.

Let L/k be a finite Galois extension.
Let A(L/k) = {A : A = CSA overkcontainingLof degree[A : k] = [L; k]2}.

By Noether-Skolem, for any σ ∈ GL/K , there exists some eσ ∈ A× such that

σa = eσae
−1
σ for all a ∈ A.(1)

We see that eσeτe
−1
στ = φA(σ, τ) (1) centralizes L and hence lies in L×. Because the multiplication

in A is associative, we easily see that φA : G×G→ L× is a 2-cocycle. Furthermore, it’s clear that
different choices of e′σ lead to a cocycle φ′A which differs from φA by a coboundary. Thus, we get a
well-defined cohomology class.

Claim (CFT, 3.12). The elements eσ, σ ∈ G, are linearly independent over L.

Proof. dimL(A) = dimk(A)/ dimk(L) = n = |G|. Thus, it suffices to show that the eσ are linearly
indepedent.
Let {eσ}J be a maximal L-linearly independent subset. We assume, for a contradiction, that
J 6= G. If τ /∈ J, express

eτ =
∑
σ∈J

aσeσ. (∗)

for some aσ ∈ L. But we compute eτa in two different ways:
First, by the defining property eτae

−1
τ = τa, we have

eτa = τaeτ =
∑
σ∈J

(τa)aσeσ.

On the other hand, by our assumption (*) and the definiting property applied to each eσ, we get

eτa =
∑
σ∈J

aσeσa =
∑
σ∈J

aσ(σa)eσ.

Hence aσ(σa) = aσ(τa) for each σ ∈ J. But aσ is non-zero for some σ ∈ J, whence σ = τ. This
contradicts τ /∈ J.
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Suppose that A and A′ are isomorphic elements of A(L/k). By Noether-Skolem, we can find an
isomorphism f : A→ A′ such that f(L) = L and f |L is the identity map.
Note that if we choose elements eσ ∈ A which satisfy (1)A, (2)A then the elements f(eσ) ∈ A′
satisfy (1)A′ , (2)A′ with cocycle φA. Hence, the cohomology class only depends on the isomorphism
class of A. Furthermore, if L-bases {eσ} ⊂ A and {e′σ} ⊂ A′ both have the same cocycle, then
extending eσ → e′σ by L-linearity clearly gives an isomorphism A ∼= A′.
Hence, we have an injective map

A(L/k)/ ∼=→ H2(L/k).

But this map is surjective too. Given a 2-cocycle φ, we can just define an algebra by (1) and (2).
Namely, let

A(φ) = ⊕σ∈Geσ
with defining relations

eσae
−1
σ = σa for all σ ∈ G, a ∈ L

eσeτ = φ(σ, τ)eστ for all σ, τ ∈ G.

By the cocycle relation for φ, it follows that the above defines a k-algebra.

Fact (CFT, 3.13). A(φ) is a CSA over k. Furthermore, this construction is a group
homomorphism: [A(φ)][A(φ′)] = [A(φ+ φ′)].

This isomorphism is actually functorial:

H2(L/k)
Inf−−→ H2(E/k)

↓ ↓
Br(L/k)

inclusion−−−−−→ Br(E/k)

where the vertical maps are φ 7→ A(φ). Since both the Brauer groups (resp. H2s) are limits under
inclusions (resp. inflation maps) of finite Galois extensions L/k, the above diagram implies that
there is a canonical isomorphism

H2(k)
∼−→ Br(k).

This implies the otherwise unobvious fact that

Corollary. For any field k,Br(k) is torsion. For any finite extension L/k,Br(L/k) is killed by
[L : k].

Proof. The same results are true for cohomology groups.
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Brauer Groups of Local Fields

Usually, the invariant map of local class field theory is constructed by pure group cohomology. We
give an alternate presentation based more directly related to CSAs.

Let D be a central division algebra over non-archimedean local field K, say n2 = [D : k]. Let K
have ring of integers OK , maximal ideal p = (π), and residue field k of size q.
It has a valuation satisfying the usual properties:

• |α| = 0 iff α = 0.

• For all α, β ∈ D, |αβ| = |α||β|.

• For all α, β ∈ D, |α, β| ≤ max{|α|, |β|}.

We define |α| as the scaling effect of right multiplication by α. This is equivalently the absolute
value (in K) of the determinant of right multiplication by x as a map from D, as a K-vector
space, to itself. Then it is clear that the first and second properties from the above list hold. But
the triangle inequality is less obvious.
But this actually reduces to the commutative case.
Indeed, we want to show that if |x| ≤ 1, then |1 + x| ≤ 1. But the way we’ve defined it,

|x| = |NK[x]/K(x)|[D:K[x]]
K .

So we just need to show that if |NK[x]/K(x)|K ≤ 1, then |NK[x]/K(1 + x)|K ≤ 1. But this is a result
that we know to be true of commutative field extensions. Hence, it’s true here too.

Define |α| = (1/q)ord(α), giving the normalized valuation on D.
By the way we’ve defined the valuation, ord extends the usual valuation on any field extension
L/K.
We know that any element x ∈ D is contained in a field extension K[x]/K of degree ≤ n (since
any maximal subfield of D has degree n over K). Hence,

ord(D×) ⊂ n−1Z.
As usual, we define

OD = {α ∈ D : |α| ≤ 1}

P = {α ∈ D : |α| < 1}.
The absolute value is discrete and multiplicative. So, just as in the case of fields, any element π of
largest absolute value generates the two sided ideal P . And any element of OD can be expressed
uniquely as u× πm for some m ≥ 0. Thus, any two-sided ideal can be expressed uniquely as Pm.
In particular, if p denotes the prime ideal of K, then pOD = PeOD for some integer e, the
ramification index. In particular, ord(D×) = e−1Z, implying that e ≤ n.
Also, if |α| = 1 for some α ∈ D, then α ∈ O×D. Hence, j = OD/P is a finite division algebra, and
hence a field. Let f = [j : k]. If j = k[a] and α is a lift of a to OD, then

f = [j : k] ≤ [K[α] : K] ≤ n.

