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Let F be a totally real number field and let D be a quaternion algebra over F . Define an algebraic group
G over F by G(A) = (A ⊗F D)× for an F -algebra A. It is easy to see that if F ′/F splits D then GF ′ is
isomorphic to GL(2). Thus G is a reductive algebraic group. We therefore have a theory of automorphic
forms and representations for G. We will look at the basics of this theory in these notes.

To begin with, let us examine the spaces on which automorphic forms are functions. Let f be an
automorphic form on G(AF ). By definition, f is a function G(AF )→ C subject to the following:

• f is left invariant under G(F ).
• f is invariant under a compact open subgroup U of G(AF,f ).
• f is finite under translations by a maximal compact subgroup K of G(F ⊗R).
• f is finite under the center of the universal enveloping algebra of G(F ⊗R).
• f satisfies certain continuity and growth conditions.

For simplicity, let us consider the case where f is invariant under the center Z of G(AF ) and transforms
under K by a one dimensional representation σ, i.e., f(gk) = σ(k)f(g) holds. Then f defines a section of a
line bundle determined by σ on the space

X(U) = G(F )\G(AF )/ZKU.

Our first task is to describe this space.
The most important thing to initially consider about X(U) is the contributions of the infinite places.

At an infinite place v the division algebra D has two possibles behaviors: it can either split or not. In
either case, D×v is a four dimensional real Lie group. If Dv is split then Gv looks like GL2(R) and so its
maximal compact is the two dimensional orthogonal group. We thus find that Gv/KvZv is a copy of the
upper half plane. In particular, it is a one dimensional complex manifold. If Dv is non-split then Gv is the
multiplicative group in the Hamilton quaternions. This group is an extension of the rank 2 unitary group
by R+. Thus Gv = ZvKv and so the quotient Gv/ZvKv is a point. We therefore find

G(F ⊗R)/Z∞K = hn

where n is the number of infinite places at which D is split. This computation is significant for two reasons.
First, we see that the quotient is canonically a complex manifold, so we can make sense of holomorphic
functions on it. And secondly, if n = 0, that is, if D is non-split at all infinite places, then this space is just
a point.

Consider the case n > 0. Since G(F ⊗R) is non-compact, strong approximation gives

G(AF ) = G(F )G(F ⊗R)U

and so the usual computation show that

X(U) = Γ(U)\hn

where Γ(U) is the arithmetic group obtained from intersecting G(F ) and U . (This assumes something about
U : the norm map U →

∏
Gm(OF,v) is surjective. For a general U , X(U) will not be connected but will have

finitely many connected components, each of the above form.) Thus X(U) is a complex manifold obtained
as the quotient of n copies of the upper half plane by the action of a totally discontinuous subgroup. When
n = 1 (and F 6= Q) these spaces are called Shimura curves. In contrast to the modular curves, they are
compact — no cusps need to be added to obtain a compact space.

Now consider the case n = 0. Strong approprixmation no longer applies to G(F ⊗R) since this group is
compact. However, we do not really need to use strong approximation. Since KZ contains all of G(F ⊗R)
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we can completely ignore the infinite places. We find

X(U) = G(F )\G(AF,f )/ZfU.

Since U is a compact open subgroup of G(AF,f ), this quotient is discrete. In fact, it is a finite set; this
follows from it being discrete and having finite volume. Thus in this case, automorphic forms on D are
simply functions on a finite set. There are therefore no continuity or analytic conditions placed on the forms
— they are just functions on a finite set!

We did not consider the most general possible set-up. One does not need to assume Z-invariance: one
can allow f to transform under Z by a character. Also, the representation σ of K, which plays the role of
the weight, does not have to be one dimensional. (One must then take f to be vector valued.) The rank
two unitary group has irreducible representations of all dimensions, so when D is non-split at infinite places
one might want to consider such representations of K.

We now change directions and consider automorphic representations of G(AF ). Such a representation
decomposes as a tensor product ⊗πv over the places of F , where πv is an irreducible admissible representation
of Gv. For almost all places, Dv is split, and so Gv is isomorphic to GL2(Fv). The local invariants (such
as conductor, L-series and ε-factors) at these places are defined as usual. We now consider a place v at
which Dv is non-split. The group Gv is compact modulo its center. This implies that the representation
πv is finite dimensional. The maximal compact subgroup Kv of Gv has a natural filtration K

(n)
v obtained

by looking at the group of elements congruent to 1 modulo powers of the maximal ideal. There is a unique
minimal n such that πv contains K(n)

v in its kernel. The number n + 1 is called the conductor of πv (or
perhaps the exponent of the conductor). The prime power pn+1

v is the local contribution of πv to the level.
Note that this exponent is never 0 — even when πv contains the full maximal compact subgroup Kv in
its kernel the conductor is 1. The reason for this will be evident later — suffice it to say for now that the
Galois representations coming from modular forms on a quaternion algebra are always ramified where the
quaternion algebra is, so these places should appear in the conductor.

We can additionally attach local L-functions and ε-factors to πv. This goes quite similarly to the GL(1)
case (Tate’s thesis). For a Schwartz function φ on Dv one considers the integral

Z(s, φ, πv) =
∫

Dv

φ(x) trπv(x)|x|s+···dx.

The elipses in the exponent is a normalizing factor, which is not important for the present discussion. One
then finds that there is a unique Euler factor L(s, πv) such that the quotient

Z(s, φ, πv)
L(s, πv)

is an entire function of s and for some choice of φ is equal to 1. Furthermore, there is a functional equation

Z(1− s, φ̂, π∨v )
L(1− s, π∨v )

= ε(s, πv, ψv)
Z(s, φ, πv)
L(s, πv)

.

Here ψv is a non-trivial additive character of Fv, φ̂ denotes the Fourier transform of φ with respect to ψv

and π∨v denotes the contragredient of πv. The factor ε(s, πv, ψv) is of the form s 7→ abs. The base b of this
exponential is equal (or almost equal) to the conductor of πv.


