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1. What does it take to be representable?

We have been discussing for several weeks deformation problems, and we have said that we would like

our deformation functors to be representable so we can study their ring-theoretic properties. We have stated

that the framed deformation functor is always representable and that the unrestricted deformation functor

is under certain hypotheses, but we have yet to prove either assertion.

There is a general theory of functors on CΛ the category of Artin local Λ-algebras. My goal in this section

is to, in as concrete terms as possible, describe what it takes for such a functor to be representable and how

we might verify these properties. I then verify these properties for Dρ̄ with Endk(ρ̄) = k.

Along the way, I will point out some subleties of the relationship between CΛ and ĈΛ.

Let k be a finite field. Recall that CΛ is the category of local Artin Λ-algebras with residue field k, where

Λ is any complete noetherian ring with residue field k. One can just think of Λ = W (k) in which case every

local Artin ring with residue field k admits a unique Λ-algebra structure. Denote by ĈΛ the category of

complete local Noetherian rings with residue field k.

We are interested in functors F : CΛ → Set. We say F is representable if there exists R ∈ ĈΛ such that F

is naturally isomorphic to HomΛ(R, ·). (Technically you might call this pro-representable but it won’t cause

any confusion to just say ”representable”).

Elementary Properties of Representable Functors On CΛ

I If F is representable, F (k) = HomΛ(R, k) = single point. We assume from now on that F (k) is the

one point set.

II If F is representable, F (k[ǫ]) = Homk(mR/m
2
R + mΛ, k) = tF is a finite dimensional vector space

over k.

III If F is representable, then F commutes with fiber products, i.e. if A→ C and B → C are two maps

in CΛ then the natural map

(1) F (A×C B) → F (A) ×F (C) F (B)

is a bijection.

Exercise 1.1. If you have not seen it before, you should verify that fiber products exist in CΛ induced by

set-theoretic fiber products. This is not true in ĈΛ (See Conrad’s example in Mazur’s article ??).

Exercise 1.2. Show that there is a natural multiplicative map k → EndΛ(k[ǫ]) given by a 7→ αa where

αa(x+ yǫ) = x+ ayǫ.
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Remark 1.3 (Tangent Space). Without knowing F is representable, its worth noting what is required for

the tangent space to make sense. Let tF := F (k[ǫ]). The natural map k → EndΛ(k[ǫ]) induces scalar

multiplication on tF . We also know k[ǫ] is a group object in CΛ compatible with scaling. Functoriality gives

a map

F (k[ǫ] ×k k[ǫ]) → tF .

If we can identify the LHS with tF ×tF , then we are set. The LHS does admit a natural map to F (k[ǫ])×F (k)

F (k[ǫ]) = tF × tF . If this map is bijective (a special case of (III)), then tF has a vector space structure.

Exercise: Check for F representable that the vector space structure on tF given functorially as above is

the same as the natural vector space structure on Homk(mR/m
2
R +mΛ, k).

It turns out that property (III) along with the dimk tF < ∞ is necessary and sufficient for F to be

representable. However, I will not prove this because it is far too general to be useful. It could be quite

difficult to check (III) for every possible pair of morphisms. Luckily, we don’t have to! And this leads us to

Schlessinger’s criterion after a brief definition.

Definition 1.4. A map A→ B in CΛ is small if its surjective and its kernel is principal and annihilated by

mA.

Theorem 1.5 (Schlessinger’s Criterion). Let F be a functor from CΛ to Sets such that F (k) is a single

point. For any two morphism A→ C and B → C consider the morphism (1).

Then if F has the following properties:

H1 (1) is a surjection whenever B → C is small.

H2 (1) is a bijection when C = k and B = k[ǫ].

H3 tF is finite dimensional

H4 (1) is a bijection whenever A→ C and B → C are equal and small.

then F is representable.

