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1. Z-Finiteness of Hecke Algebras

Let Sk denote the complex vector space Sk(Γ1(N)) of cusp forms of weight k ≥ 2 on
Γ1(N). Let T be the Z-subalgebra of EndC(Sk) generated by Hecke operators Tp for every
prime p and diamond operators 〈d〉 for every d ∈ (Z/NZ)×. In this section our aim is to
prove that T is a finite free Z-module. As it is clear that T is torsion-free, it is enough to
show that T is a finitely generated Z-module. We show this in Theorem 1.6.

We begin with some general constructions for any congruence subgroup Γ of SL2(Z). Let
{e, e′} be a C-basis for C2. The group Γ acts on C2 via the embedding SL2(Z) →֒ SL2(C)
with respect to the basis {e, e′}: for γ =

(
a b
c d

)
∈ Γ and c1e+ c2e

′ ∈ C2,

γ · (c1e+ c2e
′) = (ac1 + bc2)e+ (cc1 + dc2)e

′.

This action induces an action on Vk := Symk−2(C2).
Fix any z0 in the upper half-plane h. Let f be any element of the C-vector space Mk(Γ)

of modular forms of weight k on Γ. We define the function If : Γ −→ Vk by

(1.1) If (γ) =

∫ γz0

z0

(ze+ e′)k−2f(z)dz

for every γ ∈ Γ.

Proposition 1.1. The function If in (1.1) is a 1-cocycle and its class in H1(Γ, Vk) is

independent of z0.

Proof. First, we show that If is in Z1(Γ, Vk). Let γ1 =

(
a b
c d

)
and γ2 be elements of Γ.

Since f |kγ1 = f , we have

γ1 · If (γ2) =

∫ γ2z0

z0

((az + b)e+ (cz + d)e′)k−2f(z)dz,

=

∫ γ2z0

z0

(γ1(z)e+ e′)k−2f(γ1z)
dz

(cz + d)2
,(1.2)

=

∫ γ2z0

z0

(γ1(z)e+ e′)k−2f(γ1z)d(γ1z),

=

∫ γ1γ2z0

γ1z0

(ze+ e′)k−2f(z)dz.

It follows that

γ1 · If (γ2) + If (γ1) =

∫ γ1γ2z0

γ1z0

(ze+ e′)k−2f(z)dz +

∫ γ1z0

z0

(ze+ e′)k−2f(z)dz = If (γ1γ2),

as desired.
Now we show that If modulo B1(Γ, Vk) is independent of z0. Choose z1 ∈ h. For any

γ ∈ Γ the difference
∫ γz0

z0
(ze+ e′)k−2f(z)dz −

∫ γz1

z1
(ze+ e′)k−2f(z)dz is equal to

∫ γz0

γz1

(ze+ e′)k−2f(z)dz −

∫ z0

z1

(ze+ e′)k−2f(z)dz.

The calculations in (1.2) with γz0 replaced by z1 show that
∫ γz0

γz1
(ze + e′)k−2f(z)dz =

γ ·
∫ z0

z1
(ze+ e′)k−2f(z)dz. Hence, we see that the difference is a 1-coboundary.
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By Proposition 1.1 we can define the C-linear map

(1.3) j : Mk(Γ) −→ H1(Γ, Vk)

by j(f) = If , where If is given in (1.1).

Proposition 1.2. Choose z0 ∈ h. The restriction

j : Sk(Γ) −→ H1(Γ, Vk)

f 7→
(
γ 7→

∫ γz0

z0

(ze+ e′)k−2fdz
)
,

of (1.3) is injective.

Proof. For any h ∈ Sk(Γ) consider the holomorphic map

(ze+ e′)k−2h(z) : h −→ Vk.

Since h is simply connected, we can choose a holomorphic function Gh : h −→ Vk so that

dGh = (ze+ e′)k−2h(z)dz. For any σ =

(
a b
c d

)
∈ SL2(Z) we see that

d(Ghσ) = G′
h(σ(z))dσ(z) ,

=
((az + b

cz + d

)
e+ e′

)k−2
h(σ(z))

dz

(cz + d)2
,

= ((az + b)e+ (cz + d)e′)k−2(h|kσ)(z)dz ,

where (h|kσ)(z) = (cz + d)−kh(σ(z)). Therefore, for every σ ∈ SL2(Z) we have

(1.4) Ghσ = σ ·Gh|kσ + vσ

for our fixed choice of antiderivative Gh|kσ of (ze+ e′)k−2(h|kσ) and some vσ ∈ Vk.
Let SL2(Z) act on the holomorphic maps G : h −→ Vk as follows:

(σ ∗G)(z) = σ · (Gσ−1(z)).