Exactly as in the case of commutative fields, we see that n2 = ef. Note that OD is a free
OK-module of some rank, say m.
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• OD ⊗OK
K = D, so m = n2.

• OD ⊗OK
k = OD/pOD. Thus, n2 = dimkOD/pOD. But we can filter

OD ⊃ P ⊃ ... ⊃ Pe = pOD.

Each successive quotient, of which there are e, has dimension f as a k-vector space. Hence,
n2 = ef.

But since e, f ≤ n the equality ef = n2 implies that e = f = n.

n = [j : k] ≤ [K[a] : K]

Also, we know that the field k[a] = j, so K[α] is an extension of K with residue field j.
But the maximal commutative subfield of D has degree n over K. Thus,

n ≥ [K[a] : K] ≥ [j : k] = n.

Thus K[α]/K has both degree and residue degree n. Thus, K[α]/K is unramified.
Since every CSA is in the same class as some division algebra, we know that every CSA is split by
an unramified extension. Hence,

Br(K) = Br(Kun/K).

The Local Invariant Map

We can use this Brauer group perspective to directly define the invariant map

invK : Br(K)→ Q/Z

and the fundamental class of class field theory.

Any CSA over K is split by some unramified field extension A ⊂ L/K. By Noether Skolem, there
is some α ∈ A× such that

Frob(x) = αxα−1 for all x ∈ GL/K .

We define

invK(A) = ord(α) (mod Z).

But Frobenii are compatible: if L′ ⊂ L ⊂ K is a tower of unramified field extensions, then
FrobL′/K |L = FrobL/K . Thus, this map does not depend on choice of splitting field.
Also, if A/K is split by L and A′/K is split by L′, then A⊗k A′/K is split by LL′.
Furthermore, if Frob(x) = axa−1, F rob(x′) = a′xa, then

Frob(x⊗k x′) = (a⊗k 1)(1⊗k a)(x⊗k x′)(1⊗k a)−1(a⊗k 1)−1.

Thus, we get a homomorphism from CSAs over K to Q/Z. Furthermore, Mn(K) 7→ 0, because it
is already split over K. Thus,
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Br(K)→ Q/Z : A 7→ invK(A)

is a well-defined group homomorphism. The above work we’ve done also easily shows that

Br(L/K)→ 1/[L : K]Z/Z

for an unramified extension L/K.
Here’s the most important example of this:

• Let L/K be an unramified extension of degree n with σ = Frob. Let φ be the 2-cocycle

φ(σi, σj) =

{
1 if i+ j ≤ n− 1

π otherwise.

This is the 2-cocycle of the fundamental class uL/K ∈ H2(L/K). In particular, it maps to
1/n ∈ 1/nZ/Z via the invariant map, inv′L/K , of Galois cohomology.

It has associated CSA A(φ) = ⊕ieiL with mutiplication determined by

eiae
−1
i = σia for all a ∈ L

and

eiej =

{
ei+j if i+ j ≤ n− 1

πei+j−n otherwise.

So in particular, e0 is the identity and L is identified with Le0. But en1 = en−1e1 = πe0 = π.
Hence,

invK(A(φ)) = ord(e1) =
1

n
.

Hence, we have a commutative diagram

H2(L/K)
inv′

L/K−−−−→ 1/nZ/Z
↓ ↓

Br(L/K)
invL/K−−−−→ 1/nZ/Z

.

It commutes because it commutes on a generator φ of H2(L/K). Since the top row is an
isomorphism, so is the bottom row. Hence, we get a canonical isomorphism

invK : Br(K)→ Q/Z

for any local field K.
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Brauer Groups of Global Fields

The following is the fundamental exact sequence of class field theory

0→ Br(K)
∑

v invv−−−−→ ⊕vBr(Kv)→ Q/Z→ 0.

None of the exactness comes easily. In fact, it’s not even immediately clear why the first map is
well-defined, i.e. why is it impossible for infinintely many of the local invariants to be non-zero
simultaneously?
For this, we could return to the variety of ismorphisms Isom(A,Mn). This is a variety over k. If we
spread it out to some ring of S-integers OS, then we’d get a variety V/OS which represents the
functor

OS-algebras→ Sets : R→ { isomorphisms A⊗k R→Mn(R)}.

We could check that this is a non-empty smooth variety. Furthermore, over the residue fields
kv, v /∈ S there is a point. By Hensel’s Lemma, these lift to Ov points. (This is a “reason”, but not
a proof.)

Exactness of the above sequence is the essence of the proofs behind class field theory. For details,
see CFT.
Another miracle happens over global fields (containing a primitive nth root of 1, call it ζ).
We define the Milnor K-group, K2(K) to be K× ⊗Z K

× modulo the relation

u⊗Z (1− u) = 1 whenever u, 1− u 6= 1.

Now, consider the algebra A(a, b; ζ) over K generated by i, j subject to the relations:

in = a, jn = b, ij = ζji.

The Milnor relations are satisfied by the A(a, b; ζ) and so define a homomorphism

K2(k)→ Br(k).

It turns out that

K2(K)/nK2(K)→ Br(K)[n]

is an isomorphism! (Merkuryev-Suslin)
In particular, combining the class field theory exact sequence with this miracle, we see that any
2-torsion element of Br(K) is in the class of a unique quaternion algebra (up to isomorphism).
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