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Abstract

These are lecture notes, for a “modularity seminar”, and
I make no claim to originality. I have attempted to give refer-
ences, but these references do not necessarily reflect the his-
tory (I might reference one source for a proof of a theorem,
when the theorem was first proven by another). Please send
corrections to Marty Weissman at weissman.marty@gmail.com.

1 Notation

k will always denote a nonarchimedean local field. It will not hurt
to assume that k = Qp.

The valuation on k will be normalized in such a way that
val(k×) = Z.
O will always denote the valuation ring of k.
The letter v will always denote a uniformizing element of k, i.e.,

val(v) = 1.
We write Fq for the residue field of k: Fq = O/vO. Here q = p f

for some positive integer f and some prime number p.
We use boldface letters, like X to denote varieties over k. We use

ordinary letters, like X, to denote the k-points of such varieties
(with their natural topology).

We often use the language of categories, functors, and natu-
ral transformations. In these notes, we typically define functors
only half-way: we describe a functor on objects, and leave it to
the reader to determine the functor on morphisms when we say
something like “For every object X, F(X) is... F extends to a func-
tor from...”’

2 `-spaces and groups

Definition 2.1 (Bernstein) An `-space1 is a locally compact Haus- 1 J. Bernstein. Represenations of p-adic groups.
Harvard University, 1992. Lectures by Joseph
Bernstein. Written by Karl E. Rumelhart.
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dorff topological space, in which every point has a basis of open compact
neighborhoods. Let Sp` be the category of `-spaces and continuous maps.

Of course, there is nothing special about C

here – its topology is not being used. Every-
thing we discuss will go through, as long as C

denotes an uncountable, algebraically closed
field of characteristic zero.

When X is an `-space, the space of “smooth” functions on X is
defined to be:

C∞(X) = { f : X → C : f is locally constant}.

The subspace C∞
c (X) consists of compactly supported smooth func-

tions.

Proposition 2.2 Let X be an `-space, and U an open subset of X with
complement Z = X −U. Then the linear maps “extension by zero” and
“restriction to Z” yield a short exact sequence of complex vector spaces:

0→ C∞
c (U)→ C∞

c (X)→ C∞
c (Z)→ 0.

Example 2.3 Let X = k, where k is a nonarchimedean local field. Let
U = k× be the open subset of nonzero elements. Then “extension by
zero” and “evaluation at zero” yield a short exact sequence of complex
vector spaces:

0→ C∞
c (k×)→ C∞

c (k)→ C→ 0.

Compare and contrast this with the archimedean case – there one should
work with Schwarz functions, where one finds that “extension by zero”
and “Taylor expansion at 0” yield a short exact sequence of complex
vector spaces:2 2 Émile Borel. Sur quelques points de la théorie

des fonctions. Paris., 1894. Original from
Columbia University.0→ S(R×)→ S(R)→ C[[T]]→ 0.

The following fact is discussed properly in Chapter 3.1 of
Platonov and Rapinchuk3: 3 Vladimir Platonov and Andrei Rapinchuk.

Algebraic groups and number theory, volume 139

of Pure and Applied Mathematics. Academic
Press Inc., Boston, MA, 1994. Translated from
the 1991 Russian original by Rachel Rowen.

Fact 2.4 Let X be an algebraic variety over a nonarchimedean local field
k. There is a “natural” topology on X = X(k) for which X is an `-space.
In other words, there is a functor from the category of varieties over k
(and regular maps) to the category of `-spaces (and continuous maps),
which equals the functor of k-points after forgetting the topology.

In particular, GLn(k) is an `-space, P1(k) is an `-space, etc..
In fact, this functor can be uniquely characterized by just a few

properties; in unpublished notes4, Brian Conrad proves: 4 Brian Conrad. Weil and Grothendieck
approaches to adelic points. Unpublished
notes, available online.Theorem 2.5 Let R be a topological ring. There is a unique functor

X 7→ X(R) from the category of affine finite-type R-schemes to the
category of topological spaces, such that

1. Forgetting the topology yields the functor of R-points.

2. The functor is compatible with the formation of fibre products.
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3. The functor carries closed immersions to topological embeddings.

4. The functor applied to X = Spec(R[T]) yields the given topology
on X(R) = R.

Furthermore, when R is Hausdorff, closed immersions of schemes yield
closed embeddings of topological spaces and when R is locally compact,
X(R) is locally compact for all X.

It should be noted that Conrad extends this further, removing
the affine hypothesis under the hypothesis that R× is open in R,
and inversion is continuous on R× – these conditions are satisfied
when R is a local field.5 5 The situation is more subtle when R is the

ring of adeles for a global field; such a ring is
locally compact and Hausdorff, but R× is no
longer open in R.Definition 2.6 An `-group is a group in the category of `-spaces. In

other words, an `-group is a group G, endowed with a topology for which
G is an `-space and the unit, inverse, and composition maps:

pt→ G, G → G, G× G → G

are continuous.

Proposition 2.7 Let G be a topological group. Then G is an `-group6 if 6 This is given by some authors as the
definition of an `-group. I find it more
natural to think about groups in a category
and prove the equivalence.

and only if the identity element has a basis of neighborhoods consisting of
open compact subgroups of G.

Proof: If G has a neighborhood basis around the identity consist-
ing of open compact subgroups, then translation of these open
compact subgroups gives a neighborhood basis around any point
in G. It follows quickly that G is an `-space.

Conversely, if G is an `-space and a topological group, then
there is a neighborhood basis of the identity consisting of open
compact subsets of G. Let V be such a compact open subset con-
taining the identity of G. Define

KV = {x ∈ G : xV ⊂ V and x−1V ⊂ V}.

Then KV is a subgroup of G, and a subset of V. It is the intersec-
tion of compact sets, hence compact. The proof that KV is open is
a bit tricky, and we refer to the notes of Paul Garrett 7. 7 P. Garrett. Smooth representations of totally

disconnected groups. Introductory notes,
available online. Updated July 8, 2005.Q.E.D

Corollary 2.8 If G is an algebraic group over a nonarchimedean local
field k, then G = G(k) is naturally a `-group.

Here are a few examples of `-groups arising as G(k), and open
compact neighborhoods of the identity.
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Example 2.9 Let Ga denote the additive group over k. Thus Ga =
(k, +) is the additive group of the field k. Let val : k× → Z denote the
valuation on k, normalized to be surjective. For m ∈ Z, define a compact
open subgroup of Ga:

Km = {x ∈ k : val(x) ≥ m}.

Then
Ga =

⋃
m∈Z

Km, {0} =
⋂

m∈Z

Km.

Note above that the additive group Ga is the union of its compact
open subgroups. This is not typical, for `-groups. But it does hold
for groups G = G(k), whenever G is a unipotent group over a p-
adic field k. This plays a very important role for harmonic analysis
on unipotent p-adic groups.

Example 2.10 Let Gm denote the multiplicative group over k. Thus
Gm = k× is the multiplicative group of the field k. A choice of uni-
formizing element v ∈ k× determines a decomposition of topological
groups:

k× ∼= O× ×Z.

The compact open subgroups

Um = {x ∈ k× : val(x− 1) ≥ m},

for m ≥ 1, form a neighborhood basis at the identity in k×.