For each member h̃ of SL2(Z)-orbit of h (under σ 7→ h|kσ) we choose an antiderivative Gh̃

as above, so by (1.4) for every σ ∈ SL2(Z) we have

(1.5) σ ∗Gh = Gh|kσ−1 + cσ

for some cσ ∈ Vk.
Consider f ∈ Sk(Γ) in the kernel of j; that is, the 1-cocycle

γ 7→

∫ γz0

z0

(ze+ e′)k−2f(z)dz = Gf (γz0) −Gf (z0)

is a 1-coboundary. Then, for every γ ∈ Γ we have

(1.6) Gf (γz0) −Gf (z0) = γ · v − v

for some v ∈ Vk. Our aim is to show that f = 0.
For γ ∈ Γ the equation (1.5) becomes

(1.7) γ ∗Gf = Gf + cγ

for some cγ ∈ Vk. We evaluate this equation at γz0 and obtain that cγ = (γ ∗ Gf )(z0) −
Gf (γz0). By using equation (1.6) we see that cγ = γ · (Gf (γ−1z0) − v) − (Gf (z0) − v). We
may replace Gf with Gf − (Gf (z0) − vγ), so (1.7) becomes

(1.8) γ ∗Gf = Gf

for all γ ∈ Γ.
Recall that for the upper half-plane h, we topologize h∗ = h ∪ P1(Q) using SL2(Z)-

translates of bounded vertical strips

{z ∈ h| Im(z) > c, a < Re(z) < b}
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for a, b ∈ R and c > 0. Now we prove the following claim.

Claim 1: As we approach any fixed cusp in h∗, the function Gf remains bounded in Vk.

Proof of Claim 1: Let s ∈ h∗ be any cusp and choose σ ∈ SL2(Z) such that σ(s) = ∞.
To prove the claim, it is enough to prove that σ ∗ Gf is bounded as we approach ∞ in
h. By (1.5), this is just an antiderivative of f |kσ−1. Thus, it suffices to prove that each
coefficient function of (ze+ e′)k−2(f |kσ−1)(z) has bounded antiderivative as Im(z) → ∞ in
any bounded vertical strip {z ∈ h| |Re(z)| < a} where a ∈ R+. Since f ∈ Sk(Γ), we have

(f |kσ−1)(z) ∈ Sk(σΓσ−1). Let f̃(z) := (f |kσ−1)(z). Since f̃ is a cusp form for σΓσ−1, for
any a > 0 there exists c ∈ R+ such that

|f̄(z)| ≪ e−cIm(z) as Im(z) → ∞

uniformly for |Re(z)| < a. Thus, for any x ∈ [−a, a] and y0 ≥ M > 0 the coefficients of

Gf̃ (x+ iY )−Gf̃ (x+ iy0) are linear combinations of terms
∫ Y

y0
yrf̃(x+ iy)dy with uniformly

bounded coefficients. This integral is bounded above by |Pr(Y )|e−cY + |Pr(y0)|e−cy0 , where
Pr is a fixed polynomial of degree r, and as Y → ∞ this tends to |Pr(y0)|e−cy0 uniformly

in |x| ≤ a. This shows that each coefficient function of (ze + e′)k−2(f̃(z)) has bounded
antiderivative as Im(z) → ∞ in the mentioned vertical strips. Hence, Claim 1 follows.

Using the SL2(Z)-invariant bilinear pairing B : C2 × C2 −→ C defined by the determi-
nant, we obtain the induced bilinear pairing

Bk : Vk × Vk −→ C,

which is also SL2(Z)-invariant. For ωf = (ze+ e′)k−2fdz, consider the 2-form

Bk(ωf , ω̄f ) = (k − 2)! |f |2 det(ze+ e′, z̄e+ e′)k−2 dz ∧ dz̄,(1.9)

= (k − 2)! (2i)k−1 yk |f |2
dxdy

y2
,

where z = x+ iy. Since f is a cusp form, Bk(ωf , ω̄f) has finite integral over a fundamental
domain F of Γ. Before computing this integral, we compute Bk(ωf , ω̄f ) in another way.

Since ωf = dGf = gdz for g = (ze+ e′)k−2f ,

Bk(ωf , ω̄f) = Bk(g, ḡ) dz ∧ dz̄.

But g is holomorphic, so ∂g
∂z̄

= 0 and hence

Bk(g, ḡ) =
∂Bk(Gf , ḡ)

∂z
.

Thus, we see that

Bk(ωf , ω̄f) =
∂Bk(Gf , ḡ)

∂z
dz ∧ dz̄ = d(Bk(Gf , ḡ)dz̄).

By using this equality and Stoke’s Theorem we obtain

(1.10)

∫

F

Bk(ωf , ω̄f) =

∫

∂F

Bk(Gf , dGf ).

Now, we want to compute
∫

∂F
Bk(Gf , dGf ). To do this, for each cusp c we choose

γ ∈ SL2(Z) such that γ(c) = ∞. We define the “loop” Rc,h around c in F to be γ−1(L)
where L is the horizontal segment joining the two edges at a common “height” h emanating
from ∞ in γ(F ). Define the “closed disc” Dc,h = γ−1(UL) where UL is the closed vertical
strip above L including ∞. Then, this integral is equal to

(1.11) lim
h→∞

( ∫

∂(F−∪cDc,h)

Bk(Gf , dGf ) +
∑

c∈{cusps of F}

∫

Rc,h

Bk(Gf , dGf )
)
.

To calculate the first integral in (1.11) we prove the following claim.

