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Notes by Sam Lichtenstein

This lecture is about getting bounds for the dimension of deformation rings, by bounding the number of
generators and relations. The reference for this lecture is Kisin’s article in CDM, or stuff from his Hawaii
notes.

1. Local setup and statement

Let K/Qp be finite, O = OK , π a uniformizer, k = O/(π), Γ a profinite group satisfying the p-finiteness
condition “Φp”, and ρ : Γ → GLn(k) a mod π representation. We consider deformations to complete local

noetherian O-algebras with residue field k. The framed deformation ring R�
ρ always exists, so we have a

universal representation

Γ
ρ�
univ→ GLn(R

�
ρ ).

Assuming EndΓ ρ = k, we also know Rρ exists, and we then get a universal deformation

Γ
ρuniv

→ GLn(Rρ).

Recall that
D�

ρ (k[ǫ]) = Homk(mR�/(m2

R� , π), k) ∼= Z1(Γ, adρ)

and Dρ(k[ǫ]) = H1(Γ, ad ρ) as k-vector spaces.

Theorem. Let r = dimk Z
1(Γ, ad ρ). Then there exists an O-algebra isomorphism

O[[x1, . . . , xr ]]/(f1, . . . , fs) ∼= R�

ρ

where s = dimk H2(Γ, adρ).

Corollary. (i) dimR�
ρ ≥ 1 + n2 − χ(Γ, adρ) = 1 + n2 − h0(ad ρ) + h1(ad ρ)− h2(ad ρ).

(ii) dimRρ ≥ 2− χ(Γ, ad ρ).

Proof of corollary. From O we get a contribution of 1. hence we get dimR�
ρ ≥ 1+dimZ1−h2. Now (i) follows

formally noting that dimZ0 = dimC0 = n2. (Use h1 = dimZ1 − dimB1 and dimB1 = dimC0 − dimZ0 =
dimC0 − h0.) Then (ii) is immediate using the fact that R�

ρ is basically a PGLn-bundle over Rρ. �

2. Proof of Theorem 1

Using completeness [exercise] we can choose a surjection

ϕ : O[[x]] := O[[x1, . . . , xr]]։ R�
ρ .

(Send the xi’s to elements which reduce to a basis for the tangent space Z1(Γ, ad ρ) of the framed deformation
ring.) The problem is to show that the minimal number of generators of the kernel J = kerϕ ⊂ O[[x]] is at
most s. Let m = mO[[x]] ⊂ O[[x]] be the maximal ideal (π, x1, . . . , xr). It would suffice to construct a linear
injection (J/mJ)∗ →֒ H2(Γ, ad ρ). There is a subtle technical problem in an attempt to construct such an
injection. We explain the problem, and then the fix to get around it.

For each γ ∈ Γ choose a set-theoretic lift ρ̃(γ) ∈ GLn(O[[x]]/mJ) of ρ�(γ) ∈ GLn(O[[x]]/J) = GLn(R�).
We need to make this choice so that ρ̃ is a continuous function of γ. It is not clear if the map

O[[x]]/mJ։ O[[x]]/J

admits a continuous section as topological spaces, so it is not clear how to find a continuous ρ̃. To handle
this problem, we now prove:

Claim: For r > 0, let Jr = (J + mr)/mr ∈ O[[x]]/mr and let mr = m/mr. For r ≫ 0, the natural map
J/mJ→ Jr/mrJr is an isomorphism.

1
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Proof. The map is surjective, and for injectivity we have to show that J ∩ (mJ + mr) = mJ for large r.
Certainly mJ lies in the intersection for all r, so since J/mJ has finite length we see that the intersection
stabilizes at some intermediate ideal for r ≫ 0. This stabilizing ideal must then be the total intersection.
But by Artin-Rees applied to mJ as a finite O[[x]]-module, the intersection of all (mJ + mr)’s is mJ. �

By the Claim, to prove the desired result about minimal number of generators of J, we can replace O[[x]]
and R� := R�

ρ with their quotients by rth power of maximal ideal for some large r. The quotient of

R� by rth power of its maximal ideal is universal in the category of complete local noetherian O-algebras
whose maximal ideal has vanishing rth power (exercise!). So working within this full subcategory of local
O-algebras, we can still exploit universal mapping properties. But we gain the advantage that now our rings
are of finite length as O/πr-modules, so in particular they’re all discrete with their max-adic topology and
hence the Galois representations which arise have open kernel. We can therefore find the required continuous
section, working throughout with local rings whose maximal ideal has a fixed but large order of nilpotence.

