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1. SOME NOTATIONS.

Let = {z € C;3(z) > 0} be the Poincaré upper-half plane.

Let k£ and N be two integers, and, as usual, I'g(N) be the subgroup of
SL(2,Z) of matrices whose lower left entries are divisible by N. It acts on
9 by fractional linear transformations: [‘é Z} cz = ZZZIZ .

Let x be a Dirichlet character modulo ¢: it defines a character on I'o(V),
by evaluating x at the upper left entry. It will be convenient to define

x(n) = 0 if the integer n is not coprime with N.

If X is a finite set, | X| denotes its cardinality; we reserve the letters p, ¢
for prime numbers, and n, m for integers.

The letters K, E,k (resp. K)) denote fields (resp. the completion of K
with respect to the valuation associated to A), and O, O, stand for the
rings of integers of K, K in the relevant situations.

The set of adeles of Q is denoted Aq, and for a finite set of primes S

containing oo, one denotes Aq g = H Q, X H Z,. The finite adeles are
veES vegS
denoted Ay.
For a complex number z, the notation e(z) stands for exp(27iz).

The notation f(z, A) <4 g(z) means that for any A, there exists a real
number C'(A) such that for any z, |f(z, A)| < C(A) - |g(x)|; if one adds “as
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x — o0”, it means that the last inequality holds for z > x(A) for some
real number x(A). In the same spirit, the notation f(x) = 0z—z,(9(z))
(resp. f(z) = Oz—z,(g(x))) means that the quotient f(x)/g(x) is defined in
a (pointed) neighbourhood of z¢, and that |f(z)/g(x)| tends to zero (resp.
stays bounded) when x tends to xg.

Some spaces of funtions: let X be a locally compact Hausdorff space.

e C.(X) is the space of continuous compactly supported complex valued
funcions.

o C°(X) denotes the subspace of smooth functions in the latter (when
X is a manifold, this means “locally constant” if the manifold is
totally disconnected).

2. MODULAR FORMS
2.1. For any holomorphic function f defined on $ and v € T'o(N), we
define:
fi,(2) = x(0) ez +d) " f(y - 2)
Consider the following properties:

(M1): For any v € I'g(N), f, = f. This implies, by Fourier analysis, that

for any o € SL(2,Z), there exists a positive integer h(c) (with h(I) = 1)
such that one has an absolutely convergent decomposition:

f,(2) = Y ealfs 0)e(nz/h(0))
neZz

The holomorphy at 700 is then expressed by:

(M2): For any o € SL(2,Z), c,(f, o) = 0 for all negative n.
“Cuspidality” is:

(M2'): For any o € SL(2,Z), ¢,(f,0) =0 for all n > 0.

2.2. The space of modular forms of weight &, level ¢ and nebentypus x
is the set of holomorphic functions satisfying (M1) and (M2) above; the
subspace of modular forms satisfying (M2') as well is called the space of
cusp forms, noted Si(N, x). The latter is finite dimensional (as is the first),
and equipped with the Petersson inner product, invariant under the group
action (it is a quotient of a Haar measure on $ = SO2(R)\SL2(R)):

_ . ———— pdzdy
(f.g) = /F g TG

Note right now that by taking v = —I, (M1) gives f(z) = (—1)*x(=1)f(2),
so if x and k don’t have the same parity, the space of modular forms is {0};
we shall exclude this case.



MODULAR FORMS AND AUTOMORPHIC REPRESENTATIONS

2.3. Hecke operators. On the space of modular forms of weight k and level
¢, one has the so-called Hecke operators, defined as follows. Let n > 1 be an
integer, and let Ag(N) = {y = [2}] € Ma(Z) : det(y) > 0,N|c, (a,N) =
1}. For a € Ag(N), one defines first:

Ta(f)(2) = det(a)* " x(a) " ez +d) " f < i 2)

To define the level n Hecke operator, one considers the set {a € Ag(N)
det(a)) = n} on which I'g(IV) acts on the left. One proves that one can write
it as a finite disjoint union L;I'g(N)a;, and one defines:

Ta(f)(z) = ) (To; f)(2)

More explicily, one has:

{aeAg(N) s det(@)=n}= ] |J To(N) [g Z]
ey 0SSt
(a,9)=1

from which one deduces (x(a) = 0 if a and N are not coprime):

T(f)() = bt Y x(a)d—’ff(“zjb)

ad=n

a>0
0<b<d-1

With this definition, one sees easily that the T,,’s preserve the modularity
and cupsidality. One can then give the action of the Tj,, for p prime, on
the Fourier expansion of a modular form (but the modularity is hardly seen
from this expression):

o If (p, N) = 1, T,(f)(2) = 32, cpn(f)e(nz) +x(p)p" ! 32, cnlf)e(pnz)

— p is called a good prime.

o If p|N, T,,(f)(2) = >, con(f)e(nz) — p is a bad prime.
The Hecke operators preserve the space of cusp forms; the Hecke operators
at good primes all commute, and are normal with respect to the Petersson
inner product. These important facts are explained in Miyake [M], as are
the multiplicativity relations. In particular, if f is an eigenfunction for
all the Hecke operators at good primes, with eigenvalues {a,(f)}, one has
cp(f) = cr(1)ap(f) at good p. To diagonalize further the Hecke operators,
and get a good definition of L-series, it is necessary to introduce

2.4. Newforms and oldforms. Suppose x defines a Dirichlet character
modulo N’, for N'|N. For any cusp form g in Si(N’,x), one checks easily
that z — g(dz) defines an element of Si(N, x), for any d|(N/N’). Let

SN, x) = U {z—9(d2) :+ geS(N',x)}
X factors through N'|N
d|(N/N")



D.TROTABAS

be the space of oldforms, and let
SEV(N, x) = SPUN, 0+

be the space of newforms (it may be zero!). Then it can be shown that
the whole Hecke algebra (i.e. including bad primes) can be diagonalized
on the space of newforms. The primitive Hecke eigenforms (those with
c1(f) = 1) have pairwise distinct systems of eigenvalues outside a finite
number of primes (“multiplicity one”, well explained in the adelic setting
by Casselman [C], cf. Gelbart [G] as well). Their L-series have an Euler
product, absolutely convergent if (s) > 1+ k/2:

Lis, f) =Y a’;ff) — 126 1)

n

with

Lis o) = (1 —ap(fp™" + X(p)pk123> !
) <1 o f)ps> i <1 —az2(p, f)p3> -

at a good prime p, and

L(s, fy) = (1 - ap(f)ps> h

at a bad prime, along with an analytic continuation (easy to see with the
Mellin transform), functional equation — cf. Bump [Bu], Miyake [M], Iwaniec
[1], etc.

When one proves a theorem, one can often reduce it to the case of new-
forms, thanks to this decomposition.

2.5. Ramanujan conjecture. Let f be a primitive newform. The Ra-
manujan conjecture is the following inequality:

lap(f)l < 2p'7

for good p, which is equivalent to |a;(p, f)| = p%. It has been a theorem
for 35 years now, proven by Deligne for weight greater than two. In the case
of bad p one can compute the possibilities for a,(f) rather explicitly (see

[M]).

2.6. Rationality properties. Let f € Si(N, x) be a eigenform for all the
Hecke operators at good primes, with Hecke eigenvalues {as(p)},n. Then:

Q(f) :== Q(as(p),x(p) : p /N)

is a finite extension of Q, and all the Hecke eigenvalues are integers in this
extension. If the nebentypus is trivial, then this extension in totally real.
Serre explains all of this in terms of arithmetic geometry in his Durham
lectures.
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2.7.  An interesting problem is the evaluation of the dimension of the space
of cusp forms, when one or more of the parameters (k, N) vary. For instance,
using Eichler-Selberg trace formula one can prove that (see Knightly-Li [KL]
theorem 29.5):

%w(zv) + O(Nl/QT(N))

uniform in k£ > 2 and N, where (N) = ¢[],y(1 +p7!) and 7(N) is the

number of divisors of .