Claim 2: For any γ ∈ Γ, the pullback γ∗(Bk(Gf , dGf )) is equal to Bk(Gf , dGf ).
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Proof of Claim 2: Let γ ∈ Γ. Since Bk is SL2(Z)-invariant, we have

γ∗(Bk(Gf , dGf )) = Bk(Gfγ, d(Gfγ)).

Since γ ∈ Γ, by (1.8) we see that Gf = γ−1 ∗Gf . With this equality we obtain Gfγ =
γ−1 ·Gf . Thus, the above equality gives us

γ∗(Bk(Gf , dGf )) = Bk(γ−1 ·Gf , d(γ
−1 ·Gf )),

= Bk(γ−1 ·Gf , γ
−1 · d(Gf )),

= Bk(Gf , dGf ).

The last equality holds because Bk is SL2(Z)-invariant. Hence, Claim 2 follows.

By Claim 2, the integrals on edges L1 and L2 of F such that L1 = γL2 for some γ ∈ Γ
cancel. That gives us

(1.12)

∫

∂(F−∪cDc,h)

Bk(Gf , dGf ) = 0

for any h. Now, consider any cusp c of F and the loop Rc,h around it. We want to compute

limh→∞

∫
Rc,h

Bk(Gf , dGf ). Choose σ ∈ SL2(Z) such that σ(∞) = c. We have

∫

Rc,h

Bk(Gf , dGf ) =

∫

σ−1(Rc,h)

σ∗(Bk(Gf , dGf )),

=

∫

σ−1(Rc,h)

Bk(Gfσ, dGfσ);(1.13)

the last equality holds because Bk is SL2(Z)-invariant. The loop σ−1(Rc,h) is a loop R∞,h

around ∞ at height h. By equation (1.4), the function Gfσ is just σ ·Gf |kσ up to translation
by a constant in Vk. Thus, as Bk is SL2(Z)-invariant, instead of computing the limit
with integral (1.13), we may compute it with

∫
R∞,h

Bk(Gf |kσ, dGf |kσ) with any choice of

antiderivative Gf |kσ. We do this by calculating the integrals of the {e, e′}-coefficients of the
integrand.

By Claim 1, any antiderivative Gf |kσ is bounded in Vk as we approach ∞ in a bounded

vertical strip, and dGf |kσ has an explicit formula in terms of the cusp form f̄ |kσ. Thus, for
any a > 0 there exists b > 0 such that

|f̄ |k(z)| ≪ e−bIm(z) as Im(z) → ∞

uniformly for |Re(z)| < a, so limh→∞

∫
R∞,h

Bk(Gf , dGf ) = 0. As a result, for each cusp c

of F and the loop Rc,h around it limh→∞

∫
Rc,h

Bk(Gf , dGf ) = 0. Hence,

(1.14) lim
h→∞

∑

c∈{cusps of F}

∫

Rc,h

Bk(Gf , dGf ) = 0.

By (1.12) and (1.14), we see that the integral (1.10) becomes
∫

F

Bk(ωf , ω̄f ) = 0.

In (1.9), we computed Bk(ωf , ω̄f ) explicitly. Thus, this gives us

(k − 2)! (2i)k−1

∫

F

yk |f |2
dxdy

y2
= 0.

The function inside the integral is nonnegative, so f = 0, as promised. �

From now on, we assume that Γ = Γ1(N). By Proposition 1.2, we have injective C-linear
map

(1.15) j : Sk →֒ H1(Γ, Vk).
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Now, we want to construct operators acting on H1(Γ, Vk) compatible via j with the Hecke
operators acting on Sk and preserving the Z-structure on H1(Γ, Vk). To do this we view
Hecke operators acting on Sk as double cosets ΓαΓ where α is an element of

(1.16) ∆ = {β ∈ M2(Z) | det(β) > 0, β ≡

(
1 ∗
0 ∗

)
modN}.

It suffices to construct some Tα acting on H1(Γ, Vk) for every α ∈ ∆ such that

(i) the map j in (1.15) carries [ΓαΓ]-action on the left to Tα-action on the right,
(ii) Tα preserves the Z-structure on H1(Γ, Vk) coming from the one on Vk.

The following three lemmas give such Tα.

Lemma 1.3. Choose α ∈ ∆ and coset representatives {αi} for the left multiplication action

of Γ in ΓαΓ, so that ΓαΓ =
∐n

i=1 Γαi. For every i and γ ∈ Γ, define j[i] uniquely via

αiγ = γiαj[i]. There is a well-defined operator

Tα : H1(Γ, Vk) −→ H1(Γ, Vk).

c 7−→ (γ 7→
n∑

i=1

(detα)k−1α−1
i · c(γi)),

which does not depend on the coset representatives.

Let Γα := α−1Γα ∩ Γ. Using the natural finite-index inclusion ι1 : Γα →֒ Γ and the

finite-index inclusion ι2 : Γα →֒ Γ defined by ι2(β) = αβα−1, the resulting composite map

of the restriction and corestriction maps

H1(Γ, Vk)
Res

−−−−−→
along ι2

H1(Γα, Vk)
Cor

−−−−−→
along ι1

H1(Γ, Vk)

is the operation Tα.