So we now proceed in such a modified setting (so the definition of J changes accordingly, but the Claim
shows that this does not affect J/mJ, which is to say the minimal number of generators of J). In particular,
in the new setting we will construct a k-linear injection of J/mJ into H2(Γ, adρ), thereby finishing the proof.

For f ∈ (J/mJ)∗. let
ρf (γ, δ) = f(ρ̃(γδ)ρ̃(δ)−1ρ̃(γ)−1 − 1),

where we apply the map f “entry-wise” to the given matrix in Matn×n(J/mJ). That is, the map ϕf has the
form

Γ2 → Matn×n(J/mJ)
f
→ Matn×n(k).

Now we observe the following facts.

(1) ϕf ∈ Z
2(Γ, ad ρ).

(2) [ϕf ] ∈ H2(Γ, ad ρ) is independent of the choice of lift ρ̃.
(3) f 7→ [ϕf ] is k-linear.
(4) f 7→ [ϕf ] is injective, but more precisely we have [ϕf ] = 0⇔ we can choose ρ̃ to be a homomorphism

“mod Jf” where Jf = ker(J→ J/mJ
f
→ k)⇔ f = 0⇔ Jf = J.

Note that (4) provides the desired linear injection, and hence proves the theorem; (1)-(3) are necessary to
make sense of (4).

Let us prove the facts above.

(1) This is a formal computation, which goes as follows. Note that we can identify Matn×n(J/mJ) under
addition with (1+Matn×n(J/mJ)) under multiplication, since J ⊂ m. Using this identification, we
have

dϕf (γ, δ, ǫ) = γϕf (δ, ǫ)− ϕf (γδ, ǫ) + ϕf (γ, δǫ)− ϕf (γ, δ) ∈ Matn×n(k).

If we want to prove this is zero, it’s enough to check “upstairs” in Matn×n(J/mJ), i.e. before applying
f . Thus we really want to check that

(ρ̃(γ)ρ̃(δǫ)ρ̃(ǫ)−1ρ̃(δ)−1ρ̃(γ)−1)× (ρ̃(γδ)ρ̃(ǫ)ρ̃(γδǫ)−1)

× (ρ̃(γδǫ)ρ̃(δǫ)−1ρ̃(γ)−1)× (ρ̃(γ)ρ̃(δ)ρ̃(γδ)−1)
?
= 1 .

The trick is to insert the bracketed term (which is 1) below:

ρ̃(γ)ρ̃(δǫ)ρ̃(ǫ)−1ρ̃(δ)−1ρ̃(γ)−1ρ̃(γδ)

insert︷ ︸︸ ︷
ρ̃(δ)−1ρ̃(δ) ρ̃(ǫ)ρ̃(γδǫ)−1

× ρ̃(γδǫ)ρ̃(δǫ)−1ρ̃(γ)−1 × (ρ̃(γ)ρ̃(δ)ρ̃(γδ)−1)
?
= 1 .

Now observe that the bracketed terms below reduce to 0 in Matn×n(k) and hence can be commuted
with one another (!):

ρ̃(γ)

I︷ ︸︸ ︷
ρ̃(δǫ)ρ̃(ǫ)−1ρ̃(δ)−1

II︷ ︸︸ ︷
ρ̃(γ)−1ρ̃(γδ)ρ̃(δ)−1 ρ̃(δ)ρ̃(ǫ)ρ̃(γδǫ)−1

× ρ̃(γδǫ)ρ̃(δǫ)−1ρ̃(γ)−1 × (ρ̃(γ)ρ̃(δ)ρ̃(γδ)−1)
?
= 1 .
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After swapping I and II one sees that in fact everything cancels magically. (Is there is a “conceptual”
proof of (1)?)

(2) This is similar to (1). First write ρ̃new(γ) = a(γ)ρ̃(γ) for some

a : Γ→ 1+Matn×n(J/mJ).

The idea is to show formally that a(γ) (which is of course a continuous 1-cocycle on Γ) changes ϕf
by d a. This is done with a similar “insert 1 cleverly and commute stuff” trick as in (1).