I will return to the proof at the end given sufficient time, but one essentially makes clever use of the

structure of Artin local rings working at each nilpotent level to build the representing ring as an inverse limit

(see Schlessinger [?]. We denote the criterion by (SC).

Schlessinger’s criterion is just one of many ways to show the deformation functor is representable. It has

the advantage that it is concrete and allows one to really exploit the fact that we are working over Artin

rings.

Proposition 1.6. Assume that EndG(ρ̄) = k and G satisfies the p-finiteness condition. Then the deforma-

tion functor Dρ̄ is representable.

Proof. I leave it to the reader to verify the following useful fact Gln(A ×C B) ∼= Gln(A) ×Gln(C) Gln(B) as

groups. This says that given any two lifts ρA and ρB which agree when pushed-forward to C come from a
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lift to the fiber product. The only difficulty then in verifying H1 through H4 will be the ambiguity coming

from conjugation.

In what follows ρA and ρB will always lifts of ρ̄. We assume we have maps A→ C and B → C satisfying

the hypotheses in (SC). Further, we denote by ρ̃A and ρ̃B the respective push-forwards of ρA and ρB under

the given maps.

(H1) We are given ρA and ρB such that ρ̃A = Mρ̃BM
−1 for some M ∈ Gln(C). Since B → C is surjective,

we can lift M to Gln(B). Replacing ρB by MρBM
−1 in the same deformation class yields compatible lifts

which can then be lifted to A×C B.

(H2) Here we start with ρ and ρ′ over the fiber product such that ρA and ρB are conjugate to ρ′A and ρ′B

respectively. Choose conjugators MA and MB. Note that if M̃A and M̃B were equal, we could lift them to

Gln(A×C B) and we would be done. This is true in general with no hypotheses on A,B, and C.

We are free to multiply MB on the right by any matrix N such NρBN
−1 = ρB. Let Stab(ρB) be the set

of such N . Further note that M̃−1
B ∗ M̃A is in Stab(ρ̃B). If we can lift this to Stab(ρB) then we are done.

Hence a sufficient condition for the desired map to be injective is that:

(2) Stab(ρB) → Stab(ρ̃B)

is surjective.

This is clear since for C = k, Stab(ρ̃B) = k∗. I leave it as a exercise to show that for B = k[ǫ] and C = k,

the equation (2) holds without any hypotheses on ρ̄.

(H3) Follows from p-finiteness of Galois groups, given that (H2) implies the existence of the tangent space.

(H4) I leave it to the reader to verify that surjectivity of (2) follows from the following lemma:

If EndG(ρ̄) = k and ρA is any lift of ρ̄, then

EndG(ρA) = A.

Set L = EndG(ρA) and note that L is an A-submodule of End(ρA) which contains the scalar matrices

A ∗ I. Further, we have that L×A A/mA = EndG(ρ̄). By Nakayama, L is generated over k by any lift of I.

Thus, L = A. �

If ρ̄ is absolutely irreducible then it will satisfy the above hypothesis by Schur’s lemma. However, there

is important other case where ρ̄ is not irreducible but still satisfies EndG(ρ̄) = k.

Proposition 1.7. Let k be any field, and let V be any representation of G with a G-stable filtration V1 ⊂

V2 ⊂ . . . ⊂ Vn = V such that:

I Vi+1/Vi is one-dimensional with G acting by χi.

II The χi are distinct.

III The extension Vi/Vi−1 → Vi+1/Vi−1 → Vi+1/Vi is non-split for all i.

Then EndG(V ) = k.
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Proof. Before you read this proof, I recommend doing the 2 by 2 case by hand which I may or may not have

gotten to in the lecture.

Let M ∈ EndG(V ) i.e. M commutes with the G-action. We want to show that M is a scalar. We first

note that V1 is the unique 1-dimensional subspace on which G acts via χ1. For if V ′

1 were another, we could

build a Jordan-Holder series V1 ⊂ V1 ∪ V
′

1 ⊂ . . . and thus χ1 would appear at least twice in Jordan-Holder

decomposition which can’t happen since χi are distinct.