Proof. We first show that if we use another choice of coset representatives {α′
i} for Γ in

ΓαΓ, then the operator Tα on 1-cocycles (valued in 1-cochains) changes by 1-coboundaries.
Consider

α′
i = γ̃iαi

where γ̃i ∈ Γ for every i. Since we have αiγ = γiαj[i] for every i and γ ∈ Γ, with the new

choice of coset representatives we obtain γ̃−1
i α′

iγ = γiγ̃
−1
j[i]α

′
j[i]. Writing γ′i := γ̃iγiγ̃

−1
j[i], we

get

α′
iγ = γ′iα

′
j[i]

for every i and γ ∈ Γ. With the new choice of coset representatives {α′
i}, for c ∈ Z1(Γ, Vk)

and γ ∈ Γ we have the equalities
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n∑

i=1

(detα)k−1α′−1
i · c(γ′i) =

n∑

i=1

(detα)k−1αi
−1γ̃−1

i · c(γ̃iγiγ̃
−1
j[i]),

=

n∑

i=1

(detα)k−1α−1
i γ̃−1

i · c(γ̃i) +

n∑

i=1

(detα)k−1α−1
i · c(γiγ̃

−1
j[i]),

=

n∑

i=1

(detα)k−1α−1
i γ̃−1

i · c(γ̃i) +

n∑

i=1

(detα)k−1α−1
i γi · c(γ̃

−1
j[i])

+

n∑

i=1

(detα)k−1α−1
i · c(γi),

= −
n∑

i=1

(detα)k−1α−1
i · c(γ̃−1

i ) +
n∑

i=1

(detα)k−1γ α−1
j[i] · c(γ̃

−1
j[i])

+

n∑

i=1

(detα)k−1α−1
i · c(γi),

=
n∑

i=1

(detα)k−1α−1
i · c(γi) + (γ · v0 − v0),

where v0 =
∑n

i=1(detα)k−1α−1
i · c(γ̃−1

i ). Hence, we have shown that the operator Tα on
1-cocycles does not depend on the chosen coset representatives if we view its values modulo
B1(Γ, Vk). Now, we want to show that it is a well-defined operator.

We choose coset representatives {αi} for Γ\ΓαΓ so that Γ =
∐

Γα(α−1αi). We can do
this by [1, Lemma 5.1.2]. Since we have αiγ = γiαj[i] for every γ ∈ Γ, we see that (α−1αi)γ =

(α−1γiα)α−1αj[i]. Since α−1αi ∈ Γ for every i, we have (α−1αi)γ(α
−1αj[i])

−1 ∈ Γ. Thus,
it follows from [2, p. 45] that

Cor : H1(Γ, Vk) −→ H1(Γα, Vk),

c 7→
(
γ 7→

n∑

i=1

(α−1αi)
−1 · c((α−1αi)γ(α

−1αj[i])
−1

=

n∑

i=1

α−1
i α · c(α−1γiα)

)

where αiγ = γiαj[i]. To compute the restriction map along ι2, observe that the isomorphism

Vk −→ Vk

v 7→ α · v

is equivariant for the Γα-action on the left-side and Γ-action on the right-side via the em-
bedding ι2. Thus, the restriction map is computed as follows

Res : H1(Γα, Vk) −→ H1(Γ, Vk)

c 7→
(
γ 7→ α−1 · c(αγ α−1)

)
.

As a result, we see that the composite map Cor ◦ Res is the desired map. Hence, Tα is a
well-defined action H1(Γ, Vk).

�

Lemma 1.4. The Tα-action on H1(Γ, Vk) is induced by scalar extension of the analogous

operation on H1(Γ, Symk−2(Z2)).

Proof. Since k ≥ 2, we have (detα)k−1α−1
i = (detα)k−2((detα)α−1

i ), with (detα)α−1
i a

matrix having Z entries. The result then follows from the cocycle formula for Γα.
�
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Lemma 1.5. Consider the action of Tα on H1(Γ, Vk) that we defined in Lemma 1.3. The

injective map j in (1.15) carries the [ΓαΓ]-action on Sk over to the Tα-action on H1(Γ, Vk)
for every α in ∆ as in (1.16).

Proof. Choose α ∈ ∆ and coset representatives {αi} for Γ\ΓαΓ, so ΓαΓ =
∐n

i=1 Γαi. For
f ∈ Sk we have f |k[ΓαΓ] =

∑n
i=1 f |kαi. Now for each i and γ ∈ Γ, we compute If |kαi

(γ)
via (1.1):

If |kαi
(γ) =

∫ γz0

z0

(ze+ e′)k−2(f |kαi)dz,

= α−1
i ·

∫ γz0

z0

αi · (ze+ e′)k−2(f |kαi)dz,

= α−1
i · (detαi)

k−1

∫ αiγz0

αiz0

(ze+ e′)k−2f dz.