Of course, Gm = GL1, and the above example generalizes to
GLn without much difficulty.

Example 2.11 Let GLn be the algebraic group of n by n invertible
matrices. Let v be a uniformizing element of k. A neighborhood basis of
the identity in GLn = GLn(k), consisting of compact open subgroups, is
given by:

Km = {g ∈ GLn(Ok) : g ≡ 1, modulo vnOk}.

3 Representations

Smooth representations

Let G be an `-group. Nothing will really be lost if one takes G =
GLn(Qp) in what follows.

Definition 3.1 A representation of G is a pair (π, V), where V is
a complex vector space (often infinite-dimensional!) and π : G →
AutC(V) is an action of G on V by C-linear automorphisms. Let RepG
be the category of representations of G and G-intertwining C-linear
maps.
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Let Op(G) be the set of open subgroups of G – recall that
Op(G) is a basis of neighborhoods of the identity in G. For any
subgroup H ⊂ G, and any representation (π, V) of G, we write
VH for the H-invariant subspace of V. We write VH for the H
co-invariant quotient8 of V, i.e., 8 Let W be a vector space upon which H acts

trivially. Then every H-intertwining map
from W to V factors uniquely through VH .
Every H-intertwining map from V to W
factors uniquely through VH .

VH = V/[H−1]V, [H − 1]V = SpanC{π(h)v− v}v∈V,h∈H .

Definition 3.2 When (π, V) is a representation of G, the subspace V∞

of smooth vectors is defined by:

V∞ =
⋃

H∈Op(G)

VH .

A representation (π, V) of G is called smooth if V = V∞. Let Rep∞
G

denote the category9 of smooth representations of G and G-intertwining 9 The category Rep∞
G is an abelian category

with enough injectives and arbitrary direct
sums.C-linear maps.

Proposition 3.3 If (π, V) is a representation of G, then (π, V∞) is a
subrepresentation10 of (π, V), and (π, V∞) is smooth. This defines a 10 A subrepresentation of (π, V) is just a

G-stable subspace.functor from RepG to Rep∞
G . If (σ, W) is any smooth representation of

G, and φ : W → V is a morphism in RepG, then φ factors uniquely
through the inclusion V∞ ↪→ V.

Proof: The proof is not difficult, and is left to the reader.

Q.E.D

The category Rep∞
G is usually not semisimple. However, for

compact groups the category is semisimple and we discuss this a
bit further.

Let K be a compact `-group. Let K̂ be a set of representatives
for the isomorphism classes of irreducible smooth representations
(abbreviated irrep hereafter) of K – in other words, if τ is an irrep
of K then there exists a unique ρ ∈ K̂ such that τ ∼= ρ.

Lemma 3.4 Every irrep τ of K is finite-dimensional and factors through
a finite quotient of K.

Proof: Let (τ, W) be an irrep of K, and let w be a nonzero vector
in W. Let H ⊂ K be an open subgroup such that w ∈ WH . By
compactness of K, we find that #(K/H) < ∞. Choosing represen-
tatives k1, . . . , kd for K/H, we find that

SpanC{τ(k)w}k∈K = SpanC{τ(ki)w}1≤i≤d.

By irreducibility, the left side is all of W. The right side is finite-
dimensional, and so dim(W) ≤ d = #(K/H).
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Now, each vector τ(ki)w is fixed by the open subgroup ki Hk−1
i .

Hence we find that

τ(ki)w ∈WN , where N =
d⋂

i=1

ki Hk−1
i .

Observe that N is an open normal subgroup of K, so K/N is a
finite quotient of K, and τ factors through this quotient.

Q.E.D

Definition 3.5 Let (π, V) be a smooth representation of K, and (τ, W) ∈
K̂. The τ-isotypic subrepresentation of V is the image Vτ of the natural
injective K-intertwining operator:

W ⊗C HomK(W, V)→ V.

The τ-isotypic subrepresentations of a smooth representation
(π, V) of K are certainly semisimple – they are isomorphic to a
direct sum of copies of τ.

Theorem 3.6 Let (π, V) be a smooth representation of K. Then the
inclusions of isotypic subrepresentations yield an isomorphism⊕

τ∈K̂

Vτ
∼= V.

Proof: Schur’s orthogonality (for finite groups) implies that the
distinct isotypic subrepresentations of V have zero intersection.
Thus it remains to prove that every vector v ∈ V can be expressed
as a finite sum of vectors in isotypic subrepresentations.

But if v ∈ V, then v ∈ VH for some open subgroup H ⊂ K.
With the techniques of the previous lemma, we find that v ∈ VN

for some open normal subgroup N ⊂ H ⊂ K. Let W ⊂ V be
the smallest subrepresentation of K containing v. We find that W
is finite-dimensional, and the representation of K on W factors
through the quotient K/N.

From the complete decomposability of representations of finite
groups, we find that W decomposes into a finite number of K/N-
isotypic components. Pulling back, we find that W decomposes
into a finite number of K-isotypic components. In particular, v can
be expressed as a finite sum of vectors from isotypic subrepresen-
tations of V.

Q.E.D

It is important to contrast the case of compact `-groups (which
are really no more difficult than finite groups) with noncompact
`-groups. The simplest example of a noncompact `-group is Z –
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every representation of Z is smooth. The category of represen-
tations of Z is isomorphic to the category of C[T±1]-modules,
transferring the action of n ∈ Z to the action of Tn ∈ C[T±1].

There are plenty of examples of non-semisimple representations
of Z; one may take (π, C2) for example, where

π(1) =
(

1 1
0 1

)
.

There is a short exact sequence of Z-representations:

0→ C→ (π, C2)→ C→ 0,

where we write C here for the trivial representation. This is essen-
tially the best we can do for “decomposing” the representation π
into irreducibles.

One might also consider an infinite-dimensional representation,
like the space V = C∞

c (Z) of compactly (finitely) supported C-
valued functions on Z, on which Z acts by translation π:

[π(n) f ](x) = f (x + n).

Then (π, V) has no irreducible subrepresentation, though it has in-
finitely many irreducible quotients. Indeed, summation yields a
trivial irreducible quotient

Σ : V → C, Σ( f ) = ∑
n∈Z

f (n).

In fact, one can show

Theorem 3.7 Let (π, V) be a representation of Z. If V is finitely-
generated as a C[T±1]-module, then there exists an irreducible quotient
of V.

Proof: Consider V as a C[T±1]-module. Every irreducible rep-
resentation of Z is a character (one-dimensional) χz : Z → C×

(this will follow from Schur’s lemma, proven a bit later), for some
z ∈ C×, where we define

χz(n) = zn.

If Hom(V, χz) = 0, then we find that V/mzV = 0 for every
maximal ideal mz = 〈T − z〉 of C[T±1]. From Nakayama’s lemma,
it follows that V = 0.

Q.E.D

Thus the moral is: smooth representations of noncompact groups
often do not have irreducible subrepresentations; but usually
(assuming a finite-type hypothesis) have irreducible quotients.
Another example of this phenomenon is given by the following
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Example 3.8 Let V = C∞
c (k) be the space of smooth (i.e., locally

constant) compactly supported functions on k, viewed as a representation
of k = Ga(k) by translation:

[π(g) f ](x) = f (x + g), for all g ∈ k, x ∈ k, f ∈ V.