(3) OK.

(4) The last equivalence in (4) is clear. For the other two equivalences, the implications “⇐” are OK.
The implication that [ϕf ] = 0 implies we can choose ρ̃ to be a homomorphism mod Jf follows from
the previous calculation [omitted] that ρ̃  a · ρ̃ changes ϕ by d a. In particular, if ϕ is already a
coboundary, then by changing the choice of lift we can make ϕ = 0, which is the same as saying our
lift is a homomorphism mod Jf . So the crux of the matter is the second “⇒”.

Here’s the situation. We have a diagram

Γ
ρ�
univ //

eρ
%%K

K
K

K
K

K
K

K
K

K
K

K GLn(O[[x]]/J) = GLn(R
�)

))R
R

R
R

R
R

R
R

R
R

R
R

R
R

GLn(O[[x]]/mJ)

33hhhhhhhhhhhhhhhhhhh

f∗

// GLn(O[[x]]/Jf )

can

OO

// GLn(k)

We’d like to prove that O[[x]]/Jf → O[[x]]/J is an isomorphism. By the universality of R� we get the
map

O[[x]]/J
∃!
→ O[[x]]/Jf

can
→ O[[x]]/J

and again by universality the composition is the identity. Now it would be enough to check that
J ⊂ Jf . Note that the image of xi in O[[x]]/J maps to xi + ai ∈ O[[x]]/Jf where ai is some element of
J. It will suffice to show that if g(x1, . . . , xn) ∈ J then g maps to g itself in O[[x]]/Jf .

First we claim that J ⊂ (m2, π) [recall that J = ker(O[[x]] ։ R�)]. Indeed, if g ∈ J then
g = g0 +

∑
gixi + O(m2). Moreover g0 ∈ (π) and each gi lies in (π) since the xi’s map to a basis

of m/(m2, π). Thus g ∈ (m2, π). Consequently, it’s enough to show what we want for g ∈ (m2, π).
[This will be important later on!]

But if g ∈ (m2, π) then under O[[x]]/J→ O[[x]]/Jf we still have

g = g0 +
∑

gixi +O(m2) 7→ g0 +
∑

gi(xi + ai) +O(m2),

and the observation is that when we subtract off g from this we get
∑
giai in the O(m) term, which

[by inspection] is in mJ ⊂ Jf . Similarly one sees that the higher order terms vanish mod Jf .

This concludes the proof of (4), hence the claim, hence the theorem.

3. Completed tensor products

Example. Let R be a Noetherian ring, and consider R[x] ⊗R R[y] ∼= R[x, y]. However R[[x]] ⊗R R[[y]] is
something weird, being just a part of R[[x, y]]. It’s easy to see that it does at least inject into R[[x, y]]. The
idea is that M ⊗ RI →֒ M I for any free R-module RI (here I is an arbitrary index set) but this map fails
to be an isomorphism.

To check the injectivity, note that it’s OK for M finite free, which allows one to deduce it for M finitely
presented, and then pass to a direct limit to conclude the general case. Applying this to I = Z and M = R[[x]]
gives what we want in our case. But to see that our map R[[x]] ⊗ R[[y]] →֒ R[[x, y]] is not surjective, observe
that

∑
xnyn is not in the image!

Definition. Let O be a complete Noetherian local ring and R,S complete Noetherian local O-algebras
(meaning the structure maps are local morphisms). Assume at least one of the residue field extensions
O/mO ⊂ R/mR and O/mO ⊂ S/mS is finite. Then set m ⊳ R⊗O S to be the ideal generated by

mR ⊗O S +R ⊗O mS.
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[Note: (R⊗O S)/m ∼= kR⊗kO
kS is not necessarily a field, or even a local ring, but it is artinian.] Now define

the completed tensor product R⊗̂OS to be the m-adic completion of R⊗O S.

Universal property. R⊗̂OS is the coproduct in the category of complete semilocal Noetherian O-algebras
and continuous maps. It is thus the universal (i.e. initial) complete semilocal Noetherian O-algebra equipped
with continuous O-algebra maps from R and S.

Example. We have O[[x]]⊗̂OO
′[[y]] ∼= O

′[[x, y]] when O
′ is any complete Noetherian local O-algebra. We also

have
(O[[x1, . . . , xr]]/J)⊗̂O(O′[[y1, . . . , ys]]/J

′) ∼= O
′[[x1, . . . , xr, y1, . . . , ys]]/(J, J

′)

in this setup.