It follows then that M preserves V1 and by induction the whole flag. Let M act on V1 by multiplication

by a. We claim that M = aI. Consider M − aI : V → V also in EndG(V ). Since M − aI|V1
= 0, it factors

as a morphism

T : V/V1 → V.

By induction, the induced map V/V1 → V/V1 which is G-invariant is multiplication by a scalar c. If c 6= 0,

then T |V2
would give a splitting of the extension where i = 1 and so we can assume c = 0.

Thus, T is actually a G-invariant map

V/V1 → V1.

If T = 0 we are done, else let Vi be the first subspace on which it is non-trivial. Then T : Vi/Vi−1 → V1 is

an isomorphism as G-modules, contradiction. �

Remark 1.8. Schlessinger’s criterion is a statement purely about a functor on CΛ. However, once we know

F is representable, its quite natural to talk about its points valued in complete local Noetherian rings for we

have HomΛ(R,A) = HomΛ(R, limA/mA
n) = limF (A/mA

n). In fact, that’s really what we were interested

in all along, for example, Zp-deformations, not representations on Artin local rings. So we must ask ourselves,

are the points of our universal deformation ring valued in ĈΛ what we want them to be?

Let A be a complete local Noetherian ring. Its clear the any deformation to A yields a map Runiv
ρ̄ → A

(here’s where you use that your representation is continuous). However, the other direction requires an

argument. Denote A/mn
A by An. We are given deformations ρn ∈ Dρ̄(An) such that ρn ⊗An−1 is equivalent

to ρn−1. If ρn formed a compatible system of lifts, we would be fine, but we have conjugations interfering

at each level. In this case, it can be resolved quite easily. Assume we have compatibility up to ρn. Given

that M(ρn+1 ⊗An)M−1 = ρn change ρn+1 by any lift of M to GlN (An) and proceed by induction.

We will return to this point again later where the argument will require some extra input.

Remark 1.9. (Framed Deformations) The fact mentioned earlier that Gln(A×CB) ∼= Gln(A)×Gln(C)Gln(B)

implies that the framed deformation functor D�
ρ̄ commutes with all fiber products and thus is representable.

However, (SC) is probably way to fancy a way to prove existence for framed deformations. For the record,

I give a proof that R�
ρ̄ exists.

Proof. Since GlN (k) is finite, ρ̄ is trivial on some finite index subgroup H of G. For any lift, we have that

ρA(H) ⊂ ker(GlN (A) → Gl(k))
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which is a p-group for any A ∈ CΛ. Thus, ρA|H factors through maximal pro-p quotient of H which by

p-finiteness is topologically finitely generated. Pick generators g1, . . . , gj . Also, pick coset representatives for

gj+1, . . . , gm for G/H .

Any lift ρA is determined by where the {gi} are sent. Consider the power series ring R = Λ[[X l
i,j]] where

1 ≤ i, j ≤ N and 1 ≤ l ≤ m. I claim that we can construct the universal framed deformation ring as a

quotient of R such that the universal framed deformation ρuniv is given by gl goes to the matrix (X l
i,j). Let

S be the set of relations in G amongst the gl. For any relation, we can consider the corresponding relation

on matrices under the map gl goes to (X l
i,j). We form the ideal I in R generated by these relations. Then

D�
ρ̄ is represented by R/I. �

Before we move on to deformation conditions, I would like to recall several different interpretation of the

tangent space which will be useful in the future. We would like to give a concrete interpretation of the

abstract tρ̄ := Dρ̄(k[ǫ]). Let (V, τ) be a deformation to k[ǫ] where τ is an isomorphism V/ǫ → ρ̄. Consider

the following exact sequence of k-vector spaces:

0 → ǫV → V → V/ǫV → 0.

Simply because G commutes with the action of k[ǫ], this is an extension of G-modules. Further one can

identify via τ the terms on both ends with ρ̄.