Then V has no irreducible subrepresentation. Indeed, we will see that
all irreducible subrepresentations are characters – but if translation of
a function acts as a character, the function cannot be compactly sup-
ported. However, every irreducible smooth representation of k occurs as
a quotient; if (ψ, C) is a smooth character of k then the following gives a
nontrivial k-intertwining map from (π, V) to (ψ, C):

f 7→
∫

k
f (x)ψ(x)dx,

where we fix the Haar measure for which O has measure 1.

Contragredience, admissibility

When (π, V) is a smooth representation of G, the linear dual
space V′ = HomC(V, C) is a representation of G via:

[π′(g)λ)](v) = λ(π(g−1)v) for all λ ∈ V′, v ∈ V.

But this representation is rarely smooth:

Definition 3.9 If (π, V) is a smooth representation of G, define Ṽ =
(V′)∞ – the space of smooth vectors in the linear dual of V. Let π̃ denote
the resulting representation of G on Ṽ. The representation (π̃, Ṽ) is
called the contragredient representation of (π, V). The contragredient
defines a contravariant functor from Rep∞

G to itself.

It is very important to note that the contragredient does not define
a duality – there is a natural transfomation of functors from the
identity functor to the double-contragredient, but this is not a
natural isomorphism. The contragredient functor does define a
duality for admissible representations:

Definition 3.10 A representation (π, V) of G is called admissible if it
is smooth and for all H ∈ Op(G), dim(VH) < ∞.

We may characterize admissible representations also as follows:

Proposition 3.11 Let (π, V) be a smooth representation of G. Let K be
a compact open subgroup of G. Then (π, V) is admissible if and only if
for every τ ∈ K̂, the (K, τ)-isotypic component Vτ is finite-dimensional.
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Proof: Suppose first that every (K, τ)-isotypic component of
V is finite-dimensional. Let H be an open subgroup of G. Let
H′ = H ∩ K; then K/H′ is finite. Define

J =
⋂

k∈K/H′
kH′k−1.

Then we find that J is a normal subgroup of K, J is open compact,
and J ⊂ H.

It follows that VH ⊂ V J and:

V J =
⊕

τ

(Vτ)J .

But there are only finitely many isomorphism classes of irre-
ducible smooth representations of K for which V J 6= 0, since there
are only finitely many isomorphism classes of irreducible repre-
sentations of the quotient group K/J. Hence V J is a finite direct
sum, of finite-dimensional spaces. Hence V J is finite-dimensional,
and so VH is finite-dimensional. Hence V is admissible.

The converse is similar, and left to the reader.

Q.E.D

Proposition 3.12 Let (π, V) be an smooth representation of G. Then
(π, V) is admissible if and only if the natural homomorphism V → ˜̃V is
an isomorphism.

Proof: If (π, V) is admissible, one may choose an open compact
subgroup K ⊂ G, and decompose V into its isotypic components:

V =
⊕
τ∈K̂

Vτ .

The linear dual of V is then a direct product of finite-dimensional
spaces:

V′ = ∏
τ∈K̂

Hom(Vτ , C).

One may check that the smooth vectors in V′ are now:

Ṽ =
⊕
τ∈K̂

V′τ .

It follows that Ṽ is admissible.
The details and other converse are left to the reader.

Q.E.D

The following theorem is much deeper.
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Theorem 3.13 (Jacquet) 11 If G is a connected reductive algebraic 11 Hervé Jacquet. Sur les représentations des
groupes réductifs p-adiques. C. R. Acad. Sci.
Paris Sér. A-B, 280:Aii, A1271–A1272, 1975.group over a local nonarchimedean field, and (π, V) is an irreducible

smooth representation of G = G(k), then (π, V) is admissible.

Corollary 3.14 If G is a connected reductive algebraic group over a
local nonarchimedean field, and (π, V) is an irreducible smooth rep-
resentation of G (or a representation of finite length), then (π, V) is
admissible and V is isomorphic to its double contragredient.

Schur’s lemma

Theorem 3.15 (Jacquet) 12 Suppose that G has a countable basis for its 12 Hervé Jacquet. Sur les représentations des
groupes réductifs p-adiques. C. R. Acad. Sci.
Paris Sér. A-B, 280:Aii, A1271–A1272, 1975.topology. Let (π, V) be an irreducible smooth representation of G. Then

the dimension of V is countable and EndG(V) = C.

Proof: (We have followed DeBacker’s notes13) Let 0 6= v ∈ V, 13 S. DeBacker. Some notes on the representation
theory of reductive p-adic groups. Available
online.and let K be a compact open subgroup of G for which v ∈ VK.

Then G/K is a countable set (since G has a countable basis for its
topology) and we may choose representatives g1, g2, . . . for this
countable set of cosets. We find that

SpanC{π(g)v}g∈G = SpanC{π(gi)v}i=1,2,....

The left side is a nonzero subrepresentation of V, hence equals V
by irreducibility. The right side is a countable-dimensional vector
space, and the first assertion is proven.

For the second assertion, consider any e ∈ EndG(V), and a
nonzero vector v ∈ V again. The operator e is uniquely deter-
mined by e(v), since e(π(g)v) = π(g)e(v), and the vectors π(g)v
span V as a complex vector space.

It follows that the map e 7→ e(v) is an injective C-linear map
from EndG(V) to V. Hence EndG(V) has countable dimension.
But since V is an irreducible representation of G, we know that
EndG(V) is a skew-field. Consider the (commutative) subfield:

C(e) ⊂ EndG(V).

If C 6= C(e) – i.e., if e is not a scalar endomorphism of V – then e
must be transcendental over C. But note that C(e) is uncountable-
dimensional as a C-vector space since the set

{(e− c)−1 : c ∈ C}

is uncountable and C-linearly independent. This is a contradic-
tion.

Hence C = C(e) – every element of EndG(V) is a scalar endo-
morphism.

Q.E.D
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This adaptation of Schur’s lemma has the usual consequences:

Corollary 3.16 If G is an abelian `-group with countable basis for its
topology, then every irreducible representation of G is one-dimensional.14 14 We call a one-dimensional smooth repre-

sentation a character.

Corollary 3.17 Let G be an `-group with countable basis for its topol-
ogy. Let (π, V) be an irreducible smooth representation of G. Let Z be
the center of G. Then there exists a smooth character χ : Z → C× such
that

π(z)v = χ(z) · v for all z ∈ Z, v ∈ V.

When G is an `-group with countable basis for its topology, and
center Z, it is often convenient to consider not the category Rep∞

G ,
but rather the full subcategory consisting of representations with
a given central character. If χ : Z → C× is a character of Z, and
(π, V) is any smooth representation of G, we say that (π, V) has
central character χ if π(z)v = χ(z) · v for all z ∈ Z. Of course, not
all smooth representations of G have a central character (though
irreps do). We define Rep∞

G,χ to be the full subcategory of Rep∞
G ,

whose objects are those smooth representations with central char-
acter χ.

Corollary 3.18 If (π, V) and (σ, W) are two irreducible smooth repre-
sentations of G – an `-group with countable basis for its topology – then
HomG(V, W) is either zero or one-dimensional.