4. Global setup and statement

Let F be a number field, and p a prime. Let S be a finite set of places of F containing {v|p}. Fix
an algebraic closure F/F and let FS ⊂ F be the maximal extension unramified outside S. Let GF,S =
Gal(FS/F ). Let Σ ⊂ S be any subset of places [for now; later we’ll impose conditions].

For v ∈ Σ, fix algebraic closures F v/Fv and choose embeddings F →֒ F v, or, what is the same thing,
choices of decomposition group Gal(F v/Fv) = Gv ⊂ GF,S . Now let K/Qp be a finite extension, and O, π,
and k be as above. Fix a character ψ : GF,S → O

×.
Let Vk be a finite dimensional continuous representation of GF,S over k such that detVk = ψmodπ.

Since we’re fixing det = ψ in this subsection, we’ll be dealing (from now on in this talk) with ad0 Vk rather
than adVk. [More on this later.] A caution is in order: if p| dimVk then ad0 Vk is not a direct summand of

adVk. Usually the scalars in adVk give a splitting, but when p| dimVk the scalars actually sit inside ad0 Vk.
Hence we shall assume from now on that p ∤ dim Vk.

For each v ∈ Σ fix a basis βv of Vk. We’re going to consider deformation functors (and the representing
rings) with determinant conditions. Set D�,ψ

v to be the functor of framed deformations of Vk|Gv
with the

basis βv, with fixed determinant ψmodπ, and let R�,ψ
v be the ring (pro-)representing it. This always exists.

Likewise let D�,ψ
F,S be the functor of deformations VA of Vk with determinant ψmodπ, equipped with an

A-basis β̃v of VA lifting βv for each v ∈ Σ. Let R�,ψ
F,S be the ring representing it. Again, this always exists.

We have analogous respective unframed counterparts Rψv and RψF,S under the usual condition that Vk has
only scalar endomorphisms as a representation space for Gv and GF,S respectively.

Now define R�,ψ
Σ

=
⊗̂

v∈Σ
R�,ψ
v [completed tensor product over O]. Since each R�,ψ

v has the same residue

field, in this case the completed tensor product actually is local! Let m
�
ψ be its maximal ideal. Analogously

define Rψ
Σ

and mΣ. Denote the maximal ideal of the local ring R�,ψ
F,S by m

�
F,S and likewise that of RψF,S by

mF,S.

There is a natural Rψ
Σ
-algebra structure on RψF,S via the universal property of ⊗̂O. Indeed, for each v ∈ Σ,

by restricting the universal deformation of Vk valued in RψF,S to Gv ⊂ GF,S the universal property of Rψv

induces a canonical local O-algebra morphism Rψv → RψF,S . We then use the universal property of completed
tensor products.

Theorem. For i ≥ 1 let hiΣ (resp. ciΣ) denote the k-dimension of the kernel (resp. cokernel) of the map

θi : Hi(GF,S , ad0 Vk)→
∏

v∈Σ

Hi(Gv, ad0 Vk).

Then we have an isomorphism of Rψ
Σ
-algebras

RψF,S
∼= Rψ

Σ
[[x1, . . . , xr]]/(f1, . . . , fr+s)

where r = h1
Σ and s = c1Σ + h2

Σ − h
1
Σ.

To get the desired presentation, as in the proof of Theorem 1, first consider a surjection

B := RψΣ[[x1, . . . , xr ]]։ RψF,S
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where r = dimk coker(mΣ/(m
2
Σ, π) → mF,S/(m

2
F,S, π)); this surjectivity uses completeness. Dualizing, we

have
r = dimk ker(Homk(mF,S/(m

2
F,S, π), k)→ Homk(mΣ/(m

2
Σ, π), k)).

Using the computation from Mok’s lecture, this is

dimk ker θ1 = h1
Σ.

The key point that makes these computations work is that the completed tensor product represents the
product of the functors represented by the Rψv , which is most easily checked by computing on artinian points
(for which the completed tensor product collapses to an ordinary tensor product). That then brings us down
to the elementary fact that the tangent space of the product of functors is the product of the tangent spaces.