(1) dim(Sk (N, x)) =

Similarly, one can bound the dimension of the space of newforms using the
Petersson trace formula (Iwaniec-Luo-Sarnak [ILS]), and one has a uniform
estimate for N squarefree, k > 2:

k—1

@ dim (S (N, ) =

o)+ 0( (kN7
with o(N) = q[[,ny(1 - p~ 1) the Euler phi function.

3. REPRESENTATION THEORY

If G is a locally compact group, V' a complex topological vector space (C
is endowed either with the discrete or the euclidean topology), a represen-
tation of G in V is a group homomorphism p : G — Aut(V'), such that the
mapping (g,v) € G X V — p(g)v € V is continuous. One says: “(p,V) is
a representation”, or simply “let p be a representation”. But this notion
is not sufficient in applications: if G is an algebraic group (over Q say),
then G(R) has a natural structure of a Lie group in which case the notion
of (g, K)-module is important. On G(Q) for p > 2, one is led to consider
also “smooth” representations. On G(Aq), the notion of “automorphic rep-
resentation” has at least three interpretations. The point of this section
is to provide some background and references on this topic. We chose to
minimize the amount of references, but all that follows can be found in any
serious book on the subject.

3.1. Let $ be a Hilbert space. A unitary representation is a representation
(p, %) such that p(g) is unitary for any g in G. Examples:

(1) Given f € L*(G) (dg here is a right Haar measure), put

R(g)(f)(h) == f(hg)

Then (L?(G), R) is a unitary representation of G, called the right
regular representation. Indeed, let fi, fo € L*(G), =,y € G. As
IR(=) i = R(y) fall2 < 11 = folla + [|1R(zy ™) f2 = fall2, it suffices to
prove that for any f € L?(G):
lim [ R(@)f — s = 0
)
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By using exactly the same argument, and approximating f with
compactly supported continuous ¢, it suffices to do it for ¢ instead
of f, and this is trivial.

One can extend this idea to the general situation, and prove using
the uniform boundedness theorem that if for any v in a fixed dense
subset of $ and w € $), the mapping g — (p(g)v,w) is continuous
then p is a representation: see [Wal] lemma 1.1.3, [War| proposition
4.2.2.1, [Ro] chapter 13.

(2) With exactly the same proof, the right action of G on L?(H\G) (H is
a closed subgroup of G, both of which are unimodular say) provides
a representation.

(3) If G is compact, and (p, $) a representation, one can show that one
can put an inner product on ), without changing the topology, so
that p becomes unitary: see lemma 1.4.8 of [Wal] (the idea is to
average over G the inner product of course).

One says that (p, ) is irreducible if $ has no closed nontrivial G-invariant
proper subspaces. When a representation is not irreducible, it may (or
may not) be a Hilbert sum of irreducible subrepresentations. Two unitary
representations (p, 9), (o', $') are equivalent if there exist a G-equivariant
linear homeomorphism between $ and $’: it can be shown that such an
isomorphism can be chosen to be an isometry (cf. [Bo2], 5.2). Note that if
(p,$) is an irreducible unitary representation of G, then span(p(g)v : g €
() is dense in $). This implies that the Hilbert dimension of § is less than
card(G), and therefore the set of unitary irreducible representations of G up
to equivalence (or isomorphism) is a well defined object: it is denoted G.

THEOREM 3.1 (Schur’s lemma). If (p, 9) is irreducible, then Homg($, H) =
Cldg. Furthermore, if (p',$)') is another (not necessarily irreducible) uni-
tary representation, then any nonzero element of Homeg (9, ') is a positive
real scalar multiple of an isometry.

Reference: [Wal] section 1.2, [KL] proposition 10.14.

APPLICATION: Let Z denote the center of G, and let (w,$) denote an
irreducible unitary representation of G. Then Schur’s lemma implies that
the action of Z on $) is by a unitary character; i.e. there exists a continuous
character w; : Z — S! such that 7(2)z = wy(2)x for any x € $: this is
called the central character of .

REMARK: Let (9, (-,-)) be a Hilbert space. A convenient way to check
that a unitary representation (p, ) is irreducible is to prove that any G-
invariant continuous inner product (-,-), on $ is a multiple of (-, -). Indeed,
if p contains a nonzero invariant closed proper subspace ¢ then under the
decomposition § = Hy b 57)3- we can change the inner product on 57)3- by
positive scalars while leaving the one on $)¢ unchanged and this preserves
the G-invariance property. But such a modification inner product on § is

clearly not a scalar multiple of the given one, so no such $g exists.
6
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Conversely, if (p, $) is irreducible, and (-, -), is a G-invariant inner product
on $), let $ be the Hausdorff completion of (%), (-,-),): the natural embed-
ding (9, (-,+)) — (9, (-, -)5) is continuous, G-equivariant, with dense image.
By Schur’s lemma, it is a scalar multiple of an isometry: this proves our
contention.

LEMMA 3.1. Let (p,$) be a unitary representation of G, and let ' be a
closed G-invariant subspace. If (p,$) is a Hilbert sum of irreducible repre-
sentations, then so are (p,9') and (p,H/9’).

PrOOF: Using duality and/or orthogonal complements, it suffices to treat

H/9'. Let’s write:
9 =P

i€l
where §); is an irreducible closed G-subspace of §) (the set of index I is at most
countable if §) is separable, which will be the case in all our applications).
We can also assume $) /f)’ £ 0.

The projection p onto $/9’ is G-equivariant, so /9’ is spanned (in the
Hilbert sense) by the p($);) (i € I). In particular, some p($);) is nonzero.
But this projection is a closed G-invariant subspace of /), so the set 2" of
collections of pairwise orthogonal closed G-invariant irreducible subspaces of
£/’ is non-empty. By Zorn’s Lemma there is a maximal element in 2", and
the corresponding Hilbert direct sum is a closed G-invariant subspace W of
/9. We just have to rule out the possibility that it is a proper subspace.
If so, then clearly its orthogonal complement (in $)/$’) contains no closed
irreducible G-invariant subspace, so by replacing $’ with the preimage in
corresponding to W we arrive at the case when the nonzero $/$’ contains
no irreducible G-invariant closed subspaces. It has already been seen that
such a situation cannot occur. QED

3.2. In some common situations, unitary representations are Hilbert sums
of irreducibles representations: this is the content of the next theorems.

THEOREM 3.2. Let G be a compact group. Then any unitary representation
is a Hilbert sum of irreducible representations. Furthermore any irreducible
representation is finite dimensional.

References: [Wal] prop. 1.4.1 and 1.4.2; [Ro] chapter 5 or the excellent [BR]
chapter 7 for instance.

REMARK: Let (p, $)) be a unitary representation of G, and K be a compact
subgroup. One can therefore write:

9 =P
i€l
where each §; is a K-irreducible closed subspace of ). This decomposition

is not unique (think of the trivial representation, for which any Hilbert basis
7
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provides such a decomposition), and two $);’s may be unitarily K-equivalent.
One usually rewrites the decomposition as follows: for each (isomorphism
class of) irreducible representation 7 of K , let I; be the set of i € I for
which (p| ., $;) is equivalent to 7. The cardinal number m, = card(I;) is the
multiplicity of m in py,.: by Schur lemma, this cardinal number is independent
of the decomposition we started with. One writes $(7) = @,y H:i = Mmarp,
and the above Hilbert sum is written:

H = @f}(’ff) :@mﬂr.

rek TeK

One says that p is K-admissible if m, is a finite cardinal for each 7w € K.
We’ll see later on that any irreducible unitary representation of a con-
nected reductive group is admissible (for K a maximal compact subgroup
in the archimedean case, and maximal compact open subgroup in the non-
archimedean case).