Induction, Compact Induction

Our treatment of smooth induction follows Bernstein 15, to some 15 J. Bernstein. Represenations of p-adic groups.
Harvard University, 1992. Lectures by Joseph
Bernstein. Written by Karl E. Rumelhart.extent. Let H be a closed subgroup of an `-group G. Let (π, V) be

a smooth representation of G, and let (σ, W) be a smooth repre-
sentation of H. Restriction of representations is quite simple:

Definition 3.19 Define16 ResG
Hπ to be the restriction of π to H. This 16 We always put the smaller group below,

and larger group above, in our notation for
induction and restriction.extends to a functor, ResG

H from Rep∞
G to Rep∞

H .

Induction of representations, as usual, is not as simple.

Definition 3.20 Define C[[H\σG, W]] to be the vector space of func-
tions f : G →W such that:

f (hx) = σ(h)( f (x)), for all x ∈ G, h ∈ H.

This is a representation of G by right translation:

[g f ](x) = f (xg) for all x, g ∈ G.

Define IndG
HW to be the subspace C[[H\σG, W]]∞ of smooth vectors for

this action. This extends to a functor, IndG
H from Rep∞

H to Rep∞
G .
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More concretely, an element of IndG
HW is a function f : G → W

which satisfies the following conditions:

1. f (hx) = σ(h)( f (x)) for all x ∈ G, h ∈ H.

2. There exists an open subgroup K ⊂ G such that f (xk) =
f (x) for all x ∈ G. In other words, f is uniformly17 locally 17 The uniformity is that K can be chosen

independently of x.constant.

There is an important subfunctor of IndG
H , called compact induc-

tion:

Definition 3.21 Define indG
HW to be the subspace of IndG

HW, consist-
ing of those functions f ∈ IndG

HW satisfying the additional condition:

There exists a compact subset X ⊂ G such that f (g) = 0 unless
g ∈ H · X. In other words, f is compactly supported, modulo H.

Then indG
HW is a G-subrepresentation of IndG

HW; it yields a subfunctor
indG

H ⊂ IndG
H .

Compact induction is simpler in many ways; for example, the
condition of uniform local constancy simplifies to the condition
of local constancy. Of course, if H\G is a compact space, then the
functors indG

H and IndG
H coincide. Less trivially,

Proposition 3.22 If (σ, W) is an admissible representation of H, and
H\G is compact, then IndG

HW is an admissible representation of G.

Proof: We leave the proof as an exercise. This can be found in
Proposition 9 of Bernstein’s notes18 as well. 18 J. Bernstein. Represenations of p-adic groups.

Harvard University, 1992. Lectures by Joseph
Bernstein. Written by Karl E. Rumelhart.Q.E.D

Frobenius reciprocity can now be formulated in the smooth
setting:

Theorem 3.23 Let (π, V) be a smooth representation of G, and (σ, W)
a smooth representation of H, a closed subgroup of G. Then there is a
natural isomorphism:

HomG(V, IndG
HW) ∼= HomH(ResG

HV, W).

This identifies IndG
H as a functor which is right adjoint to the functor

ResG
H . Both functors are exact.

Most typically, the functor indG
H of compact induction is used

when H is a closed and open (clopen) subgroup of G; in this case,
H\G is a discrete space. It follows that
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Lemma 3.24 Let H be a clopen subgroup of G. Let (σ, W) be a smooth
representation of H. Then there is a natural isomorphism of representa-
tions of G:

indG
HW ∼= W ⊗C[H] C[G].

From the adjointness of ring extension and pullback, we find
that

Theorem 3.25 (p. 125 of Cartier) 19 Let H be a clopen subgroup of 19 P. Cartier. Representations of p-adic groups:
a survey. In Automorphic forms, representations
and L-functions (Proc. Sympos. Pure Math.,
Oregon State Univ., Corvallis, Ore., 1977), Part
1, Proc. Sympos. Pure Math., XXXIII, pages
111–155. Amer. Math. Soc., Providence, R.I.,
1979.

G. Let (π, V) be a smooth representation of G, and (σ, W) a smooth
representation of H, a closed subgroup of G. Then there is a natural
isomorphism:

HomG(indG
HW, V) ∼= HomH(W, ResG

HV, ).

This identifies indG
H as a functor which is left adjoint to the functor

ResG
H . Both functors are exact.

Pullback, corestriction

Suppose now that B = T n U, where T, U are closed subgroups
of an `-group B. Let p : B → T be the projection map. There is a
functor given by pullback:

Definition 3.26 Let (η, Y) be a smooth representation of T. Define
p∗η : B→ AutC(V) by

p∗η(b) = η(p(b)).

Then (p∗η, Y) is a smooth representation of B, and p∗ extends to a
functor from Rep∞

T to Rep∞
B .

Of course, one may introduce the general pullback of smooth
representations, including restriction to a subgroup as well as the
above pullback as special cases. The pushforward functor is defined
by coinvariants:

Definition 3.27 Let (σ, W) be a smooth representation of B. Define
p∗W = WU = W/[U − 1]W to be the space of U-coinvariants of W.
Then, since T normalizes U, it follows that σ(T) stabilizes [U − 1]W
and hence the action σ of T on W descends to an action p∗σ of T on
WU = p∗W. This extends to a functor p∗ from Rep∞

B to Rep∞
T .

In this situation, we have the following adjointness theorem.

Theorem 3.28 (p. 125 of Cartier) 20 Let (η, Y) be a smooth represen- 20 P. Cartier. Representations of p-adic groups:
a survey. In Automorphic forms, representations
and L-functions (Proc. Sympos. Pure Math.,
Oregon State Univ., Corvallis, Ore., 1977), Part
1, Proc. Sympos. Pure Math., XXXIII, pages
111–155. Amer. Math. Soc., Providence, R.I.,
1979.

tation of T, and (σ, W) be a smooth representation of B. Then there is a
natural isomorphism:

HomB(p∗W, Y) ∼= HomT(W, p∗Y).

This makes p∗ a left adjoint to p∗.
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Indeed, the coinvariants WU can be naturally identified with a
module obtained by extension of scalars:

WU ∼= W ⊗C[B] C[T],

where C[T] is viewed as a C[B]-module via the trivial action of
U. The result follows from adjointness of ring-extension and pull-
back, suitably interpreted.

4 Representations of GL2, external theory

Hereafter, we let G = GL2(k), where k is a nonarchimedean local
field; very little will be lost by taking k = Qp. As usual, we study
the representations of a complicated group G, by understanding
the representations of “easier” subgroups, and the functors of
restriction and induction.

In addition, we drop the adjective “smooth” hereafter; all
groups will be `-groups, and all representations will be smooth.
By “irrep”, we mean an irreducible smooth representation.

By the external theory, we focus our attention on subgroups H of
G which arise as H = H(k) for algebraic subgroups H ⊂ G. The
primary subgroups of interest are:

B =
{(

a b
0 d

)
: a, d ∈ k×, b ∈ k

}
,

T =
{(

a 0
0 d

)
: a, d ∈ k×

}
∼= k× × k×,

U =
{(

1 b
0 1

)
: b ∈ k

}
∼= k.