Denote by m the maximal ideal of B, and by J the kernel ker(B ։ RψF,S). Now comes a delicate

technical point. Like in the proof of Theorem 1, we can set-theoretically lift ρ : GF,S → GLn(RψF,S)

to ρ̃ : GF,S → GLn(B/mJ), not necessarily a homomorphism, and there arises the problem of finding a
continuous such ρ̃. We seek a better method than the trick as earlier with finite residue fields because we
wish to later apply the same technique to future situations involving characteristic-0 deformation theory, for
which the residue field is a p-adic field and not a finite field. The reader who prefers to ignore this problem
should skip the next section.

5. Continuity nonsense

To explain the difficulty and its solution, let us first formulate a general situation. Consider a surjective
map R′ ։ R between complete local noetherian rings with kernel J killed by mR′ , and assume that we are
in one of two cases:

Case 1: residue field k is finite of characteristic p, so R and R′ are given the usual max-adic topologies
that are profinite. These topologies are the inverse limits of the discrete topologies on artinian quotients.

Case 2 (to come up later!): residue field k is a p-adic field and R and R′ are Qp-algebras, whence uniquely
k-algebras in a compatible way (by Hensel). Their artinian quotients are then finite-dimensional as k-vector
spaces, and so are naturally topologized as such (making them topological k-algebras, with transition maps
that are quotient maps, as for any k-linear surjections between k-vector spaces of finite dimension). Give
R and R′ the inverse limit of those topologies (which induce the natural k-linear topologies back on the
finite-dimensional artinian quotients).

In both cases, let ρ : G → GLn(R) be a continuous representation. We seek to make an obstruction
class in a “continuous” H2(G, ad ρ) (over k) for measuring whether or not ρ can be lifted to a continuous

representation into GLn(R
′). The problem is to determine if ρ has a continuous set-theoretic lifting (moreover

with with a fixed determinant if we wish to study deformations with a fixed determinant, assuming that p
doesn’t divide n).

We saw earlier how to handle Case 1 when R is artinian, by a trick. That trick rested on ρ at artinian level
factoring through a finite quotient of G. Such an argument has no chance of applying when k is a p-adic field
in interesting cases, and we’re sure going to need that later when studying generic fibers of deformation rings
and proving smoothness by proving vanishing of a p-adic H2. So we need an improvement of the method
from artinian Case 1 which addresses the following two points:

(i) what to do when k is p-adic,
(ii) how to incorporate additional things like working with a fixed determinant.
Actually, (ii) will be very simple once we see how to deal with (i), as we will see below. This is important

because in practice we want to deal with more general constraints than just “fixed determinant” and so
we want a general method which works for any “reasonable property”, not just something ad hoc for the
property of fixed determinant.

To deal with (i) (and along the way, (ii)), we will use a variant on fix from artinian Case 1. That argument
allows us to reduce to deal with the case when R and R′ are artinian, but we need to show in that artinian

setting we can make a continuous set-theoretic lifting without the crutch of “factoring through finite quotient
of G” (which is available for finite k but not p-adic k).

First conjugate so the reduction ρ0 : G → GLn(k) lands in GLn(Ok). Then by using the method from
Brian’s talk on p-adic points of deformation rings, we can find a finite flat local Ok-algebra Ok-lattice A
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inside of R with residue field equal to that of Ok and containing the compact ρ(G), and then we can find a
similar such A′ in R′ mapping onto A. We’d like to lift

ρ : G→ GLn(A)

to GLn(A
′) set-theoretically in a continuous way. Note that GLn(A

′)→ GLn(A) is surjective.
The point is that GLn(A) and GLn(A

′) are respectively open in GLn(R) and GLn(R
′) with subspace

topologies that arise from the ones on A inside R and A′ inside R′ which are their natural topologies as
finite free Ok-modules. This makes them profinite, much as GLn(R) and GLn(R

′) were in the case of finite
k. So we have reduced ourselves to the following situation, in which we will use an argument suggested by
Lurie that also gives another approach for handling the case of finite k as well.