Hence we get a map tρ̄ → Ext(ρ̄, ρ̄). It is an exercise to show the map is bijective. By general non-

sense, one can identify this Ext-group with H1(G, ad(ρ̄)). Note that ad(ρ̄) is just End(ρ̄) where G acts via

conjugation (ad stands for adjoint).

I will give you the map Ext(ρ̄, ρ̄) to H1(G, ad(ρ̄)), but I leave it to you to check that the vector space

structures on tρ̄ and H1(G, ad(ρ̄)) agree.

Given an extension 0 → V ′ → V → V ′′ → 0 choose a splitting φ : V ′′ → V just as vector spaces. The

map g 7→ gφg−1 − φ is a co-cycle with values in ad(ρ̄).

In the next section, as we impose various deformation conditions, we will eventually want to keep track

of the effect on the tangent space.

2. Deformation Conditions

As we have mentioned already several times in this seminar, whether in the local or global situation, the

unrestricted universal deformation ring if it exists will be far too ”big” to be useful. Hence we will want

to impose some conditions on what kinds of deformations we allow. Deformation conditions can come in

different varieties. Often we have global representations on which we impose local conditions at finite set of

primes. At these local places, we might impose matrix conditions for example, fixed determinant, ordinary,

etc. We could also impose conditions coming from geometry or p-adic Hodge theory: flat, crystalline,

semi-stable. I will discuss some of these in more detail later.

In Mazur’s article [?], he defines the notion of deformation condition quite generally such that everything

we will talk about probably fits into that framework. However, for our purposes and for the purpose of
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intuition, the definitions are unilluminating. Instead, I will give two different perspective from which one

could derive all the definitions.

Functorial Perspective IfDρ̄ is the deformation functor, a deformation condition should define a subfunctor

D′

ρ̄ of Dρ̄. Further, if Dρ̄ is representable, then D′

ρ̄ should be as well. One could use the term relatively

representable as Mok did, but its not necessary.

The first statement is usually immediate for any deformation condition. The second one is not. This is

a place you might use Schlessinger’s criterion, maybe you know already that Dρ̄ satisfies Schlessinger then

you just have to show the D′

ρ̄ does too. We will see an example of this soon.

Deformation Space Perspective If Dρ̄ is represented by Rρ̄, then we can talk about Spec Rρ̄ as the space

of all deformations of ρ̄. Personally, I find this picture quite compelling.

A brief aside. Say ρ̄ is modular, then Akshay explained that we get a surjective map Rρ̄ → T , a Hecke ring.

In geometric language, Spec T is a closed subspace of the deformation space which includes the closed point

corresponding to ρ̄. Imagine this as the locus of ”modular” deformations. Given a representation coming

from an elliptic curve, etale cohomology, or somewhere else, whose reduction is ρ̄, its natural to ask does it

land in that locus. Our goal then, as I understand it, is to impose enough purely representation theoretic

condition to cut out the ”modular” locus. Then whatever representation we started with will presumably

have those properties and hence will be modular.

From this perspective then a deformation condition is just a closed condition on the space of all deforma-

tions. More concretely, there exist an ideal I such that for any f : R → A, f ◦ ρuniv satisfies the deformation

condition if and only if f factors through R/I.

Remark 2.1. We can connect the two perspectives as follows: let D′ be subfunctor of D and assume they

are both representable by R and R′, then we get a natural map R → R′. I claim this map is surjective. It

suffices to check that the map on cotangent spaces is surjective. But the map on cotangent spaces is dual to

the map on tangent spaces which is injective because D′(k[ǫ]) ⊂ D(k[ǫ]).

Remark 2.2 (Relative Perspective). There is relative perspective which doesn’t require Dρ̄ to be repre-

sentable. Given any deformation ρ to A, we can ask if the subset of maps Spec B → Spec A such that the

pullback of ρ has a given condition is represented by a closed subset of Spec A? If this holds for all A and if

the univeral deformation ring exists then we can apply it to (Rρ̄, ρ
univ). This is the perspective Kisin often

takes.