Z =
{(

a 0
0 a

)
: a ∈ k×

}
= Z(G) ∼= k×.

These subgroups arise as the k-points of algebraic subgroups
B = TU ⊂ G. At the level of k-points, one has a semidirect
product decomposition B = T n U. We write p : B → T for the
canonical projection.

Representation theory of T
Perhaps this treatment of the torus T is
excessive in notation, for such a simple
case. The advantage is that everything here
generalizes easily to split tori of any rank.

Corresponding to the obvious isomorphism T ∼= Gm ×Gm, there
is an isomorphism of `-groups: T ∼= k× × k×. The algebraic
characters and cocharacters of T are:

X•(T) = Hom(T, Gm) ∼= Z2,

X• = X•(T) = Hom(Gm, T) ∼= Z2.
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There is a canonical perfect pairing:

X• × X• → Z,

given by the identification Hom(Gm, Gm) ∼= Z.
We write T◦ for the maximal compact subgroup of T; there is

a unique maximal compact subgroup, and T◦ is isomorphic to
O× × O×. While this isomorphism is non-canonical, there is a
canonical isomorphism:

X• ∼= T/T◦,

given by sending α ∈ X• to α(v) ∈ T/T◦; the choice of uniformiz-
ing element v does not affect the T◦-coset of α(v). The complex
dual torus of T is defined by:

T̂ = Hom(X•, C×) = X• ⊗Z C× ∼= C× ×C×.

Since T is abelian, the irreps of T ∼= k×× k× are one-dimensional
– they are given by a pair χ = (χ1, χ2) of (smooth) characters

χ1, χ2 : k× → C×.

We will pay particular attention to the unramified characters of T
– these are given by pairs (χ1, χ2) of characters, which are both
trivial on O×. Writing T◦ = O× ×O×, the unramified characters
are just Hom(T/T◦, C×). Thus the unramified characters of T are
described easily by the dual torus:

Homunr(T, C×) = Hom(T/T◦, C×) ∼= T̂ = Hom(Z, T̂).

Much more generally, local class field theory implies that

Homcont(T, C×) ∼= Homcont(Wk, T̂).

The unramified characters correspond to those continuous ho-
momorphisms from Wk to T̂ that factor through the quotient
Wunr

k
∼= Z. We follow the convention that the unramified character

of T corresponding to t ∈ T̂ should correspond to the unramified
character of Wk which sends a geometric Frobenius element to t.

This is known as the local Langlands corresponence for T, and
was generalized by Langlands to arbitrary tori in an article that
took thirty years to publish (finally in Pac. J. of Math.21). 21 .

Jacquet functor, supercuspidals

For the classification of irreps of G = GL2(k), and more generally
in the classification of irreps of reductive p-adic groups, the most
important method is parabolic induction and Harish-Chandra’s
theory of cuspidal representations.22 22 This is the local analogue of the dichotomy

between Eisenstein series and cuspforms.
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Definition 4.1 Let (π, V) be a representation of G. The Jacquet func-
tor is

JG
B = p∗ ◦ ResG

B : Rep∞
G → Rep∞

T .

In particular, JG
B V = VU is the space of U-coinvariants of V, viewed as a

smooth representation of T.

Definition 4.2 Let (η, Y) be a representation of T. The functor of
parabolic induction is

IG
B = IndG

B ◦ p∗ : Rep∞
T → Rep∞

G .

In particular, IG
B Y consists of uniformly locally constant functions f :

G → Y which satisfy

f (tux) = η(t)( f (x) for all t ∈ T, u ∈ U, x ∈ G,

and G acts on this space of functions by right translation.

Theorem 4.3 The functor JG
B is left adjoint to IG

B ; for a representation
(π, V) of G and a representation (η, Y) of T, there is a natural isomor-
phism:

HomG(V, IG
B Y) ∼= HomT(JG

B V, Y).

Proof: Adjointness of ResG
B and IndG

B implies

HomG(V, IG
B Y) = HomG(V, IndG

B p∗Y) ∼= HomB(ResG
B V, p∗Y).

Adjointness of p∗ and p∗ implies

HomB(ResG
B V, p∗Y) ∼= HomT(p∗ResG

B V, Y) = HomT(JG
B V, Y).

The naturality of these isomorphisms, i.e., the adjointness of func-
tors, implies the adjointness of IG

B and JG
B as required.

Q.E.D

In what follows, it will be more convenient to use the normalized
parabolic induction and Jacquet functor. Let δ : T → R×>0 be the
character23 given by: 23 This is usually called the modular character.

It describes the effect of T-conjugation on a
Haar measure on U. Something like it should
be used whenever carrying out induction and
restriction involving non-unimodular groups
(like B).

δ

(
a 0
0 d

)
= |a/d|.

Viewing characters of T as pairs of characters of k×, we find that

δ = (| · |, | · |−1).

We write IG
B δ1/2 for the functor which on objects sends a represen-

tation η of T to IG
B (η ⊗ δ1/2). Similarly, we write δ−1/2 JG

B for the
functor which sends a representation π of G to δ−1/2 ⊗ JG

B π.
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One advantage of this normalization is that unitarizability is
preserved; if χ is a unitary character of T (it has values in the unit
circle in the complex plane), then there is a natural Hermitian
inner product on IG

B δ1/2χ; this implies that subrepresentations
of IG

B δ1/2χ have complements – it eventually yields complete
reducibility of IG

B δ1/2χ.
The adjointness of JG

B and IG
B implies adjointness of the normal-

ized functors; in particular,

HomG(V, IG
B δ1/2Y) ∼= HomT(δ−1/2 JG

B V, Y).

The following result makes the representation theory of p-adic
groups much easier, in some ways, than the representation theory
of real Lie groups:

Proposition 4.4 The functors IG
B and JG

B are exact. Same for the func-
tors IG

B δ1/2 and δ−1/2 JG
B .

Proof: (Sketch) Exactness of the functor IG
B is easy, as is left-

exactness of JG
B . To demonstrate the right-exactness of JG

B , it suf-
fices to demonstrate the right-exactness of the “U-coinvariant
functor” p∗. This follows from the fact that U is the union of com-
pact subgroups – the functor of coinvariants for a compact group
is exact (a basic result in group homology with coefficients in a
vector space over a characteristic zero field) – and the exactness of
direct limits.

For the normalized functors, the result follows by exactness of
twisting, which is trivial to check.

Q.E.D

A useful basic result is that IG
B and JG

B are compatible with
twisting and central characters, in a simple way.

Proposition 4.5 Let χ = (χ1, χ2) be a character of T. Then IG
B χ has

central character χ1χ2. Furthermore, let χ0 be a character of k× and
write χ0χ for the character (χ0χ1, χ0χ2) of T; then there is a natural
isomorphism of representations of G:

IG
B (χ0χ) ∼= (χ0 ◦ det)⊗ IG

B χ.

Proof: The proof is straightforward and left to the reader.

Q.E.D

The Jacquet functor gives an initial classification of irreps of
G = GL2(k):

Definition 4.6 A representation (π, V) of G is called supercuspidal if
JG
B V = 0.
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This would not be such an interesting definition if it were not
for the following nontrivial theorem, due in various parts, and
somewhat independently, to various authors (Bernstein 24, Cassel- 24 J. Bernstein. Represenations of p-adic groups.