3.3. The next examples require the use of the integration in topological
vector spaces. A thorough treatment can be found in Bourbaki, Integration,
chap VI, §1,2 and chap VII, §2 for the application on representations; [War]
section 4.1.1; [Ro] section 6 for some comments. Let (m,)) be a unitary
representation of a locally compact group G (so ) is a Hilbert space, though
to integrate continuous vector-valued functions it suffices to assume that
is locally convex and quasi-complete). Let f € C.(G), v,w € $), one can
consider the absolutely converging integral:

lo(w) = /G £(9) {m(g)v, w) dg

The mapping w — [,(w) is continuous and linear, therefore by Riesz’ repre-
sentation theorem it defines an element of §) denoted

w(f)o = /G f(g)m(g)vdy.

It is clearly linear in f and v, continuous as ||w(f)v| < [|f]l1]|v|| and can
be extended by density to L'(G) (actually even to the space of compactly
supported complex measures, cf. Bourbaki): in particular, one checks easily
that f € LY(G) — n(f) € End($) is a continuous homomorphism of Banach
algebras.

REMARK: It is sometimes convenient to consider a continuous function f
whose support is contained in a compact subgroup K of G. If K is negligible
in G, then 7(f) as defined above is zero. However, the same arguments shows
that the integral [} f(k)m(k)vdk is absolutely convergent: by an abuse of
notations, we will denote this integral 7(f)v. As soon as the Haar measures
are suitably normalized, this defines the same operator in the case K is also
open, so we hope this won’t cause any confusion.

8
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THEOREM 3.3. Let (m,9) be a unitary representation of G. Assume the
existence of a delta-sequence (fp)nen in Co(G), i.e. satisfying:

supp(fu41) C supp(fn), [ ] supp(fn) = {e}

n>1
Vn €N, Vg € G, fulg) = fulg™)s fu > o,/an —1

such that the operator w(fy) is compact for all n. Then (m,$9) is a Hilbert
sum of irreducible representations, each occuring with finite multiplicities.

References: [Wal] proposition 1.4.1, [L] I §3. Note that the invariance of
the f, under g — g~ ! insures that 7(f,) is self-adjoint: the proof uses the
spectral decomposition of such operators.

REMARK: This theorem is fundamental in the theory of automorphic forms:
the most common proofs that the space of cusp forms splits as a sum of
irreducible representations is based on it — though Jacquet-Langlands seem
to have a purely algebraic proof of this fact.

REMARK: Let G be a locally compact group. One says that G (actually its
stellar algebra: see [Dix], 13.9) is liminal if for any (7, §)) irreducible unitary
representation of G, and any f € C.(G), 7(f) is compact. We’ll see later
that all reductive groups over locally compact fields are liminal, and to what
extent this plays a role in the tensor product theorem.

THEOREM 3.4. Let G be a locally compact group, K a compact subgroup of G,
and (m,9) a unitary representation of G. Assume that 7 is K-admissible.
Then there exists a delta-sequence satisfying the condition of the previous
theorem, and therefore (m,$) splits as a Hilbert direct sum of irreducible
representations.

PROOF: (cf. [Bo2], 5.9 corollaire) If p € K occurs in 7, denote its character
Xp: by hypothesis 7(x,) is compact. As any central function f of K is a
uniform limit of linear combinations of characters (cf. [Ro|, 7.1, proposition),
so m(f) is compact as well (the subspace of compact operators is closed
in End($)) for the topology of uniform convergence on bounded sets). To
conclude, one uses a delta-sequence made of central functions (by averaging
over K of course), and one applies the previous theorem. QED

4. THE CASE OF REDUCTIVE GROUPS

In this section, let G be a reductive algebraic group over a local field F'
(say F'=R or Q) for some prime p). One denotes g its Lie algebra. Let K
be a compact subgroup of G(F') such that:

e if F'is archimedean, K is a maximal compact subgroup of G(F') (e.g.
K =03R)if G=GLy, F =R)
e if F' is non-archimedean, K is open (e.g. K = GL2(Z,) if G =
GLy, F=Q,)
9



D.TROTABAS

THEOREM 4.1. Let (7,$) be an irreducible unitary representation of G(F).
Then (m, ) is K-admissible.

References: for F' archimedean, cf. [Wal| theorem 3.4.10, [Bo2] théoréme
5.27. In the non-archimedean case, it is quoted by Cartier in [Cor| and it
is discussed in the unpublished notes of Garrett [Gal]. As we are mainly
interested in the case of G = GL(2), refer to [Su| theorem 5.1. for the real
case, and to [BH] in the p-adic case, where the smooth representations are
completely classified — so that one is left to observe the admissibility.

COROLLARY 4.1.1. Let (m,9) be an irreducible unitary representation of
G(F), and f € Cc(GQ). Then w(f) is compact.

References: Théoreme 5.27 in [Bo2] for the real case. In the p-adic case,
C(@Q) is dense in C.(G) (for its natural inductive limit topology, stronger
than the uniform convergence): as the subspace of compact operators is
closed in End(9), it suffices to prove the claim for f € C(G). But for
such an f, it is immediate that one can find a compact open subgroup K
of G such that f(kgk™') = f(g) for any g € G, k € Ky, in which case one
concludes as in the proof of theorem 3.4.

REMARK: This proves that the (stellar algebra of) reductive groups are
liminal, as claimed above.

Before we state the next corollary, which will be useful in our discussion
of the tensor product theorem, let’s recall that given two Hilbert spaces
91, 92, the bilinear map induced by

(21 ® 22,91 ® y2) = (T1,91); (T2, Y2)y

provides 1 ® H2 with a non-degenerate inner product, whose completion
is denoted $;®99: cf [Bour-EVT], chap V, §3, No 1 and 2. Let G1,Go
be two locally compact groups, and let (m;,$;) (i = 1,2) be two unitary
representations. Then T &7y denotes the unitary representation of G; X G2
on ;299 deduced from the representation on the pre-Hilbert space $1®52,
itself induced by:

(71 ® m2)(91, 92) (21 ® 22) = M1 (91)71 @ M2(g2)T2.

Let’s briefly justify this is a unitary representation: first, for any ¢g; €
G1,92 € Ga, the operator m1(g1) ® m2(g2) is unitary ([Bour-EVT], V, &4,
No 1, proposition 3 and the paragraph following proposition 2); as for the
continuity, given that G = G x G2 acts by unitary operators, it suffices
to prove that the mappings g € G — 7(g)v are continuous for v in a total
subset of 9189, (cf [War] section 4.1.1 page 219): if we take this total
subset to be {z1 ® 3 : x1 € H1,22 € H2}, our contention is clear.

It is easy to see that 1@y is irreducible if 1,y are. Indeed, let Q) be
a (G1 X Gg-invariant continuous inner product on $1®$2. Fix two nonzero
vectors xg,ys € $2: then the inner product on $); defined by (z1,y1) —

Q(z1 ® x2,y1 ® y2) is continuous and Gi-invariant, so is equal to (-,-); up
10
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to some constant by irreducibility of m1. One determines the constant the
same way, by varying xo, 2. Conversely:

COROLLARY 4.1.2. Let Gy, G2 be two reductive groups over two local fields
(maybe distinct). Then any irreducible representation © of G = Gy x G is
equivalent to a representation of the shape m ®msy, with 71, me irreducible.

Reference: [Dix| proposition 13.1.8, where it is proven that if at least one of
G1, G are of type 1, then the conclusion holds (see also [GGP] appendix to
chapter 2 and [Ro], section 20). It can be shown (cf. [Dix], theorem 5.5.2
and 13.9.4) that a group is of type 1 as soon as its stellar algebra is liminal,
which is the case here, by the corollary 4.1.1.