Let H ′ → H be a continuous surjective map of profinite groups, and ρ : G→ H a continuous homomor-
phism. We claim that there is a continuous set-theoretic lifting G → H ′ of ρ that also respects properties
like “fixed det” in the case of intended applications. To see this, let F ։ G be a surjection from a “free
profinite group”. The composite map

F ։ G→ H

can be lifted continuously to F → H ′ even as a homomorphism by individually lifting from H to H ′ the
images of each member of the “generating set” for the free profinite F . Those individual lifts can be rigged to
have a desired det, or whatever other “reasonable homomorphic property” can be checked pointwise through
a surjection, and so such a property is inherited by the map F → H ′. But what about G→ H ′? If we can
find a continuous set-theoretic section of F ։ G then composing that section with F → H ′ will give the
required G→ H ′. So our continuity problems will be settled once we prove the following fact.

Claim: If f : G′ → G is a continuous homomorphism between profinite groups then it has a continuous
section (as topological spaces).

Proof. For closed normal subgroups N ′ ⊳ G′ and N := f(N ′) = closed normal in G, consider continuous
sections s : G/N → G′/N ′ to the induced quotient map G′/N ′ → G/N arising from f . For example, such
an s exists if N ′ = G′ (so N = G). If (N ′, s) and (M ′, t) are two such pairs with N ′ containing M ′, say
(M ′, t) ≥ (N ′, s) if

t : G/M → G′/M ′ and s : G/N → G′/N ′

are compatible via the projections G/M ։ G/N and G′/M ′ ։ G′/N ′.
I claim that the criterion for Zorn’s Lemma is satisfied. Let {(N ′

i , si)} be a chain of such pairs, and let
N ′ =

⋂
N ′
i . Then the natural map

G′/N ′ → lim
←−

G′/N ′
i

is surjective (since an inverse limit of surjectionsG′/N ′ → G′/N ′
i between compact Hausdorff spaces), yet also

injective and thus a homeomorphism. Likewise, for N :=
⋂
Ni the map G/N → lim

←−
G/Ni a homeomorphism,

and I claim that N = f(N ′). Indeed, if x is in N then f−1(x) meets each N ′
i in a non-empty closed set, and

these satisfy the finite intersection property since {N ′
i} is a chain ordered by inclusion, so f−1(x) contains a

point in the intersection N ′ of all N ′
i . That says x is in f(N ′) as desired. (The inclusion of f(N ′) inside of

N is clear.)
It follows that the compatible continuous sections si : Gi/Ni → G′

i/N
′
i induced upon passing to the

projective limit define a continuous section

s : G/N → G′/N ′,

so (N ′, s′) is an upper bound on the chain {(N ′
i , si)}.

Now we apply Zorn’s Lemma to get a maximal element (N ′, s). This is a continuous section s : G/N →
G′/N ′ where N = f(N ′). I claim N ′ = {1}, so we will be done. If not, then since N ′ ∩ U ′ for open normal
subgroups U ′ in G′ define a base of opens in N ′ around 1 (as N ′ gets its profinite topology as subspace
topology from G′), there must exist such U ′ so that N ′ ∩ U ′ is a proper subgroup of N ′. Replacing G′

with G′/(N ′ ∩ U ′) and G with quotient by image of N ′ ∩ U ′ in G brings us to the case where N is finite
and non-trivial yet (N ′, s) retains the maximality property (no continuous section using a proper [closed]
subgroup of N ′ normal in G′). We seek a contradiction.

Since N ′ and N are finite, the quotient maps q′ : G′ ։ G′/N ′ and q : G։ G/N are covering spaces with
finite constant degree > 0. By total disconnectedness, these covering spaces admit sections. Composing s
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with a section to q′ gives a continuous section G/N → G′ to

G′ f
→ G

q
→ G/N.

Composing such a section with q gives a continuous map t : G → G′ so that f(t(g)) = gmodN , so
by profiniteness of G and finiteness of N we get an open normal subgroup U in G such that for each
representative gi of G/U there exists ni ∈ N such that f(t(giu)) = nigiu for all u ∈ U . But ni = f(n′

i),
so replacing t on giU with (n′

i)
−1t for each i gives a new t so that f(t(giu)) = giu for all u ∈ U and all i,

which is to say ft = 1G. This exhibits a continuous section t to f , contradicting that N was arranged to be
nontrivial and maximal with respect to the preceding Zorn’s Lemma construction. Hence, in fact N above
is {1} so we are done. �

6. Proof of Theorem 4

Returning to the situation of interest, we now have a continuous ρ̃ that can even be arranged to satisfy
det ρ̃ ≡ ψmodmJ. Still following the argument from the proof of Theorem 1, define for f ∈ Homk(J/mJ, k)
the continuous 2-cocycle ϕf as before, and observe that this time the determinant condition entails that

[ϕf ] ∈ H2(GF,S , ad0 Vk). The proof of the well-definedness of [ϕf ] is as before. Also we still have the
equivalence that [ϕf ] = 0 if and only if ρ̃ can be chosen to be a homomorphism mod ker f .