Harvard University, 1992. Lectures by Joseph
Bernstein. Written by Karl E. Rumelhart.man25, Adler and Roche26, among possible others):

25 W. Casselman. Introduction to the theory
of admissible representations of p-adic reductive
groups. 1974. Unpublished manuscript,
available online.

26 Jeffrey D. Adler and Alan Roche. Injectivity,
projectivity and supercuspidal representa-
tions. J. London Math. Soc. (2), 70(2):356–368,
2004.

Theorem 4.7 The following conditions are equivalent, for an irrep
(π, V) of G, whose central character is χ : Z → C×:

1. (π, V) is supercuspidal – JG
B V = 0.

2. For all v ∈ V, and λ ∈ Ṽ = (V′)∞, the matrix coefficient mv,λ is
compactly supported, modulo Z; here mv,λ ∈ C∞(G) is defined by

mv,λ(g) = λ(π(g)v).

3. There exists v ∈ V and λ ∈ V∞, such that mv,λ 6= 0 and mv,λ is
compactly supported, modulo Z.

4. (π, V) is injective in the category Rep∞
G,χ.

5. (π, V) is projective in the category Rep∞
G,χ.

In particular, if (π, V) is a smooth representation of G which
possesses a central character, there are subrepresentations Vsc,
Vind such that Vsc is supercuspidal, and Vind has no supercuspidal
subrepresentation (nor quotient), and V = Vsc ⊕Vind.

The description of supercuspidal representations of G is beyond
the scope of these notes; let us just say that all such representa-
tions arise via compact induction, from irreducible representations
of compact-modulo-Z subgroups of G, e.g., Z · GL2(O). We refer
to the excellent recent book of Bushnell-Henniart 27 for more. 27 Colin J. Bushnell and Guy Henniart.

The local Langlands conjecture for GL(2),
volume 335 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin,
2006.

Geometric Decomposition

Consider now an irrep (π, V) of G which is not supercuspidal;
that is, JG

B V 6= 0. A priori, JG
B V is just a smooth represenation of T.

Lemma 4.8 The representation JG
B V is finitely-generated as a T-module.

Proof: Let v be a nonzero vector in V, and let H be an open sub-
group of G fixing V. The compactness of B\G ∼= P1(k) implies
that there are a finite number of double cosets in B\G/H. Choos-
ing representatives g1, . . . , gd for these cosets, we find that V is
generated – as a B-module – by the finite set {π(gi)v}1≤i≤d. Thus,
since U acts trivially on VU , we find that VU = JG

B V is gener-
ated – as a T-module – by the projections of the vectors π(gi)v for
1 ≤ i ≤ d.

Q.E.D
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It follows that

Lemma 4.9 The representation JG
B V has an irreducible quotient.

Proof: The proof is somewhat difficult, and we just sketch the
idea. Note that the choice of uniformizing element v yields a
decomposition T ∼= X• × T◦ of `-groups, where X• is (non-
canonically) isomorphic to Z2. One may first decompose JG

B V
as a representation of the compact `-group T◦:

JG
B V =

⊕
φ∈T̂◦

(JG
B V)φ.

Each T◦-isotypic component is then a representation of X• ∼= Z2.
In other words, each T◦-isotypic component is a C[X•]-module.
Since JG

B V is nonzero, there exists a φ ∈ T̂◦ such that (JG
B )φ 6= 0.

Thus to check that JG
B V has an irreducible quotient, it suffices to

check that (JG
B V)φ has an irreducible quotient as a C[X•]-module.

From our previous study of the representations of Z, it suffices
(by Nakayama’s lemma) to check that (JG

B V)φ is finitely-generated
as a C[X•]-module. But this follows from the fact that JG

B V is
finitely-generated as a T-module, and T◦ acts via a character on
(JG

B V)φ.28 28 In fact, just knowing that JG
B V is finitely

generated as a T-module is enough to show
that it has an irreducible quotient, using
a Zorn’s lemma argument. It is not really
necessary to use the T◦-isotypic components.

Q.E.D

When (π, V) is an irrep of G, we find that δ−1/2 JG
B V has an

irreducible quotient – a character χ of T:

HomT(δ−1/2 JG
B V, χ) 6= 0.

We choose to use the normalized functors, for reasons that will
become clear. It follows that

HomG(V, IG
B δ1/2χ) 6= 0,

and so V is a subrepresentation of IG
B δ1/2χ. Thus the non-supercuspidal

representations arise as subrepresentations of principal series – rep-
resentations parabolically induced from characters of tori.

For this reason (and since we are not prepared to discuss su-
percuspidal representations here), we study the representations
IG
B δ1/2χ – the principal series representations of G. The key to

studying these representations is the Bruhat decomposition:

G = B t BwB, w =
(

0 1
1 0

)
.

Here BwB is an open subset of G, and B is its closed complement.
The short exact sequence of C-modules:

0→ C∞
c (BwB)→ C∞

c (G)→ C∞
c (B)→ 0
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is in fact a short exact sequence of smooth representations of
B × B by left and right translation. From this (and a little work
to check right-exactness) we obtain a short exact sequence of B-
representations (by right-translation):

0→ Iw(δ1/2χ)→ IG
B δ1/2χ→ I1(δ1/2χ)→ 0,

where:

Iw(χ) = { f ∈ C∞
c (BwB), such that f (tux) = χ(t)δ1/2(x) f (x)},

I1(χ) = { f : B→ C, such that f (tux) = χ(t)δ1/2 f (x)} ∼= C.

An explicit and nontrivial29 computation demonstrates that: 29 A geometric argument – that BwB is
isomorphic to B×U as a k-variety – implies
that Iw(δ1/2χ) is one-dimensional. Seeing that
I1(δ1/2χ) is one-dimensional is easier. One
identifies the projection of Iw(δ1/2χ) onto
its U-coinvariants with an integral over U
– tracking through the T-action proves the
result.

δ−1/2 JG
B (Iw(δ1/2χ)) ∼= χw, δ−1/2 JG

B (I1(δ1/2χ)) ∼= χ.

To summarize, there is a short exact sequence of T-representations

0→ χw → δ−1/2 JG
B IG

B δ1/2χ→ χ→ 0. (1)

Here,
χ = (χ1, χ2), χw = (χ2, χ1).

If χ and χw are distinct characters of T, then the short exact se-
quence splits and:

δ−1/2 JG
B IG

B δ1/2χ ∼= χ⊕ χw.

Lemma 4.10 If W is any subquotient of IG
B δ1/2χ, then JG

B W 6= 0.

Proof: If JG
B W = 0, then W is supercuspidal. It follows, from

injectivity and projectivity of supercuspidals30, and the fact that 30 Really, it is deceptive to utilize injectivity
and projectivity of supercuspidals for this
sort of result. The proof of injectivity and
projectivity of supercuspidals relies on results
like this lemma, to my recollection. It is much
better to prove this lemma using Jacquet’s
lemma, and compact subgroups with Iwahori
decomposition.

IG
B δ1/2χ has a central character δ1/2χ1χ2, that the subquotient W

of IG
B δ1/2χ also arises as a submodule. Hence

Hom(W, IG
B δ1/2χ) 6= 0.