REMARK: The previous corollary was stated only in the case of reductive
groups: it is of course true in the generality of type 1 groups, as the references
justify it.

4.1. Smooth vectors and (g, K)-modules. References: [Bu] chapter 2,
[Wall], and [Wal] chapter 3. As we mentionned earlier, there are also more
algebraic counterparts of representation theory. In the case of archimedean
Lie groups, (g, K )-modules play an important role. Let G be an archimedean
reductive Lie group, g its complex Lie algebra, K a maximal compact sub-
group.

One can attach canonically to g an associative unitary algebra U(g) called
the (complexified) universal enveloping algebra, which gives rise to differen-
tial operators acting on C2°(G). We will denote 3 the center of U(g) (if G is
of inner type, this is also the set of elements z in U(g) such that Ad(g)z = 2
for any g in G, cf [Wal] 3.4.1: this is the case for GL,(R)), which is finitely
generated, and generalizes the Laplace-Beltrami operator: cf [Wal] section
0.4.

A (g, K)-module is a complex vector space V' (without topology), together
with

e a structure of a K-module, continuous in the following sense: if
v € V, then there exists a finite dimensional subspace W, such that
Kv C W, and the mapping K — Aut(W,) is continuous (therefore
analytic),
e a structure of a g-module,
such that:
(1) k- X -v=(Ad(k)X) - k-vforke K, X eg,veV,
(2) %(exp(tX)v)‘tzo = Xv for v € V and X in the Lie algebra ¢ of K.
In these conditions, one can prove that V' is a semisimple K-module (cf.
[Wal] lemma 3.3.3). The (g, K)-module V is admissible if the p-isotypic
subspace V (p) is finite-dimensional for any p € K.

FUNDAMENTAL EXAMPLE: Let (7, $)) be a unitary representation of G. Let
$H*° be the subspace of smooth vectors (i.e. the vectors v € $ such that

g € G — m(g)vissmooth). The real Lie algebra gr acts on H>° by dn(X)v =
11
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%(exp(tX)v)h:OT, hence an action of g. Garding’s theorem states that $H>°
is dense in $ (exercise: use a d-sequence of smooth functions to prove it,

cf [Wal] section 1.6). Write = @pef{b(p): one can prove that $H> N

$H(p) is dense in H(p) for any p € K. Define g := @peg(ﬁ(p) N $H>°).
Then $Hi is stable under the action of K, g, satisfies the aforementioned
compatibilities and is called the (g, K)-module associated to the unitary
representation (ﬂ,.?_)). By construction, g is dense in £. One can prove

that $x is irreducible (=contains no algebraic submodule) if and only if
the representation 7 is (topologically) irreducible, thanks to this density: cf.
[Wal|, theorem 3.4.11 — this uses the admissibility of 7.

REMARK: Note that if (7, $) is admissible, as $°° N H(p) is dense in H(p),
it must be equal to it. This implies that given an irreducible (necessarily
admissible) unitary representation of a reductive group G, its associated
(g, K)-module is actually @pef{ $H(p), and that the K-finite vectors of §) are
smooth.

REMARK: A (g, K)-module does not afford a representation of G. However,
one can define an “extension” of G, called the Hecke algebra and denoted
He, such that (g, K)-modules correspond naturally to Hg-modules: see [Bu]
proposition 3.4.4.

REMARK: There is a version of the Schur lemma for irreducible (g, K)-
modules: cf [Wal] lemma 3.3.2. One can say a bit more in the case of
an irreducible unitary representation of G(R) for reductive G: the center
of the universal algebra 3 acts on $°° by a character (here this means an
homomorphism of C-algebras x : 3 — C), this is the content of lemma 1.6.5
of [Wal].

REMARK: The complex conjugation on g extends to an conjugate-linear
anti-automorphism on U(g) (cf [Wal] 1.6.5) denoted x — x*. The proof of
lemma 1.6.5 (ibid.) implies that if z € U(g), then for any v,w € §, with
(7, $) unitary representation of G, (dn(x)v, w) = (v, dr(z*)w). In particular
if x = x*, then dr(x) is self-adjoint. This applies to the Laplace-Beltrami
operator A of SLy(R) acting for example on L?(SLo(Z)\SL2(R)), giving
a representation-theoritic proof of such self-adjointness in this case, usually
proved by Green’s identity, cf [Bu] section 2.1.

REMARK: About K and 3-finiteness, useful in the context of automorphic
forms. If (7, §) is a unitary representation, a vector v is K -finite if m(K)v is
finite dimensional: this makes sense for any vector in the representation. If v
is a smooth vector, then v is 3-finite if dm(3)v is finite dimensional. However,
it is technically important to define it for non-smooth vectors as well: this is

fThe limit in consideration is with respect to the norm of $: when $) is a space of
functions, the derivative can also taken with respect to the pointwise convergence, which
may not be coherent with the latter. For instance, the smooth vectors in L2 (R) is not
C=(R)!
12
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way distributions play an important role in the theory of automorphic forms,
often implicitly. In this context, a vector v € $) defines a (vector-valued)
distribution Ty, : C°(G) — $ by:

Ty(p) = /G ¢(g)m(g)vdg.

One says that v is 3-finite (as a distribution) if span{zT,, : z € 3} is a finite-
dimensional subspace of $)-valued distributions, where x7T, is the distribution
defined for « € U(g) by:

(2T) () == /G (% #)(9)n(9)dg.

(Here and below, for x € U(g) the notation ¢ * & denotes the action of z on
C° (@) arising from the action of g via differential operators.) Note that if v
is smooth then T, = Tyr(,), and that in the case where (7, ) is the right
regular representation of L?(G), f € L?(G) is 3-finite in the above sense if
and only if the real valued representations ¢ — [, (p*Z2)gf(g)dg span, when
z varies in 3, a finite dimensional subspace of (real valued) distributions (by
using the right regular representation on C°(G)).

4.2. Smooth representations of non-archimedean groups. References
[BH] chapter 1, [Bu] chapter 4 for a thorough discussion of this topic. This is
the p-adic counterpart of the preceeding paragraph. Let G be a totally dis-
connected locally compact group, K an open compact subgroup. A smooth
representation of G is a vector space V together with an group homomor-
phism 7 : G — Aut(V) such that

(1) any v € V is smooth, i.e. the subgroup {g € G : w(g)v = v} is

compact and open in G.

In this situation, the restriction of the representation 7w to K is semisimple
(cf. [BH] lemma 2.2). It is said to be admissible if furthermore the space of
K-fixed vectors V¥ is finite dimensional: this implies that one can write

V=V

peR
where each V(p) is finite-dimensional.

FUNDAMENTAL EXAMPLE: Let (7, ) be a unitary representation of G; de-
note by $H°° the subspace of smooth vectors in ), which is stable under G.
Then the corestriction of m to $*° is a smooth representation of G.

Note that $°° is dense in $): indeed, if v € V', then 7(f)v € $H*> for any f €
CX(G). Let € be the filter generated by open and compact neighbourhoods
of the identity and let f. be the characteristic function of ¢ € €: then
m(f)v —¢ v, as claimed. This density implies that given an admissible

unitary representation (, §)), then (7, $) is irreducible if and only if (7, H°°)

is algebraically irreducible.
13
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REMARK: Smooth representations of G are in one-to-one correspondence
with smooth representations of the Hecke algebra of G: cf [BH] section 1.

CASE OF GL9: SPHERICAL REPRESENTATIONS. Here F denotes a non-
archimedean field, and Of its integers with maximal ideal pp, @ a uni-
formizer and g the cardinality of the residue field. As we mentioned ear-
lier, the smooth irreducible representations of GLo(F') are classified (up to
equivalence), and fall into three families: principal series, special represen-
tations and supercuspidals (see [BH]) . We will need later a few facts on
unramified representations (as defined in the following result):

THEOREM 4.2. Let (7, V') be a smooth irreducible representation of GLa(F')
which is unramified in the sense that it contains nonzero spherical vectors;
1.e.,

VGL20r) .— {4 e V 1 w(k)v = for all k € GLy(Op)} # {0}

Then (mw,V') is equivalent to an unramified principal series representation,
and furthermore the space VEL2(OF) is one-dimensional.