2.1. Determinant Condition. Let G be any local or global Galois group.

Definition 2.3. Let A ∈ ĈΛ, and let δ : G → Λ∗ be a character. We say a representation ρ on a free rank

n A-module has determinant δ if ∧n : G→ A∗ factors through δ.

Consider the functor of deformations with fixed determinant δ (assume that ρ̄ has determinant δ). I claim

this is a deformation condition.
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Here the second perspective is most natural. Let δuniv : G→ R∗

ρ̄ be the the determinant of the universal

deformation of ρ̄ assuming it exists. Then let I be the ideal generated by δuniv(g)−i(δ(g)) where i : Λ∗ → R∗

ρ̄

is inclusion coming from algebra structure. Then, Rρ̄/I represents deformations with determinant δ. Its

usually denoted by Rδ
ρ̄.

I haven’t worked it out, but I suspect it would quite a bit more tedious to show for example that the

determinant condition defines a subfunctor which satisfies Schlessinger’s criterion or that it is relatively

representable.

Note that even if Dρ̄ is not representable, the same proof goes through for any (A, ρ) to show relative

closedness as in Remark 2.2.

2.2. Unramified Condition. Let K be a global field and let S be a finite set of primes. We denote by

GK,S the maximal Galois group unramified outside S. Take ρ̄ to be a residual representation of GK,S which

happens also to be unramified at some ν ∈ S.

Definition 2.4. Let ρA be any deformation of ρ̄. We say that ρA is unramified at ν if ρA|GKν
is unramified

for any choice of decomposition group GKν
.

In showing this is a deformation condition, I will illustrate the relative perpective. Again, let ρA be any

deformation of ρ̄. Consider any map f : A → B. The push-forward f∗(ρA) will be unramified an ν iff its

trivial on the inertia group IKν
(for some choice of inertia).

Let J be the ideal in A generated by the entries of {I − ρA(g)} for all g ∈ IKν
. Then, one can verify that

A/J represents the unramified at ν condition. This is the relative condition; if Rρ̄ exists, we can apply the

same argument to construct the universal deformation ring unramified at ν.

2.3. Ordinary Deformations. We will go into extensive detail in this section as the notion of ordinary will

play a prominent role in what is to come. There seem to be several definitions of ordinary floating around.

I chose one that is both concrete and sufficiently general for now.

Definition 2.5. Let G = GK be a local Galois group where the residue characteristic is p. Let ψ : G→ Z
∗

p

be the p-adic cyclotomic character. An n-dimensional representation ρ of G is ordinary if

ρ|IK
∼















ψe1 ⋆ ⋆ ⋆

0 ψe2 ⋆ ⋆

0 0
. . . ⋆

0 0 0 1















where e1 > e2 > . . . > en−1 > 0. Implicitly we are including Zp → Λ so that the definition makes sense

over any Λ-algebra and hence on our category ĈΛ.

Before we continue, let me say where this condition is coming from.
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Example 2.6. If E is an elliptic curve overK a local field of residue characteristic p which has good ordinary

reduction at p, then the representation of GK on Tp(E) is ordinary. In particular, it has the form

g 7→





ψ(g)χ1(g) ⋆

0 χ2(g)





where χ1 and χ2 are unramified characters on GK .

There is an corresponding notion of what it means for a modular form to be ordinary, but I won’t get

into it here.

Remark 2.7. Note that though ψe is non-trivial on IK for any e 6= 0 (in fact its infinitely ramified), its

possible for ψe to be residually trivial. The residually trivial case will be of interest to us later on, but for

now, we assume that all ψei are residually distinct and non-trivial. Its not hard to work out exactly when

this happens based on K, p, ei.

Next, we would like to show that if we conjugate ρ such that ρ|IK
is upper triangular, then ρ will be upper

triangular. This follows from the following useful lemma.