The last equality follows by the calculations that are similar to the ones that we did in (1.2).
Since for γ ∈ Γ right multiplication by γ permutes Γαi, for every i and γ ∈ Γ there exists a
unique j[i] and γi ∈ Γ such that αiγ = γiαj[i]. By using this equality we compute

If |k[ΓαΓ](γ) = (detα)k−1
n∑

i=1

αi
−1 ·

∫ γiαj[i]z0

αiz0

(ze+ e′)k−2f dz,

= (detα)k−1
n∑

i=1

αi
−1 ·

( ∫ γiαj[i]z0

z0

(ze+ e′)f dz −

∫ αiz0

z0

(ze+ e′)k−2f dz
)
,

= (detα)k−1
n∑

i=1

αi
−1 ·

( ∫ γiαj[i]z0

γiz0

(ze+ e′)f dz +

∫ γiz0

z0

(ze+ e′)f dz

−

∫ αiz0

z0

(ze+ e′)f dz
)
,

= (detα)k−1
n∑

i=1

αi
−1 · (γi ·

∫ αj[i]z0

z0

(ze+ e′)f dz +

∫ γiz0

z0

(ze+ e′)f dz

−

∫ αiz0

z0

(ze+ e′)f dz ) by similar calculations done in (1.2),

= (detα)k−1
( n∑

i=1

γ α−1
j[i] ·

∫ αj[i]z0

z0

(ze+ e′)f dz +

n∑

i=1

α−1
i ·

∫ γiz0

z0

(ze+ e′)f dz

−
n∑

i=1

α−1
i ·

∫ αiz0

z0

(ze+ e′)f dz
)

since α−1
i γi = γ α−1

j[i],

= (detα)k−1
( n∑

i=1

α−1
i ·

∫ γiz0

z0

(ze+ e′)f dz + (γ · v1 − v1)
)
,

where v1 =
∑n

i=1 α
−1
i ·

∫ αiz0

z0
(ze+e′)f dz. Therefore, we see that for every α ∈ ∆ and f ∈ Sk

we have the quality j(f |k[ΓαΓ]) = Tα(j(f)) in H1(Γ, Vk). Hence, the lemma follows.
�

Theorem 1.6. Let T be the Z-subalgebra of EndC(Sk) generated by Hecke operators Tp

for every prime p and diamond operators 〈d〉 for every d ∈ (Z/NZ)×. Then T is finitely

generated as a Z-module.

Proof. By Proposition 1.2, we have C-linear injection

j : Sk −→ H1(Γ, Vk)

for Γ = Γ1(N). By Lemma 1.3, for every α ∈ ∆ (see (1.16)) we have a well-defined action
Tα on H1(Γ, Vk). By Lemma 1.5, the action Tα on H1(Γ, Vk) is compatible with the action
of [ΓαΓ] on Sk.
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Let T′ be the Z-subalgebra of EndC(H1(Γ, Vk)) generated by the Tα for every α ∈ ∆.

Then, by Lemma 1.4, the Z-algebra T′ is in the image of the Z-subalgebra of EndZ(H1(Γ, Symk−2(Z2))).

Since H1(Γ, Symk−2(Z2)) is a finitely generated Z-module, T′ is also a finitely generated
Z-module. By construction, the T′-action on H1(Γ, Vk) preserves Sk, so we get a restriction
map

ν : T′ −→ EndC(Sk)

defined by ν(T ) = T |Sk
for every T ∈ T′. The image of ν in EndC(Sk) is T. Therefore,

since T′ is finitely generated Z-module, T is finitely generated Z-module.
�

2. Some Commutative Algebra

In this section we again assume that Γ = Γ1(N). Remember that we denote the C-vector
space Sk(Γ1(N)) of cusp forms of weight k on Γ by Sk. Let Sk(Γ,Q) be the space of cusp
forms with in Sk with Fourier coefficients in Q. By [4, Thm. 3.52], we know that Sk has a
C basis that comes from Sk(Γ,Q) and so we have a surjection

Sk(Γ,Q) ⊗Q C −→ Sk.

Actually, this basis also spans the Q-vector space Sk(Γ,Q) and so this surjection is in fact
an isomorphism. This “justifies” the following two definitions.

Definition 2.1. For any field F with characteristic 0,

Sk(Γ, F ) := Sk(Γ,Q) ⊗Q F.

Remember that T is the Z-subalgebra of EndC(Sk) generated by Hecke operators Tp for
every prime p and diamond operators 〈d〉 for every d ∈ (Z/NZ)×.

Definition 2.2. For any domain R with characteristic 0, we define

TR := T⊗Z R

acting on Sk(Γ,Frac(R)).

Remark 2.3. By Theorem 1.6 we know that TR is a finite free R-module.

Let ℓ be a prime number. Fix an embedding Q ⊂ Qℓ. Let K be a finite extension of
Qℓ in Qℓ. Let O be its ring of integers and λ be its maximal ideal. Consider the finite flat
O-algebra TO.

Proposition 2.4. The minimal prime ideals of TO are those lying over the prime ideal (0)
of O.

Proof. Let P be a minimal prime ideal of TO. Since TO is a flat O-algebra, the going down
theorem holds between TO and O (see [3, Thm. 9.5]). Therefore, P ∩O = (0). Now, suppose
that P ′ is a prime ideal of TO such that P ′ ⊂ P and P ′ ∩ O = (0). As TO is an integral
extension of O, there are no strict inclusions between prime ideals lying over (0). Thus,
P ′ = P . Hence, the proposition follows. �

The K-algebra TK is Artinian. Hence, it has only a finite number of prime ideals, all of
which are maximal. By Proposition 2.4, the natural map

TO →֒ TO ⊗O K ∼= TK

induces a bijection

(2.1) {minimal prime ideals of TO} ↔ {prime ideals of TK}.