This means that m = (1, x2) for some unramified quasi-characters of
F*. The one-dimensionality result comes from the fact that the spherical
Hecke algebra is commutative (cf [Bu] theorem 4.6.2)

A natural question is, given a unitary irreducible representation 7 of
GLy(F), how to determine the characters yi, x2 from 7: this leads to the
introduction of Hecke operators in this local setting.

First of all, an unramified quasi-character y of F' can be written y(x) =
|z|t, for some t € C (uniquely determined modulo 2i7wlog(qr)~'Z). As it
is known that m = (1, x2) and m = 7(x2, x1) are unitarily equivalent, it
suffices to determine the set {q};1 , q}? of complex numbers (here the t;’s are
actually imaginary, as the quasi-characters 1, x2 are unitary). By looking
at the central characters, one has for any x € F*:

wr(x) = x1(7)x2()

so this gives a condition on qﬁ} qﬁ%.

To determine completely our set, it suffices to get a condition on the sum
qﬁ% —i—q?. Let ¢( denote the characteristic function of the (compact and open)
subset GL2(Op)[% 9] GL2(Op); then for any vector v, m(¢o)v is spherical
(if non-zero). Thus, in our setting, if one denotes vy a non-zero spherical
vector in m(x1, x2), m(®o)v and v are colinear, more precisely — and this will

end our discussion:

1/2
w(go)v = g 2 (g% + ¢2)o.

For a proof, see for example [Bu| proposition 4.6.6: the standard notation for
the operator 7(¢g) is T'(pFr) or Ty, — we'll see later that the Hecke operators
introduced in section 2.3 “correspond” to these T'(pr)’s once the adeles are

introduced.
14
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5. THE ADELIZATION OF A MODULAR FORM AND ADELIC HECKE
OPERATORS

In this section, we use the same notation as in section 2.

If G is an algebraic group over Q (we’ll use G = GLs only), we’ll denote
9 = (gv)v<oo an element of G(Aq). Given a place v of Q, and an element
g € G(Qy), we'll denote also g, the element of G(Aq) whose component at
v is gy, and at w # v is 1. We'll denote sometimes g; the “finite” part of g
(i.e. (9f)oo =1 and (gf)p = gp for p prime). For G = GLy, we recall that a

maximal compact subgroup of G(Aq) is K = [[,<., Kv, With Ko = O2(R)
and K, = GLy(Z,) for p prime; the center of G(Aq) will always be denoted
Z(Aq). If N € N, we'll denote Ko(XN) the subgroup of Ky made of matrices

whose lower left entry is in IV Z (so the component at infinity is 1).

5.1. From a classical modular form to an automorphic form on
GLy(Aq).

References: [KL] section 12.2, [G] §3, [Bu] section 3.6, [BCSGKK] section
7.

Let f be a modular form of weight k£, nebentypus x and level N. The
Dirichlet character y is associated with a finite order idele class character
of AG/Q* denoted wy called the adelization of x: see [KL] section 12.1 for
its construction. The strong apprimation theorem states that:

GL3(Aq) = GL2(Q)GLJ (R)Ko(N).

This means that any element g in GL2(A) can be (non-uniquely) written
g = Yheok, with v € GL2(Q), hoo € GLF (R),k € Ko(N) (in other words
the continuous map GL3(Q) x GL3 (R) x Ko(N) — GL2(Aq) is surjective).
See [KL] section 6.3 for an elementary proof in this setting.

One can prove as a consequence that vol(Z(Aq)GL2(Q)\GL2(Aq)) <
oo: cf [KL] section 7.11. We will still denote w, the character on Ko(XNV)
defined by the evaluation of w, at the lower right entry.

DEFINITION 5.1. Let f be a modular form of weight k, nebentypus x and
level N. The adelization of f is the function p; : GLa(Aq) — C defined
by:

1(9) = §(hoo, )" f (oo - D)wy ()

where:
(1) hoo € GL3 (R),k € Ko(N) are chosen so that g = vhook for some
7 € GL2(Q),
(2) for any z € C = R, j(heo,2) = det(hoo)~Y%(cz + d), if one write
hoo = [ 23]
REMARKS:

15
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e This is well defined (i.e. the number ¢(g) does not depend on the
choices of v, hoo, k) because of the modularity of f: see section 12.2
of [KL].

e The function ¢y is continuous. Indeed, its restriction to the (open)
subset YGLJ (R)Ko(N) (for any v € GL2(Q)) is continuous by
definition, so by the “gluing lemma” ¢ is continuous on GL2(Aq).

e For any v € GL2(Q), g € GL2(Aq), ¥r(v9) = ¥s(9)-

e For a fixed finite adelic point g¢, goo — ©f(9oo, gf) is smooth.

e For a fixed goo € GLJ (R), g5 — ©(goo, gy) is locally constant on
the finite adeles.

The last three points are obvious.

As the title of this section indicates, the function ¢ is actually an auto-
morphic form on GLy(Aqg): we list below the properties statisfied by ¢ to
inherit such a name: the proofs are to be found in [KL] or [G].

(1) (GL2(Q)-left invariance) For any v € GL2(Q),g € GL2(Aq), one

has: ¢7(vg) = ¢7(9)-

(2) (K-finiteness) For ko, = [ %0, 501 € SO4(R),kf € Ko(N),g €
GLy(Aq), vf(gkscks) = w(ky)exp(2mikd)ps(g), where k € Z is
the weight of f. In the adelic setting, the condition of K -finiteness
on ¢¢ means that the subspace span(R(g)ps : g € K) is finite-
dimensional. The link with the classical setting is that all finite-
dimensional continuous representations of the circle group SO2(R) =
R/(27Z) are direct sums of 1-dimensional representations with the
character 6 — exp(ikf) for various k € Z.

(3) (3-finiteness) One has the differential equation: Ay, = g (1- %) ©f
(where the Casimir operator A acts on the infinite component). This
implies that ¢ is A-finite: this, and the next item, implies that ¢
is 3-finite, as the center of the universal algebra is generated by A
and I). In other words, the subspace span(ps * Z : z € 3) is finite
dimensional.

(4) (Action of the center) For any z € Z(Aq),g € GL2(Aq), ¢f(zg9) =
wy (2)¢f(9)-

(5) (Growth condition) For any norm || - || on GLa(Aq), there exists a
real number A > 0 such that: ¢(g) < ||g[|4. In other words, ¢y
is moderate growth. This point is not obvious: see [Bol] section
5, Borel-Jacquet in [Cor| and [Wal] for norms on Lie groups. It is
simpler to prove that if f is a cusp form, then ¢y is actually bounded:
this is because of the basic fact that f is cuspidal if and only if the
mapping goo € GLJ (R) = j(go0,7) ¥ f(goo - i) is bounded: see [KL]
proposition 12.2.
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(6) (Cuspidality) If f is a cusp form, then ¢ is cuspidal, in the sense
that for any g € GLa(Aq) :

L er(bsla)ar=o.
Q\Aq

See [KL] proposition 12.3 for a proof (if the form is unramified, then
[G] proves it as well, but for general levels, one has to use all the
cusps).
We tried to list the properties so that they are easily modified to define
an autmorphic form on a general reductive group G over Q (even over a
number field); the cuspidality condition is more difficult to handle, as one
has to write the vanishing condition on the unipotent radical of any parabolic
Q-subgroup of G.