By adjointness,
Hom(JG

B W, δ1/2χ) 6= 0.

This contradicts the fact that W is supercuspidal.

Q.E.D

Corollary 4.11 The representation IG
B δ1/2χ has length at most two.

Proof: The exactness of the functor JG
B , the previous lemma, and

the fact that δ−1/2 JG
B IG

B δ1/2χ is two-dimensional implies this corol-
lary.
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Q.E.D

The precise conditions for reducibility of IG
B δ1/2χ are given by

the following

Theorem 4.12 The representation IG
B δ1/2χ is reducible if and only if

χ1 = | · |χ2, or χ1 = | · |−1χ2.

Equivalently, IG
B δ1/2χ is reducible if and only if

χ = δ±1χw.

This theorem requires a lot of work – we refer to the exposition of
Tadic for a nice treatment. Partial results follow from Frobenius
reciprocity and the short exact sequence (??): we find that

EndG(IG
B δ1/2χ) ∼= HomT(δ−1/2 JG

B IG
B δ1/2χ, χ).

We find two cases:

1. The space EndG(IG
B δ1/2χ) is one-dimensional, if χ 6= χw, or

if χ = χw and the extension δ−1/2 JG
B IG

B δ1/2χ of χ by itself is
nontrivial.

2. The space EndG(IG
B δ1/2χ) is two-dimensional if χ = χw and

the extension δ−1/2 JG
B IG

B δ1/2χ of χ by itself splits.

By Schur’s lemma, if EndG(IG
B δ1/2χ) is two-dimensional, then

IG
B δ1/2χ is reducible; but the above observation implies that χ =

χw, and Theorem ?? implies that there is no reducibility when
χ = χw (only when χ = δ±1χw). Hence we find that

Corollary 4.13 The representation IG
B δ1/2χ is either irreducible, or else

is a nonsplit extension of one irreducible representation of G by another
irreducible representation of G.

Proof: If IG
B δ1/2χ is reducible, we find that its G-endomorphisms

form a one-dimensional space. Hence it cannot be decomposed
into the direct sum of irreducible representations. Since it has
length at most two, the result follows immediately.

Q.E.D

One example is particularly easy to see, and important for ap-
plications:

Example 4.14 Considering χ = δ−1/2, we find that IG
B δ1/2χ = IG

B C

is a reducible representation of G, of length two. There is a short exact
sequence of smooth representations of G:

0→ C→ IG
B C→ St→ 0.
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The embedding of C into IG
B C takes a complex number to the correspond-

ing constant function on G. Since its image is clearly one-dimensional,
and IG

B C is infinite-dimensional, there must be a nontrivial quotient.
This quotient is called the Steinberg representation.

The symmetry between χ1 and χ2 manifests in a rational family
(rational, in the parameter χ ∈ Homcont(T, C×)) of intertwining
operators, from IG

B δ1/2χ to IG
B δ1/2χw.

Proposition 4.15 Suppose that χ 6= χw. Then IG
B δ1/2χ is isomorphic to

IG
B δ1/2χw.

Proof: By Frobenius reciprocity, there is a natural C-linear iso-
morphism

HomG(IG
B δ1/2χ, IG

B δ1/2χw) ∼= HomT(δ−1/2 JG
B IG

B δ1/2χ, χw).

Recall the short exact sequence of representations of T ??:

0→ χw → δ−1/2 JG
B IG

B δ1/2χ→ χ→ 0.

It follows that if χ 6= χw, then the above sequence splits, IG
B χ and

IG
B χw are irreducible, and hence are isomorphic to each other.

Q.E.D

In fact, the intertwining operators, which exist by Frobenius
reciprocity, form a complex algebraic family over (a Zariski-dense
subset of) the variety Homcont(T, C×). However, these operators
have zeros and poles, which correspond to the reducibility points
of the principal series representations.

Unramified principal series

Especially important for global applications are the unramified
principal series; these are the representations IG

B δ1/2χ, when χ :
T/T◦ → C× is an unramified character of T. In particular,

χ = (χ1, χ2), χi(x) = sval(x)
i ,

for some nonzero complex numbers s1, s2. The pair (s1, s2) can be
thought of as an element of T̂, if one wishes to be canonical. For
simplicity, we define

I(s1, s2) = IG
B δ1/2χ, when χ

(
a 0
0 d

)
= (sval(a)

1 , sval(d
2 ).

From Proposition ??, when s1 6= s2, there is an isomorphism:

I(s1, s2) ∼= I(s2, s1).

We find a reducibility point when χ1 = | · |±1χ2. In other words,
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Proposition 4.16 The unramified principal series I(s1, s2) is reducible
if and only if s1 = q±1s2. Here, we recall that q = #(O/v) is the order
of the residue field of k.

Proof: This follows from the previous result on reducibility of
principal series representations, and changing notation.

Q.E.D

If s1 = q−1s2, then we find that

δ1/2 · (χ1, χ2) = (| · |1/2χ1, | · |−1/2χ2) = (| · |−1/2χ2, | · |−1/2χ2).

It follows that

IG
B δ1/2χ ∼= |det|−1/2sval(det)

2 ⊗ IG
B C.

In this case, IG
B δ1/2χ has an irreducible subrepresentation and

irreducible quotient:

0→ | · |−1/2sval(det) → I(s1, s2)→ | · |−1/2sval(det) ⊗ St→ 0.

If s1 = qs2, then one finds a similar short exact sequence, with a
twisted trivial representation as a quotient, and twisted Steinberg
representation as a subrepresentation.

To summarize, we have a two-dimensional complex algebraic
variety31 T̂ = MSpec(C[s±1

1 , s±1
2 ]), acted upon by a finite group 31 We identify complex algebraic varieties

with their C-points here.W = {1, w}, where w switches s1 and s2. There’s a W-stable
subvariety T̂red cut out by the equations s1 = q±1s2.

There is a complex algebraic family (see Bernstein32 for the 32 J. N. Bernstein. Le “centre” de Bernstein.
In Representations of reductive groups over a local
field, Travaux en Cours, pages 1–32. Hermann,
Paris, 1984. Edited by P. Deligne.

precise meaning) of representations I(s1, s2) of G, parameterized
by (s1, s2) ∈ T̂, which is generically irreducible, and everywhere
satisfies the conclusion of Schur’s lemma. The group W = {1, w}
acts on T̂, and on the Zariski-open irreducible locus T̂ − T̂red.
Intertwining operators make this complex algebraic family of
representations into a W-equivariant sheaf, when pulled back to
T̂ − T̂red.

In any case, we find that the irreducible constituents of unram-
ified principal series representations are parameterized by the
following data:

1. An unordered pair {s1, s2} of nonzero complex numbers,
such that s1 6= q±1s2 or...

2. An ordered pair (s1, s2) of nonzero complex numbers, such
that s1 = q−1s2 and an additional “bit of information”
encoding whether one takes the twisted trivial subrepresen-
tation or twisted Steinberg quotient representation.

To such data, we associate the following Langlands parameters:
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1. The GL2(C)-conjugacy class containing the semisimple

element
(

s1 0
0 s2

)
. (Note that this only depends on, and

uniquely determines, the unordered pair {s1, s2} of nonzero
complex numbers.