Moreover, since O is complete, TO is λ-adically complete and by [3, Thm. 8.15] there is an
isomorphism

TO
∼=

∏

m

Tm.

The product is taken over the finite set of maximal ideals m of TO and Tm denotes the
localization of TO at m. Each Tm is a complete local O-algebra which is finite free as an



9

O-module. With this isomorphism we see that every prime ideal of TO is contained in the
unique maximal ideal of TO. Hence, we have a surjection

(2.2) {minimal prime ideals of TO} ։ {maximal ideals of TO}.

Let GK be the absolute Galois group of K. Suppose f =
∑
anq

n is a normalized
eigenform in Sk(Γ,K). Then T 7→ (T−eigenvalue of f) defines a ring map T −→ K and so
induces a K-algebra homomorphism Θf : TK −→ K. The image is the finite extension of
K generated by the an and the kernel is a maximal ideal of TK which depends only on the
GK-conjugacy class of f . Thus, we have the map

(2.3) ϕ :

{
normalized eigenforms in

Sk(Γ,K) modulo GK−conjugacy

}
−→ {maximal ideals of TK}

defined by ϕ(f) = Ker(Θf ).

Proposition 2.5. The map ϕ in (2.3) is a bijection.

Proof. For any maximal ideal m of TK , all K-algebra embeddings TK/m →֒ K are obtained
from a single one by composing with an element ofGK . Thus, we can make the identification

{maximal ideals of TK} = HomK−alg(TK ,K)
/
(GK−action).

Thus, to prove the proposition it is enough to show that the GK-equivariant map

ψ : {normalized eigenforms in Sk(Γ,K)} −→ HomK−alg.(TK ,K)

defined by ψ(f)(T ) = (T−eigenvalue of f) is bijective. To do this, consider the K-linear
map

δ : Sk(Γ,K) −→ HomK−vsp(TK ,K)(2.4)

f 7→
(
αf : T 7→ a1(Tf)

)
.

If we can show that δ is an isomorphism of K-vector spaces, then we claim we are done.
Because in (2.4) we claim that f ∈ Sk(Γ,K) is a normalized eigenform if and only if αf

is a ring homomorphism. To see this, suppose f ∈ Sk(Γ,K) is a normalized eigenform, so
there exists a K-algebra homomorphism Θf : TK → K defined by Tf = Θf (T )f for every
T ∈ TK . Clearly δ(f) = αf where

αf (T ) = a1(Tf) = a1(Θf(T )f) = Θf(T )a1(f) = Θf(T )

for every T ∈ TK . Thus, αf is a K-algebra homomorphism. Conversely, consider any

K-algebra homomorphism α : TK −→ K, so α(T ) = a1(Tf) for some unique f ∈ Sk(Γ,K).
Let λn = α(Tn) for every Tn ∈ TK . Then we have

a1(T Tnf) = α(T Tn) = α(T )α(Tn) = λn a1(Tf) = a1(T λnf)

for every T ∈ TK and n ≥ 1. Taking T = Tm for every m ≥ 1 gives Tnf = λnf for every
n ≥ 1, proving that f is an eigenform. Moreover, as α is aK-algebra map, 1 = α(id) = a1(f).
Hence, f is a normalized eigenform in Sk(Γ,K).

Now, we will show that δ is an isomorphism of K-vector spaces. For injectivity, suppose
δ(f) = αf is the zero map, so a1(Tf) = 0 for every T ∈ TK . In particular, an(f) =
a1(Tnf) = 0 for every n ≥ 1, which implies that f = 0. To prove surjectivity of δ, it is
enough to show that

(2.5) dimKHomK−vsp(TK ,K) ≤ dimKSk(Γ,K).

Since HomK−vsp(TK ,K) ∼= HomK(TK−vsp,K), we can work with HomK(TK−vsp,K). Ac-

tually, with this identification, studying the map δ is the same as studying the K-bilinear
mapping

Sk(Γ,K) × TK −→ K

(f , T ) 7→ a1(Tf)
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between finite-dimensional K-vector spaces. Thus, to prove (2.5), it is enough to show that
the map

ǫ : TK −→ HomK(Sk(Γ,K),K)

T 7→ (f → a1(Tf))

is injective. Suppose ǫ(T ) vanishes for some T . Thus, for every f ∈ Sk(Γ,K) and for
every integer n ≥ 1 we have a1(TnTf) = a1(TTnf) = 0. Therefore, Tf = 0 for every
f ∈ Sk(Γ,K). Since TK acts faithfully on Sk(Γ,K), we get T = 0, proving that the map ǫ
is injective. Hence, the proposition follows.

�

Combining the bijections (2.1) and (2.3) and the surjection (2.2), we have the following
diagram.