It is important to notice that since ¢ is bounded for f cuspidal, |¢¢| is
square integrable on Z(A)GL2(Q)\GL2(AqQ).

REMARK: By using the strong approximation theorem, one can characterize
the image of S;(IV, x) under this construction (which is clearly linear in f):
refer to [KL] section 12.4.

5.2. From a classical cuspidal modular form to a unitary automor-
phic representations of GLy(Aq). We keep the same notations, and refer
to [G] for more details that we won’t cover (chapter 5 is especially relevant).

DEFINITION 5.2. Let f be a cuspidal modular form of weight k, nebentypus
x and level N. The unitary automorphic representation attached to f is
the restriction of the right reqular representation of GL2(Aq) on the closed
subspace 5 of L3(Z(Aq)GL2(Q)\GLa(A),w,) defined by:

9y = span(R(g)ps : g € GL2(Aq))

This unitary representation is denoted my.

REMARK: see the appendix for a definition of the space of cuspidal functions
L3(Z(Aq)GL2(Q)\GLa(A), wy).

REMARK: We chose to work with unitary automorphic representations; if
instead one wishes to work with the more algebraic theory of (admissible)
automorphic representations, one can attach to a modular form f the Hgr,,-
submodule Hgr, ¢y of the space of automorphic forms on GL2 with central
character w,: here Hgr, denotes the adelic Hecke algebra, which is a re-
stricted tensor product of the local Hecke algebras — cf [Bu] section 3.4.

The main result is the following:

THEOREM 5.1. Let f be a cuspidal modular form of weight k, nebentypus x
and level N. Assume that there exists a finite set of primes S such that f
is a Hecke eigenform for the T, p ¢ S. Then the unitary representation ¢
is irreducible.

17
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We will sketch the proof below — references: [Bu] section 3.6, and [G]
section 5.B. We will need the tensor product theorem and multiplicty one
to achieve that.

5.3. Hecke operators. Let f be a cuspidal modular form of weight k,
nebentypus x and level IV, and ¢y its adelization. We denote w the adeliza-
tion of the Dirichlet character x. Let p be a prime not dividing ¢ (for
simplicity).
Let H,, be the compact open subset of GL2(Q,) defined by
H, = GLy(Z, )[PO}GLQ(Z )

For p € L3(Z(A)GL2(Q)\GL2(Aq),w), we define:

/fgk

By using the disjoint union decomposition:
p—1

H, = J[58]GLa(Z,) U [} 5] GLa(Z,)
b=0

one proves easily that (cf [G] lemma 3.7):
-[l—p(gOf> = (Ppl—k/2Tp(f).

On the other hand, by using the disjoint union decomposition:
Hy, = | ) GLy(Z,)[§ )] U GLy(Z,) [ 5]

one sees that if ¢ is GLy(Z,)-invariant on the right then

Tp(p) = (p+ 1)/GL ” )w(gkp[{;?])dkp-

The last integral can be modified in order to adelize the ramified Hecke
operators. Reference: [M2] and [We| chapter VI.

REMARK: In [KL] section 13, it is explained how to use f to construct a
smooth function ¢ on GL2(Aq) as a product ¢ = [[, ¢, where 1o, is
integrable modulo the center for weights > 3 and the finite components
are smooth and compactly supported modulo the center: this is technically
important in order to use the (relative) trace formula.

6. THE TENSOR PRODUCT THEOREM

In this section, we collect some facts leading to the statement and proof
of the tensor product theorem. Again, our choice is to deal with unitary
representations, for two reasons:

e Automorphic representations are not representations of GL2(Aq),
but of the Hecke algebra, which is difficult to define (see [Bu] section

3.4). It is simpler to define unitary representations in this context.
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e Sooner or later in the theory, one really needs properties of Hilbert
spaces, compact operators, trace class operators. The author is not
sure to what extend a completely algebraic theory can do the job.

6.1. A construction. Let G denote the algebraic group GLo; all the no-
tations introduced in the preceding section remain in force. For each place
v < oo of Q, let (my, $,) be a unitary representation of G(Q,). Denote (-, -),
the inner product of §,. Let’s assume that there exists a finite set of finite
primes Sy containing oo such that for any v ¢ Sp, the space of K,-fixed vec-
tors is one-dimensional. For each place v ¢ Sy, we choose a unitary vector
in $% which we will denote £). We will construct a unitary representation
7 of GL2(Aq) which is usually denoted

—_—
= @

v<oo

but one has to keep in mind that it might a priori depend on the choice of

£ = (§B)U¢SO (and so ® 7, would be a better notation).
v<00
Step 1: construction of the Hilbert space on which GL2(Aq) will act:
reference [Guil.
For each finite set S of primes containing Sy, one denotes by £g the

prehilbert space
s = ®ﬁv
veS

By general properties of the tensor product of modules, one does not have
to choose any order on the set of places. For two such sets S,T with S C T,
there is a unique mapping jsr : H5 — Hr defined for each family (x, €

HvGS ‘6’0) by:
jsr(@ ) =Rz @ Q) &
vES vES veT—-S

It is obvious that these mappings are injective Put on $)g the (positive
definite) inner product (-, )¢ induced by

<®xv’®yv>5’ = H <wvayv>v

vES vES vES

See section 4 for some facts on these tensor products. One sees immediately
that the embeddings jg7 are isometric for these inner products. Denote
H¥8 the inductive limit of the system ($g,jsr) (the directed set is the
set of finite sets of primes, ordered by inclusion), and jg : 5 — H& the
canonical embedding.

For x,y € $H?8, there exist a finite set of places S, and elements zg, yg
of $g such that x = js(zs),y = js(ys) and we define an inner product on
f)alg by:

(z,y) = (5,ys)g
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This is well-defined, and this makes each jg an isometry. Finally, denote
by $ the completion of $*#8 for this inner product: this space is denoted in

—
[Gui] as ® Hy.

<00

REMARK: In [Gui], it is proved that canonically there is no dependence

on the vectors £€°: this is Proposition 1.3 loc. cit., which can be applied as
the space of K,-fixed vectors is one-dimensional (for another choice £, one
has &} = a,¢0 for a unique complex a, of modulus one, so the hypothesis is
trivially satisfied). Of course, the choice of the finite set Sy is unimportant,
by general properties of inductive limits.

REMARK: If z = ®xv is a vector in H)g, one often denotes its image in

veS
9 using the notation ®xv ® ®§8 : this is an abuse of language, as the
vES véS

latter makes sense only in the algebraic infinite tensor product ® 9y as
v<00

defined in Bourbaki, Algebre, chap II, §3, No 9, but this is common.

Step 2: construction of the representation.

For each finite set S of primes containing Sy, GLa2(Aq,s) acts on Hg
via the unitary representation ), gm,: unitarity and continuity of this
representation has been checked in section 4. One sees at once that one
gets an inductive system of unitary representations (of course by using the
K,-invariance of the £2’s), and so one gets an algebraic representation 7!
of GLy(AqQ) on $H8 by unitary operators. One can extend by uniform
continuity each operator 728(g), for g € GL2(Aq), to a unitary operator on
the completion $, which we denote m: 7 affords an algebraic representation
of GL2(Aq) by unitary operators, so we need only justify the continuity of
this action.

It suffices to prove that the mappings g € GL2(Aq) — 7(g)xr € 9 are
continuous for each x in a total subset of §) (see section 4), so it is sufficient
to check this continuity for x of the shape = jg(zg) for some finite set S
of primes containing Sy. Because of the topology on the adeles, it suffices
to prove the continuity of g € GLa(Aq,r) — m(g)x € § for T a fixed finite
set of primes with S C T, but in this case one has:

m(g)r = jr <® Ty (Go) Ty ® ® Wv(gv)&?)

veES veT-S
and the continuity is clear.

We have therefore constructed from the data the unitary tensor product
representation 7, denoted in the litterature

—_—
= @

<00
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—g0
A slightly better notation would be ® m, a priori, but because of the
<00
remark we made above, if one changes the family £€°, one canonically gets a
unitarily equivalent representation.
REMARK: If furthermore all the local representations m, are irreducible,
then so is their unitary tensor product: this is a simple adaptation of an
argument given in section 4. See [G], §4.C.
REMARK: Let m be a unitary representation of GLa(Aqg) constructed as
above from irreducible unitary representations m, of GL2(Q,). Then the
restriction of m to GL2(Q,) splits as a Hilbert direct sum of irreducible
representations, all equivalent to 7,: this means that (the equivalence class
of) m, is uniquely determined by 7.

REMARK: If an irreducible unitary representation 7 of GLa(Aq) is equiv-
alent to a unitary tensor product as above, then 7 is admissible. Indeed,

any p € K is equivalent to a unitary tensor product representation ®pv,

where p, is an irreducible representation of K, for each place v, almogt all
of which are trivial of dimension 1 ([Bu], lemma 3.3.1): each of these local
representations appear with finite multiplicities in their respective space,
which proves the claim.

REMARK: If one is interested in the algebraic theory of the automorphic
representations, one has to modify slightly the above construction to a more
algebraic one: this is explained in Bump (ibid.).

6.2. The tensor product theorem. In this section, one is interested in
a converse statement of the previous construction. We take G = GLg, but
this would work mutatis mutandis for a reductive group over a number field,
as these are liminal.

THEOREM 6.1 (The tensor product theorem). Let 7 be an irreducible uni-
tary representation of G(Aq). Then there exist a finite set So of primes
containing 0o, an irreducible unitary representation m, of G(Q,) for each
place v such that 7, is spherical for v ¢ Sy, and a unitary K,-fized vector

€0 for each v ¢ Sy, so that 7 is equivalent to ® 7, for €0 = (§B)U¢SO.

<00

REMARK: see [Bu] section 3.4 for a statement and proof of the algebraic
counterpart, as well as Cogdell in [CKM] lecture 3 for a statement without
proof of the various versions of the tensor product theorem.

REFERENCES: Depending on the strength of the statement, there are more
or less difficult proofs of this result.

e Godement in [Go] §3.2 assumes furthermore that 7 is admissible.
Under this assumption, he considers the restriction of 7 to G(Qy),

which is also admissible, and therefore splits as a Hilbert direct sum
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of irreducible representations by theorem 3.4. As m is irreducible,
the Schur lemma insures that any continuous operator in the space
of m commuting with |, @) and with the operators commuting with
Mgy are scalars, so that T 6iQu) is a factor representation.

As G is of type 1, this implies that LIPP is isotypical, i.e. isomor-
phic to a Hilbert direct sum of equivalent representations (cf [Dix]
or [Ro] section 20). Therefore, one has at one’s disposal a family
of irreducible unitary representations m, of G(Q,) for each place v,
and the rest of the proof is a tedious construction allowing to “glue”
together the local pieces. Note that along the way one chooses uni-
tary K,-fixed vectors, getting for each choice a factorization into a
unitary tensor product — hence another justification in this context
of the “independence” in the choice of £°.

In [GGP] chapter 3 §3.3, there is a proof which does not make use of
any admissibility condition. As a consequence, this proves that any
irreducible representation of G(Aq) is admissible, as explained in the
previous subsection. Without a doubt, one could adapt Godement’s
arguments in order not to assume that 7 is admissible, as this is used
only to find the local pieces m,: [GGP] get these another way, yet
the rest of the proofs are pretty close.

If one is only interested in unitary cuspidal representations, one can
prove first the admissibility of these, and use Godement’s argument,
or even the algebraic tensor product theorem on the space of K-finite
vectors: in the last case, one gets a factorization into a restricted
tensor product of smooth representations, which are unitarizable
because 7 is.

To prove the admissibility of an irreducible unitary cuspidal au-
tomorphic representation (m, V;), that is (a unitary representation
equivalent to a) G(Aq)-invariant irreducible closed subspace of the
space L3(Z(Aq)GL2(Q)\GL2(A),w) for some unitary character w

of the idele class group, one can proceed as follows: let p = ®pv ek ,

v
where p, is an irreducible representation of K, for each place v. As
Ky is totally disconnected, and p is finite dimensional, there exists
an open compact normal subgroup K7 of Ky such that the restriction
of p to K7 is trivial.

One wants to prove that V;(p) is finite dimensional. The latter
is contained in the space of Ki-fixed vectors in V; which we denote
VX1 Note right now that VX! is stable under the restriction of
the right regular representation of GL2(Aq) to GL2(R), so that it
suffices to prove that V.1 (p..) is finite dimensional.

Consider ¢ = oo € C°(G(AqQ)), where:

— the function (defined on GLa(A¢)) ¢ is the characteristic func-

tion of K7,
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— the archimedean component ¢., € C2°(GL2(R)) is arbitrary.
The mapping R(¢) defined for f € L3(Z(A)GL2(Q)\GL2(AqQ),w)
by:

R(o)(f)(x) = /G i, Py forany 2 € Gla(Aq)
2(Aq

is a compact operator on L3(Z(A)GL2(Q)\GL2(Aq),w), and so is
its restriction to V;. But for f € VX1 2 € GLy(Aq), one has:

(R(9)f)(x) = vol(Ky) / o0 (400 (400 Yo

GL2(R)

which is also a compact operator. As a consequence, theorem 3.3

implies that V.51 splits as a Hilbert direct sum of irreducible repre-

sentations (V;);e1 of GL2(R), each occuring with finite multiplicities.
We also have:

VE (pre) = Vi)

i€l

so it suffices to prove that only finitely many 7 are such that V;(pso) #
{0}.

One the other hand, 3 acts by characters on the smooth vectors
of V> for each i € I: in particular, there exists a complex number
A such that V' := ker(A — AId) # {0} (here we take the kernel
in V.*°), where A denotes the Casimir element of GL2(R). This
subspace V is obviously stable under the action of GL2(Ay) and
of GL2(R): therefore it must be dense in V;. This implies that
A acts by A on each V,*° (by using the self-adjointness of A). By
the classification of irreducible unitary representations of GLa(R),
there are only finitely many equivalence classes of representations of
GL2(R) containing po, with central character woo, such that A acts
by A on the smooth vectors: this ends the proof.

REMARK: This argument works in generality for reductive groups
(use [Bo2] théoreme 5.29), but instead of using the Casimir element,
one can argue as follows — this affects the last paragraph of the
previous proof: 3 acts by characters on the smooth vectors of V> for
each i € I: let x be one of them. Let V' be the space of smooth vectors
son which 3 acts through x: V is dense in V; for the same reasons.
This implies that for any v € V., dr(z) = x(2)v as a distribution,
for any z € 3 (by taking a sequence in V tending to v), and so that
on any smooth vector of Vi, 3 acts through x. This implies that
the infinitesimal character of each V; is x, and again, there are only
finitely many irreducible unitary representations containing pso, with
central character ws and infinitesimal character x.
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7. PROOF OF THEOREM 5.1

Let f be a cuspidal modular form of weight k, nebentypus x and level
N. Assume that there exists a finite set of primes Sy such that f is a Hecke
eigenform for the 7}, p ¢ S¢: we may and will assume that Sy contains the
divisors of g. We wish to prove that that the unitary representation (¢, 7y)
we attached to f in section 5 is irreducible.

To simplify the proof, we’ll make use of the strong multiplicity one the-
orem, which asserts that given two irreducible unitary cuspidal representa-

tions m = ®7rv, = ®7r; of GLy(Aq) are equivalent if and only if there
v<00 v<00
exists a finite set of primes S (containing or not oo) such that m, = =
for each v ¢ S. This theorem holds actually for irreducible automorphic
representations, and can be proven using Whittaker models (cf [Bu] section
3.5, [Go] §3.5 and [G] §6) or the Rankin-Selberg L-function (as in [CKM]
theorem 9.3): in any case, the proof makes use of the algebraic theory of
automorphic forms, in the sense that Whittaker models are smooth models,

not unitary representations.

As LE(Z(A)GL2(Q)\GL2(AqQ),wy) is GLy(Aq)-invariant, ¢ is a sub-
space of it. Also, as L3(Z(A)GL2(Q)\GL2(Aq),wy) splits as a Hilbert
sums of irreducibles, then so does ($¢,7f) by Lemma 3.1. We may there-

fore write: -
Hf = @ﬁi
i€l
where each §); is a closed subspace of §; stable and irreducible under
GLy(Aq). We have to prove that card(I) = 1.

To do so, let’s denote 7; the representation of GL2(Aq) on $;. By the
tensor product theorem, for each i we can write (with alleged notations)

—
~
mi = Q)i

v<00

To prove the theorem, due to the multiplicity one theorem, it is sufficent to
prove that m; ), = 7; , for any p ¢ Sy and each i,j € L.

As the adelization of f, ¢y, is in $, we can write, in a unique way — with
convergence in L?:
or=>_ @i

i€l
with ¢; € $; — {0}. If K" denotes the product of the GLa(Z),)’s for p ¢ Sy,
then ¢ is K’ right invariant, and we can assume that so are the ¢;’s (if not,

one writes ¢r(g) = W[K,@b(k)@f(gk)dk = > [ V(k)pi(gk)dk with
1) = the characteristic function of K’, and the job is done, or one simply

projects on the K'-invariant vectors).
24



MoODULAR FORMS AND AUTOMORPHIC REPRESENTATIONS

Let 7 € I. By the tensor product theorem, one can write $; = ®S’)i7v,
v<o0o
and so there exists a set J such that:

i = Z Z;j
jeJ
where x; is of the form z; = jg;(vs;) with xg, € 9,5, — see section 6 for
the notations. As we did above, one can assume that each of the x;’s are
K'-invariant, i.e. that S; C Sy. All this proves that the m;’s are unramified
outside S;.

Let p ¢ Sy be a prime. Obviously, all the 7;’s have the same central
character (namely w): so do all the m; ), (for various i’s). To prove the
theorem, it is sufficient to prove that the m;, share the same eigenvalue
under the Hecke operator 7), we introduced in section 4.2. We defined in
section 5.3 the adelization of the classical Hecke operator T,. By hypothesis,
we have:

Tpor = As(P)ey
and so, by continuity for each i € I:

(3) Tppi = As(p)gi-
As each z; is a “pure tensor”, say x; = ®,xj, (for p ¢ S¢, xj, = 5?7]0, the
K ,-fixed vector), one has :

Tpz; = Q) wj0 @ (Tp(2)p))-
v#p
The vector x;, is Kp-invariant, so by denoting c;, the Hecke eigenvalue of
Tip:
Tp(xjp) = CipTjp-
By comparing with (3), one gets A¢(p) = ¢;p for any i € I, so we get exactly
what we wanted. QED

8. APPENDIX

8.1. Appendix 1. Let G be a locally compact unimodular group, H a
closed unimodular subgroup of G, Z the center of G (or more generally a
closed subgroup of the center) and w : Z — $! a character. We want to first
define in this appendix what is meant in the literature by L*(ZH\G,w),
as it was mentioned in section 5.2. So let L?(ZH\G,w) (L*(w) is a useful
abbreviation if no confusion arises) be the space of classes of functions (the
equivalence is equality almost everywhere on H\G) f : H\G — C such that:

(1) f is Borel-measureable on H\G,
(2) |f] is Borel-measureable on ZH\G,
(3) for any z € Z, f(zx) = w(z)f(z) for almost all z € H\G,

(4) Sy I < oo

We claim that:
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(1) L?>(ZH\G,w) is a Hilbert space for the inner product (-,-) defined

by:
)= [ fag@is
ZH\G
(2) The space of bounded continuous functions Cy(Z H\G,w) satisfying:

f(zz) = w(2) f ()
for all z € H\G, is dense in L*(ZH\G,w)

Let (f,) be a Cauchy sequence in L?(ZH\G,w). One can find a subsequence
p, such that:

lonr1 —enll <277

This implies that the series ) _n |¢nt+1 — ©n| converges almost everywhere
on ZH\G, and thus that ) n(@nt1—9n) is absolutely convergent almost
everywhere on H\G: this proves the first claim.

To prove the second claim, note first that the subspace L?(ZH\G,w) of
functions with compact support in ZH\G is dense in L*(ZH\G,w): for
instance, if K is a (large) compact subset of ZH\G, f x Chargs will do the
job (K’ is the inverse image of K under the projection H\G — ZH\G).
Then, let f be in L2(ZH\G,w), and let ¢, a continuous d-sequence in G.
Consider the function:

fu(z) = /G f(xg)en(g)dg

It is well-defined: denoting by K, a compact of G containing the support of
n, one has:

/ZH\G|fn(w)|2da: < /ZH\G </G|90n(9)’2d9/0|f($g)|20har;<n(g)dg> i
< vol(Kn) X/len(g)l%igx/ | (2)2da

ZH\G

The function f, is continuous, as this is easily seen after a legal change
of variable and a use of Lebesgue dominated convergence theorem, and its
support is compact (because it is the convolution of two such functions).
This ends our contention.

8.2. On cuspidal functions. We refer to [L] and [Bol] (especially chap

8) for a rigorous definition of this space, in the classical setting. In the

litterature, given a unitary Grossencharakter w : A(XQ /Q* — C*, the space
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of square-integrable cusp forms is often “defined” by:
L3(Z(Aq)GL2(Q)\GL2(Aq),w) =
{f . GLy(Q)\GLay(Aq) — C : for all z € Z(Ag), f(2g9) = w(2)f(g)

for almost all g,/ |f|* < oo and
Z(AQ)GL2(Q)\GL2(Aq)

/ f([(l)ﬂg) dx = 0 for almost allg}
Q\Aq

The problem is that the last condition is not a closed one, a priori. One
option is to define this space as the closure in L?(w) ~which we defined in
the previous paragraph — of the space of bounded continuous satisfying the
above (well defined) conditions: this is what Lang does.

Another possibility is to consider, for a compactly supported function
¢ on U(AqQ)\GL2(Aq) (here U denotes the usual unipotent subgroup of
GLy), the linear form:

f e L2w) — Ap(f) = / F(9)e(9)dg

U(Q)\GLz(Aq)

This mapping is well-defined, and continuous: indeed, the support of ¢,
viewed as a function on GLy(Aq), is contained in a set of the shape U(Q)<2,
where Q is a compact subset of GLgy(A) — this is because Q is cocompact
inside Aq. So one has:

Ao (H)] < el /Q ()|

To finish, one covers  with finitely many (say m) relatively compact open
sets U; of GLy(A) such that the projection GLa(Aq) — GL2(Q)\GL2(AqQ)
induces on each U; a homeomorphism onto its image — which is possible by
the discreteness of GL2(Q) in GLa(Aq):

[ 1f@lae<m [ |F(@)ldz x sup,(vol)(TF)
Q Z(Aq)GL2(Q)\GL2(AqQ)

this proves the continuity, because vol(Z(Aq)GL2(Q)\GL2(Aq)) < .
Finally, to see the link with the cuspidal condition, one notes that:

Au(f) = / W (9)e(9)dg
U(Aq)\GL2(A)

Wit = [ F([bt)e)de
Q

and the space of cusp forms can be identified with the intersection of the
kernels of all the A, when ¢ varies among such functions (it is a posteriori

easy to see this, by using convolution with a d-sequence).
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