2. The GL2(C)-conjugacy class of the pair (t, N), where t is

the semisimple element
(

s1 0
0 s2

)
(with s1 = q−1s2), and

N is a nilpotent element of M2(C) satisfying tNt−1 = qN;
for any such (s1, s2), there are two such conjugacy classes of
pairs: one contains (t, 0) and the other contains (t, N) with

N =
(

0 1
0 0

)
.

The first case can also be thought of as a conjugacy class of pairs
(t, N) with tNt−1 = qN; but when s1 6= q±1s2, the only nilpotent
N satisfying that identity is zero. In the second case, the extra “bit
of information” given by whether N = 0 or N 6= 0 corresponds
to the extra “bit of information” given by whether one chooses the
twisted trivial representation of the twisted Steinberg representa-
tion, respectively.

If an irreducible constituent of an unramified principal series
representation (π, V) corresponds to a parameter (t, N) as above
(t semisimple in GL2(C) and N nilpotent in M2(C)), then the
standard (degree 2) L-function of (π, V) is:

L(π, Stand) = det(1− tX|Ker(N)).

5 Representations of GL2, internal theory

Let K be an open compact subgroup of G = GL2(k). It is im-
portant to study representations with K-fixed vectors; in order
to have a good category of representations, we define RepK

G to be
the category of smooth representations of G which are generated
(as G-represenations) by their K-fixed vectors. These are called K-
spherical representations. For general K, this category is not stable
under subquotients!

Let H(G, K) be the Hecke algebra of compactly supported, K-bi-
invariant functions on G:

H(G, K) = C∞
c (K\G/K).

If (π, V) is a K-spherical representation, then VK is naturally an
H(G, K)-module, via

π( f )v =
∫

G
f (g)π(g)vdg.



25

If f1, f2 ∈ H(G, K), then

π( f1)π( f2)v = π( f1 ∗ f2)v,

where the convolution is defined by

[ f1 ∗ f2](g) =
∫

G
f1(h) f2(h−1g)dh.

In fact, this gives an equivalence of categories, from the cat-
egory of modules over the convolution algebra H(G, K) and the
category of K-spherical representations.

These categories are somewhat mysterious in general, but when
K = GL2(O), we have the category of unramified representations.
These are well-understood; moreover in the factorization of auto-
morphic representations, irreducible unramified representations
occur for almost all primes.

Unramified representations

Hereafter, let K = GL2(O). The remarkable theorem about the
spherical Hecke algebra is the following:

Theorem 5.1 Define, for f ∈ H(G, K), the Satake transform S f ∈
C∞

c (T)

[S f ](t) = δ(t)−1/2
∫

U
f (ut)du = δ(t)1/2

∫
U

f (tu)du.

Then
S f ∈ H(T, T◦) = C∞

c (T/T◦)W = C[X•]W ,

where W = {1, w}. Moreover, S determines an isomorphism of algebras:

H(G, K) ∼= C[X•]W .

In particular, this theorem implies that H(G, K) is a commutative
C-algebra! Highest weight theory, for the algebraic representations
of GL2(C), implies that

C[X•(T)]W = C[X•(T̂)]W ∼= Rep(GL2(C)),

where Rep(GL2(C)) is the complexification of K0 of the category
of finite-dimensional algebraic representations of GL2(C) – i.e.,
the complexified representation ring of GL2(C).

As the category of spherical representations of G is equivalent
to the category of H(G, K)-modules, which is equivalent to the
category of C[X±1

1 , X±1
2 ]W-modules. It follows that an irreducible

unramified representation of G is one-dimensional – determined
by two nonzero complex numbers (s1, s2), modulo switching;
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there is a natural bijection between the isomorphism classes of
irreducible unramified representations of G and unordered pairs
{s1, s2} of nonzero complex numbers.

More canonically, there is a natural bijection between the set of
isomorphism classes of irreducible unramified representations of
G and the W-orbits on T̂.

Connection to unramified principal series

Let I ⊂ K be the Iwahori subgroup, consisting of matrices in
GL2(O) whose lower-left entry is in vO. Recall that T◦ = T(O) ∼=
O× ×O×. The following is a fundamental theorem of Borel and
Matsumoto:

Theorem 5.2 Let (π, V) be an admissible (smooth and finite-length
certainly suffices) representation of G. Consider the natural projection
map V → VU from V onto the space of JG

B V. This projection map
induces an isomorphism of complex vector spaces:

V I → (VU)T◦ .

A corollary of this result is the following:

Corollary 5.3 If (π, V) is a K-spherical admissible representation of
G, then JG

B V 6= 0. If moreover, (π, V) is an irreducible unramified
representation of G, then JG

B V has an unramified character of T as a
subquotient.

By adjointness, and what we know about unramified principal
series, we find that

Corollary 5.4 If (π, V) is an irreducible unramified representation of
G, then (π, V) occurs as a subquotient in an unramified principal series
representation IG

B δ1/2χ, where χ : T/T◦ → C× is uniquely determined
by V up to the action of W.

From this result, we find that an irreducible unramified repre-
sentation (π, V) of G yields two pairs of complex numbers:

1. Since (π, V) is associated to an irreducible H(G, K)-module,
we obtain two “Hecke eigenvalues” s1, s2 (up to switch-
ing). These are called the Satake parameters of (π, V), since
they arise from the Satake isomorphism from H(G, K) to
H(T, T◦).

2. Since (π, V) occurs in an unramified principal series repre-
sentation, we find that (π, V) is a subquotient of I(t1, t2), for
nonzero complex numbers t1, t2, uniquely determined, up to
switching.
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Furthermore, although the unramified principal series representa-
tion IG

B δ1/2χ may be reducible, it has a unique unramified subrep-
resentation – the twisted trivial representation (with unramified
twist, of course) is always unramified, and the twisted Steinberg
representation is never unramified (has no K-fixed vectors).

The connection between these is the following significant theo-
rem:

Theorem 5.5 The unordered pair {s1, s2} equals the unordered pair
{t1, t2}.

Let πs1,s2 denote the irreducible spherical representation of
GL2(k) with parameters s1, s2 ∈ C×.

The impact of this theorem, for the theory of modular forms, is
the following: Let f be a classical modular form for a congruence
subgroup Γ0(N); suppose that f is a cuspidal newform, of some
Nebentypus, for good measure. Then one associates to f an auto-
morphic representation Π =

⊗′ πv, where the (restricted) tensor
product is over all places v of Q. At all primes p not dividing N,
the representation πp is irreducible and unramified.

The previous theorem tells us that the eigenvalue of the Tp
operator (and the Nebentypus character), which determines the
Hecke eigenvalue and hence the Satake parameter for the repre-
sentation πp, also determines the isomorphism class of the rep-
resentation πp. The representation πp is precisely the irreducible
unramified constituent of the unramified principal series I(s1, s2),
where (s1, s2) is the Satake parameter deduced from the Hecke
eigenvalue of Tp.

Slightly more generally, if p divides N, but p2 does not divide
N, the representation πp ends up being isomorphic to a twist of
the Steinberg representation; proving this requires some analysis
of the Iwahori Hecke algebra H(G, I) instead of H(G, K).
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