Lemma 2.8. Let ρ : IK → GlN (A) be a representation, A ∈ CΛ landing in the upper triangular matrices with

residually distinct characters along the diagonal. If MρM−1 is also upper triangular with same characters

occurring in the same order, then M is upper triangular.

Proof. We prove it in two steps. First we show that ρ preserves a unique flag. We know this fact residually

using a Jordan-Holder component argument as in Proposition 1.7. Let M ∼= AN with G acting through ρ.

Let L1 ⊂M be the line corresponding to e1 on which ρ acts by χ1. We want to show that given any m ∈M

on which G acts via χ1, m ∈ L1. From there, it is a simple induction on N .

Consider the quotient N = M/L1. I claim N contains no non-zero v on which G acts via χ1. Assume

there existed such an v. Filter N by mn
AN , and let n0 be the smallest n such that v /∈ mn

AN . Clearly G acts

on the image of v in mn0−1
A N/mn0

A N via the character χ1. However, its not hard to see that for any n,

mn
AN/m

n+1
A N ∼= mn

A/m
n+1
A ⊗k (ρ̄ /(L1 ⊗ k))

as k[G]-modules. The RHS breaks up as the direct sum of copies of ρ̄ quotiented by the χ1 subspace and

hence χ1 doesn’t appear anywhere in semi-simplification (using residual distinctness). Hence the flag is

unique.

To say M is upper triangular is equivalent to saying M preserves the flag which we have now shown to be

unique. Again, by induction on N , it will suffice to show the M preserves L1. Let e1 ∈ L1. Our hypotheses

imply that

MρM−1e1 = ρe1 = χ1e1.

Multiplying by M−1 and using that M−1 commutes with χ1, we get

ρ(M−1e1) = χ(M−1e1).



9

By uniqueness then, M−1e1 ∈ L1 and hence M−1 preserves the flag so M does as well. �

Corollary 1. If ρ is ordinary, then it lands in a Borel subgroup, i.e. is upper-triangular with respect to

some basis.

Proof. By assumption, we can conjugate ρ|I to be upper-triangular so it suffices to show that ρ(g) is, where

g is some Frobenius element. Since ψe are invariant under conjugation by g, we see that ρ(g) satisfies the

hypotheses on M in the previous lemma and hence is upper-triangular. �

Corollary 2. The ordinary deformation functor satisfies (SC) and so is representable under the assumption

that the residual representation is non-split in the sense of Proposition 1.7.

Proof. By Proposition 1.7, the residual deformation satisifies the necessary conditions for the universal

deformation functor to exist. We denote the ordinary deformation functor by Dord
ρ̄ ; it is clearly a subfunctor

of Dρ̄. As a subfunctor, injectivity of the map (1) is automatic in H1, H2, and H4. Hence it suffices to check

that (1) is surjective under the hypotheses of H1, namely when B → C is small.

We are free to choose ordinary lifts ρA and ρB

ρ̃A = Mρ̃BM
−1.

Since ρ̃A and ρ̃B are both ordinary M satisfies the hypotheses of the previous lemma and so is upper-

triangular. We can choose a lift M ′ of M to Gln(B) which is upper triangular. Changing ρB by M ′

maintains its ordinary form. Hence, we have ρA and ρB agreeing after push-forward and both have ordinary

form and so their fiber product will also be ordinary. �

Exercise 2.9. (Continuity) Let A be complete local Noetherian ring and set An = A/mn
A. Given a com-

patible system of ordinary deformations ρn, show that there exist an ordinary deformation ρA such that

ρA ⊗An ≡ ρn. Hint: See Remark 1.8.

As a final comment, it is possible to interpret ordinarity as a closed condition at least under the assump-

tions of residually distinct and nonsplit, but I did not have to write it up. Hopefully, I will have a chance to

present it in seminar. Otherwise, feel free to ask me about it afterwards.