{minimal prime ideals of TO} ։ {maximal ideals of TO}

l

{prime ideals of TK}(2.6)

l

E =

{
normalized eigenforms in

Sk(Γ,K) modulo GK−conjugacy

}

Let m be any maximal ideal of TO, so m is the kernel of a map Φ : TO −→ Fℓ. We want
to attach a residual representation ρ̄m over Fℓ to m using the diagram (2.6). Let {f1, ..., fr}
be a set of representatives of all normalized eigenforms in E such that in the diagram (2.6)
their corresponding minimal prime ideals ℘fi

in TO are inside the maximal ideal m. For
each i, let ℘′

fi
be the corresponding prime ideal in TK , so ℘′

fi
∩ TO = ℘fi

. Thus, for each
i, we have a map

Θfi
: TO −→ O

Tn 7→ an(fi)

with kernel ℘fi
. Since each ℘fi

⊂ m, the map Φ : TO −→ Fℓ factors through ImΘfi
for

each i as follows,

ImΘf1

ր
... ց

TO −→ Fℓ.

ց
... ր

ImΘfr

For each i, the quotient TK/℘
′
fi

is a finite extension Kfi
of K. Let Ofi

be its ring of

integers and kfi
be its residue field. Each map ImΘfi

−→ Fℓ lifts to Ofi
, lifting the embed-

ding of the residue field of ImΘfi
to an embedding of kfi

into Fℓ. The above commutative
diagram tells us that for every integer n ≥ 1, we have

an(f1) = . . . = an(fr)

in Fℓ. Consider the semisimplified residual representation ρ̄fi
associated to each fi; it is

defined over kfi
. For every prime p such that p 6 |Nℓ we have

tr(ρ̄f1(Frobp)) = . . . = tr(ρ̄fr
(Frobp))
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over Fℓ. We obtain a similar result for the determinants of ρ̄fi
(Frobp)’s when we compare

the characters χ̄fi
associated to fi’s. Therefore, we obtain

ρ̄f1
∼= . . . ∼= ρ̄fr

over Fℓ. We let ρ̄m denote this common residual representation.

3. The Main Theorem

In this section we prove the following theorem.

Theorem 3.1. Let K be a finite extension of Qℓ such that its ring of integers O is big

enough to contain all Hecke eigenvalues at level N . Let λ be its maximal ideal, k its residue

field and m a maximal ideal of TO. Consider the associated residual representation

ρ̄m : GQ −→ GL2(k)

over k. Assume ρ̄m is absolutely irreducible. Then there exists a unique deformation

ρm : GQ −→ GL2((Tm)red)

such that

(1) ρm is unramified at every prime p such that p 6 |Nℓ,
(2) For every prime p such that p 6 |Nℓ, the characteristic polynomial of ρm(Frobp) is

x2 − Tpx+ pk−1〈p〉.

Before proving this theorem, consider the following theorem which was proved by Akshay
in his talk. The corollary of this theorem will be the main ingredient while proving Theorem
3.1.

Theorem 3.2. Let R be a complete local Noetherian ring and let ρ : GQ −→ GL2(R) be a

residually absolutely irreducible representation. If S is a complete local Noetherian subring

of R which contains all the traces of ρ, then the Galois representation ρ is conjugate to a

representation GQ −→ GL2(S).

Corollary 3.3. Let O be the ring of integers of a finite extension of Qℓ, with maximal ideal λ
and residue field k. Let Σ be a finite set of places of Q containing ℓ. Let ρ : GQ −→ GL2(R)
be the universal deformation unramified outside Σ for an absolutely irreducible representation

ρ̄ : GQ −→ GL2(k) unramified outside Σ, taken on the category of complete local Noetherian

O-algebras with residue field k. The traces tr(ρ(Frobp)) for all but finitely many primes

p /∈ Σ generate a dense O-subalgebra of R.

Proof. Let MR be the maximal ideal of R. By succesive approximation, it is enough to show
that such tr(ρ(Frobp)) generate R/(λ,M2

R) as k-algebras. Let R1 := R/(λ,M2
R). The ring

R1 is the universal deformation ring for ρ̄ for k-algebras with residue field k such that the
square of the maximal ideal is zero. Let S be a k-subalgebra of R1 generated by tr(ρ(Frobp))
for almost all primes p /∈ Σ. Being a subring of R1, the square of the maximal ideal of S is
also zero. If we can show that R1 = S, then we’re done.

By Theorem 3.2 we have the following commutative diagram (up to conjugation) which
lifts ρ̄

GQ

ρ1
$$H

H

H

H

H

H

H

H

H

// GL2(S)

��

GL2(R1)

Also, since R1 is the universal deformation ring of ρ̄ we have the following commutative
diagram (up to conjugation) which lifts ρ̄

GQ

$$H

H

H

H

H

H

H

H

H

ρ1

// GL2(R1)

��

GL2(S)
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As a result we have the following composition of maps

R1 −→ S →֒ R1

which carries ρ1 to itself and hence is the identity map. Thus, S = R1. �

Proof of Theorem 3.1. Let f be a normalized eigenform in Sk(Γ,K) such that the corre-
sponding minimal prime ideal pf in TO is contained in m (see diagram (2.6)). By Deligne,
we have a Galois representation ρf over O associated to f whose residual reduction is ρ̄m:

GQ

ρ̄m

##H

H

H

H

H

H

H

H

H

ρf
// GL2(O)

��

GL2(k)

Let (R, ρ : G −→ GL2(R)) be the universal deformation of ρ̄m unramified outside Nℓ. Then
ρf corresponds to an O-algebra map R −→ O, so the diagram

GQ

ρf
##H

H

H

H

H

H

H

H

H

ρ
// GL2(R)

��

GL2(O)

commutes up to conjugation by 1+M2(λ) in GL2(O). By Corollary 3.3, we see that the set
of tr(ρ(Frobq)) for every prime q ∤ Nℓ generates a dense O-subalgebra in R.

Consider the map

η : R −→
∏

pf⊂m

O

tr(ρ(Frobq)) 7→
∏

pf

aq(f)

where the product is taken over minimal primes pf contained in m, with f the corresponding

normalized eigenform in Sk(Γ,K). Consider the embedding

(Tm)red →֒
∏

pf⊂m

TO/pf

Tq 7→
∏

pf

Tq (mod pf).

With the identification ∏

pf⊂m

O =
∏

pf⊂m

TO/pf

∏

pf

aq(f) 7→
∏

Tq (mod pf),

we see that all tr(ρ(Frobq)) for q ∤ Nℓ land in the closed subalgebra (Tm)red. Since they
generate dense algebra in R, the ring R also lands in there under η, say inducing h : R −→
(Tm)red. Thus, we get

ρm : GQ
ρ
−→ GL2(R)

h
−→ GL2((Tm)red).

This gives existence and also uniqueness since any other ρ′m would give another map h′ :
R −→ (Tm)red and compatibility with traces of representations then forces tr(ρ(Frobq)) 7→
Tq. Thus, h and h′ coincide on a dense set, hence h = h′. By checking in each TO/pf = O,
we see that ρm(Frobq) has the expected characteristic polynomial for every q ∤ Nℓ.
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4. Reduced Hecke Algebras

In this section, let K be a finite extension of Qℓ and O its ring of integers. For any

ring A, let T̃A be the A-subalgebra of TA generated by the Hecke operators Tp for p ∤ Nℓ

and diamond operators 〈d〉 for every d ∈ (Z/NZ)×. Fix a maximal ideal m of T̃O. We

have a map T̃O −→ Fℓ with kernel m. Since TO is an integral extension of T̃O and Fℓ is
algebraically closed, this map can be extended to TO. Let m′ be the kernel of this extended
map, so it is a maximal ideal of TO. Consider common (up to isomorphism) residual
representation ρ̄f for all normalized eigenforms f whose corresponding minimal primes pf

(see (2.6)) are contained in m′. Call it ρ̄m. In this section we prove the following theorem.

Theorem 4.1. If the Serre conductor N (ρ̄m) is equal to N then the O-algebra (T̃O)m is

reduced.

Proof. Since the Serre conductor N (ρ̄m) is equal to N , the minimal possible level of a
normalized eigenform f such that ρ̄f ≃ ρ̄m over Fℓ is N . Thus, such f are newforms. To

prove the theorem, we will show that (T̃O)m ⊗O K, which contains (T̃O)m, is reduced. We
have the equality

(T̃O)m ⊗O K =
∏

pK

(T̃K)pK

where the product is taken over all prime ideals pK of the Artinian ring T̃K such that

pK ∩ T̃O ⊂ m and (T̃K)pK
denotes the localization of T̃K at pK . Thus, each pK in the

product corresponds to a newform. To prove the theorem it is therefore enough to show

that (T̃K)p is a field when p corresponds to a newform.

Assume the prime ideal p of T̃K corresponds to a newform f ∈ Sk(Γ,K) of level N . We
can increase K to a finite extension. Thus, without loss of generality we can assume that K
is big enough to contain the Hecke eigenvalues of all normalized eigenforms at level N . Since

Sk(Γ,K) is faithful T̃K -module, the localization (Sk(Γ,K))p at p is faithful (T̃K)p-module.
If we can prove that (Sk(Γ,K))p is one dimensional as a vector space over K then we are

done, because this would force (T̃K)p to be equal to K.
We have

Sk(Γ,K) = K f ⊕
(⊕

g

Sg(Γ,K)
)

where the direct sum is taken over all newforms g of level Ng and Sg(Γ,K) is spanned by
g(vz) for the divisors v of N/Ng. By multiplicity one, for every g which is different from f ,
there exists a prime q ∤ Nℓ such that

aq(g(vz)) = aq(g(z)) 6= aq(f(z))

for every v|(N/Ng). We know that (Tq − aq(f)) ∈ p and it acts on g(vz) as

(Tq − aq(f))g(vz) = Tq(g(vz)) − aq(f)g(vz)

= (aq(g) − aq(f))g(vz).

By the above argument, (aq(g) − aq(f)) ∈ K×. But (TK)p is Artin local, so its maximal
ideal is nilpotent. This forces (

⊕
g 6=f Sg(Γ,K))p = 0. As a result, (Sk(Γ,K))p = Kf and

the theorem follows. �
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