Now for the restriction of ρ to each Gv, we know we can find a continuous lift, namely coming from the
universal representation ρv at v:

Gv
ρv
→ GLn(R

ψ
v )→ GLn(R

ψ
Σ)→ GLn(B)

where the other maps are the obvious ones. Hence the class [ϕf ]|Gv
∈ H2(Gv, ad0 Vk) is always trivial. In

other words, we have a k-linear map Homk(J/mJ, k)
Φ
→ ker θ2 satisfying f 7→ [ϕf ]; the target has dimension

h2
Σ by definition. Therefore [easy exercise] it suffices to show that dimk kerΦ ≤ c1Σ. (All we need is the

inequality, because we can always throw in extra trivial “relations” fi = 0 into the denominator of RψF,S .)

Let I = ker(mΣ/(m
2
Σ, π) → mF,S/(m

2
F,S, π)). Then Homk(I, k) ∼= coker(θ1). So it is enough to construct

a linear injection kerΦ →֒ Homk(I, k).
Step 1: Observe that I = ker(m/(m2, π) → mF,S/(m

2
F,S, π)) because we chose the xi’s to map onto a

basis of coker(mΣ/(m
2
Σ, π) → mF,S/(m

2
F,S, π)). (In other words, none of the extra stuff in m dies when we

map to mF,S.)
Step 2: We next claim that J/mJ surjects onto I. To prove this, first note that the map J/mJ →

m/(m2, π) comes from tensoring
0→ J→m→ mF,S → 0

over B with B/m and then reducing mod π. We need to show that this map is surjective onto I. Fix
x ∈ I ⊂m/(m2, π). We know

J/mJ։ ker(m/m2 → mF,S/m
2
F,S).

We can lift x to x̃ ∈ m/m2. Since x maps to zero in mF,S/(m
2
F,S, π), x̃ maps to πrmod m

2
F,S for some

r ∈ RψF,S . But now we can just choose some r̃ ∈ B mapping to r ∈ RψF,S (i.e. mod J). Now replace x̃ with

x̃− (πr̃ mod m
2) so that x̃ has vanishing image in mF,S/m

2
F,S. That says x̃ is in the image of J/mJ in m/m2,

so x is hit by J/mJ as desired.
Step 3: By Step 2 we get Homk(I, k) →֒ Homk(J/mJ, k) ⊃ kerΦ. So we need to show that kerΦ ⊂

Homk(I, k). In other words, if [ϕf ] = 0 then we claim that f : J/mJ → k should factor through I, or
equivalently vanish on K = ker(J/mJ ։ I). Or equivalently, we need to show that K = J ∩ (m2, π) ⊂
Jf = ker f . But in fact this is really what we showed at the end of the proof of Theorem 1 when we showed
property (4) of Φ.

7. The framed case

Let
η : m

�

Σ/((m
�

Σ)2, π)→ m
�

F,S/((m
�

F,S)2, π).

Then
R�,ψ
F,S
∼= R�,ψ

Σ [[x1, . . . , xr� ]]/(f1, . . . , fr�+s�),
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where r� = dimk coker η and r� + s� = h2
Σ + dimk ker η.

The proof is the same as in the unframed case, just with extra squares floating around all over the place.
But now our H’s have turned into Z’s (that is, elements of the tangent space which were cohomology classes
are now cocycles) so it’s better to phrase the result as above.

8. Formulas for r’s and s’s

Theorem. Suppose that {v|p} ⊂ Σ, that {v|∞} ⊂ S, and that S − Σ contains at least one finite prime.

Then (with notation as above)

s =
∑

v|∞,v 6∈Σ

dimk(ad0 Vk)
Gv .

Remark. We also have r� ≥ #Σ− 1, r� ?
= r + #Σ− 1, s� = s−#Σ + 1.

Proof. Let Y = ad0 Vk and X = Y ∨(1). (In the notation of Rebecca’s talk, X = Y ′; it is written as a
“twisted Pontrjagin dual” here because instead of being Hom into Q/Z (trivial G-module) the target is given
the action of the cyclotomic character.) Recall the end of the Poitou-Tate exact sequence (from Rebecca’s
talk)

H2(GF,S , Y )→
∏

v∈S

H2(Gv, Y )→ H0(GF,S , X)∨ → 0.

Split the product into two pieces:
∏

v∈S

H2(Gv, Y ) =
∏

v∈Σ

H2(Gv, Y )×
∏

v∈S−Σ

H2(Gv, Y ).

The claim is that as long as the second factor is nonzero (which it is by hypothesis), it surjects onto
H0(GF,S , X)∨. Indeed, trivially H0(GF,S , X) →֒ H0(Gv, X) since restricting to the decomposition group gives
more invariants. Dually, we have H0(Gv, X)∨ ։ H0(GF,S , X)∨. But by the Tate pairing, H0(Gv, X)∨ ∼=
H2(Gv, Y ). On each factor, the last map in the Tate-Poitou sequence is none other than the composition
H2(Gv, Y ) ∼= H0(Gv, X)∨ ։ H0(GF,S , X)∨. Thus the claim is true.

Now we do a little diagram chase. We have

H2(GF,S , Y )→
∏

v∈Σ

H2(Gv, Y )×
∏

v∈S−Σ

H2(Gv, Y )→ H2(GF,S , X)∨ → 0.

The claim is that H2(GF,S , Y ) ։
∏
v∈Σ H2(Gv, Y ). Indeed, given (av)Σ ∈

∏
v∈Σ H2(Gv, Y ), suppose its

image in H2(GF,S , X)∨ is γ. Since
∏
v∈S−Σ

H2(Gv, Y )։ H2(GF,S , X)∨, we can find

(bv)S−Σ ∈
∏

v∈S−Σ

H2(Gv, Y )

such that the image of (bv)S−Σ in H2(GF,S , X)∨ is −γ. Then

(av)Σ × (bv)S−Σ ∈ ker(
∏

S

H2(Gv, Y )։ H2(GF,S , X)∨),

whence this tuple is in the image of H2(GF,S , Y ). Projecting onto the
∏
v∈Σ

factor proves the claim. But

the surjectivity of H2(GF,S , Y )։
∏
v∈Σ

H2(Gv, Y ) says precisely that c2Σ = dim coker θ2 = 0.

Consequently we have h2
Σ = h2(GF,S , Y )−

∑
v∈Σ

h2(Gv, Y ). So by the formulas at the end of Theorem 4,

s = −h1
Σ + c1Σ + h2

Σ = −h1(GF,S , Y ) +
∑

v∈Σ

h2(Gv, Y ) + h2(GF,S , Y )−
∑

v∈Σ

h2(Gv, Y ).

Now recall that we have assumed throughout that EndGF,S
Vk = (adVk)

GF,S = k (since we need this

to make sure the unframed deformation ring even exists!). In particular, (ad0 Vk)
GF,S = 0. That is,

h0(GF,S , Y ) = h0(Gv, Y ) = 0. So we can add h0(GF,S , Y ) −
∑

v∈Σ
h0(Gv, Y ) to s and nothing changes.

But now we recognize from the equation above that in fact s = χ(GF,S , Y )−
∑

v∈Σ
χ(Gv, Y ).

We now invoke the Tate global Euler characteristic formula. [Reference: Milne, Arithmetic Duality

Theorems Ch. I, Thm. 5.1.] We conclude that

χ(GF,S , Y ) =
∑

v|∞

h0(Gv, Y )− [F : Q] dimk Y.
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We also have for v < ∞, v ∤ p, that χ(Gv, Y ) = 0. For v < ∞, v|p, we have χ(Gv, Y ) = −[Fv : Qp] dimk Y .
For v|∞, we have χ(Gv, Y ) = h0(Gv, Y ). One sees that in s = χ(GF,S , Y ) −

∑
v∈Σ

χ(Gv, Y ), the degree
contributions all cancel out, so there are no non-archimedean terms. Of the archimedean places, all those in
Σ cancel as well, and we are left with the statement of the theorem. �


