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1. SOME OBSERVATIONS

Fix p : Gg,s — GLa(k) absolutely irreducible, and let p : Gg ¢ — GL2(R) be the universal deformation.
We're interested in the map R — Ty, for some Hecke algebra defined in terms of p. Note that the Hecke
algebra is 1-dimensional, and even finite free over Z,. The universal deformation ring R, however, often has
dimension > 1 and nonzero p-torsion. In other words, the surjection R — Ty, is not even close to being an
isomorphism in general.

Example. Consider X((49) which is an elliptic curve. [Cf. Nigel Boston’s papers on explicit deformation
rings for the details of this example.] Let p the representation from the 3-torsion of E, and let S = {3,7, 00}.
Boston computed the universal deformation as

Zs|x1, 20, x
p:GQs—)GLg(iS[[I 2 3]]>

(14+z1)2 -1

Just by looking at the ring on the right side, it’s clear that its dimension is at least 2. (This example doesn’t
illustrate the phenomenon of p-torsion, but oh well...)

Morally, the reason for the higher dimension of R is that we are not imposing any local conditions at all
for the places in S.

A key observation is that even when we succeed in proving a modularity lifting theorem, we don’t know
until we’re done that R is Z,-finite and flat. In other words, even when in fact R turns out to be nice, we
have very little grasp of why it is nice without proving an R = T theorem.

However, this is really not so bad. For example, if we could show that R[1/p] = T,,[1/p], that’s totally
fine. After all, we're trying to study deformations of p over p-adic integer rings, which are p-torsion free and
reduced, so we rig the Hecke algebra to have the same properties. In other words, we only care about
the “p-adic points” of R so we can just as well study the structure of R[1/p]/nilpotents. And via Kisin’s
methods, it turns out that a thorough understanding of the “structure” of this ring is attainable in interesting
cases and is exactly what is needed for modularity lifting theorems. Things we would like to know:

e Characterize in some moduli-theoretic manner the connected components of its spectrum (e.g., so
we can detect when two p-adic points lie on the same component).
e Dimension.
e Singularities, i.e. the extent to which an appropriately defined notion of smoothness fails to hold.
For the last point, it is just as good in practice to pass to a formally smooth R-algebra (such as a power
series ring over R). So we can counsider the framed deformation ring.

Remark. A key point is that R[1/p] is very far from being a local ring. For example, say R = Z,[x] (which
is a rough prototype of the sort of ring that arises). Then

R[1/p| = Z,[z][1/p] = {f € Qp[z] | denominators are bounded powers of p} C Qp[z].

This ring has lots of Q,-algebra maps Z,[x][1/p] - Ok [1/p] for finite extensions K/Q,, sending x into m.
Hence it has lots of maximal ideals.

2. DIGRESSION ON JACOBSON RINGS

Definition. A Jacobson ring is a Noetherian ring A such that any p € Spec A is the intersection of the
maximal ideals containing p.

Clearly a quotient of a Jacobson ring is Jacobson. Less evident, but in the exercises of Atiyah-MacDonald,
is that a finitely generated algebra over a Jacobson ring is Jacobson. Note that any field is Jacobson, as is any
Dedekind domain with infinitely many primes (but not a dvr, nor a local ring which is not 0-dimensional!).
In particular, a general localization of a Jacobson ring is certainly not Jacobson, though localization at a
single element is (since it is a finitely generated algebra).
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A consequence of the definition is that if Xy = MaxSpec(A) < Spec A = X, then j is a dense quasihome-
omorphism, which means that Uy = Xy NU < U is a bijection between the collections of open sets in X
and X. Jacobson rings abstract the nice properties enjoyed by algebras of finite type over a field.

Claim. If R is a quotient of a formal power series ring over a complete dvr A with uniforizer = then R[1/7]
is Jacobson, and for all maximal ideals m C R[1/7], the quotient R[1/7]/m is finite over the fraction field
K = A[l/7] of A. Moreover, every K-algebra map from R[1/7] to a finite extension K’ of K carries R into
the valuation ring A’ of K’, with the map R — A’ actually a local map.

Note it is elementary that every K-algebra map from R[1/7] to a finite extension K’ of K has kernel that
is maximal: the kernel P is at least a prime ideal, and R[1/x]/P is an intermediate ring between the field
K and the field K’ of finite degree over K, so it is a domain of finite dimension over a field (namely K) and
hence is itself a field. Hence, P is maximal.

Also, everything in the Claim can be deduced from facts in rigid geometry concerning K -affinoid algebras,
by using the approach in deJong’s IHES paper Crystalline Dieudonné theory via formal and rigid geometry.
For convenience, we give a direct proof using commutative algebra, avoiding rigid geometry (but inspired by
it for some of the arguments).

The proof of the Claim is somewhat long (and was omitted in the lecture).

Proof. To prove the claim, first note that if the claim holds for R then it holds for any quotient of R. Hence,
it suffices to treat the case when R = A[x1,...,z,] is a formal power series ring over A. We first check the
more concrete second part of the Claim: for finite K'/K, any K-algebra map R[1/7] — K’ carries R into
the valuation ring A" of K’ with R — A’ moreover a local map. In other words, we are studying A-algebra
maps R — K’. This can be uniquely “promoted” to an A’-algebra map

A/®AR—>K/,

and we can pass the tensor product through the “formal power series” formation since A’ is a finite free
A-module. In other words, we can rename A’ as A to reduce to the case K’ = K. So we claim that any
A-algebra map R — K must be “evaluation” at an n-tuple in the maximal ideal of A. If we can show it
carries each x; to some a; in the maximal ideal of A then the map kills z; — a; for all . By completeness
of R it would be legal to make a “change of variables” renaming x; — a; as x; to reduce to the case when
the map Kkills all x;’s. Since the quotient of R by the ideal generated by the z;’s is identified with A, after
inverting m we get K (as a K-algebral), so we’d have proved what we want.

Let’s now show that indeed each z; is carried to some a; in the maximal ideal of A. By composing the
given A-algebra map R — K with the natural inclusion Afz;] — R we are reduced to the case n = 1. That
is, we wish to prove that any A-algebra map A[x] — K must carry z to an element a in the maximal ideal
of A. This map must kill some nonzero f € Afz], as AJz][1/7] has infinite K-dimension as a vector space,
and we can write f = 7€ fy for some e > 0 and some fy not divisible by w. Thus, fy also dies in K, so by
renaming it as f we arrange that f has some coefficient not divisible by 7. This coefficient must occur in
positive degree, as otherwise f would be a unit, which is absurd (as it is in the kernel of a map to a field).
Now by the formal Weierstrass Preparation Theorem (in one variable —see Lang’s Algebra), if d > 0 is the
least degree of a coefficient of f not divisible by 7 then f is a unit multiple of a “distinguished” polynomial:
a monic polynomial in z of degree d over A with all lower-degree coefficients divisible by 7. Scaling away the
unit, we can assume that f is a monic polynomial of degree d > 0 with all lower-degree coefficients divisible
by m. Hence, A[z]/(f) = A[x]/(f) by long-division of formal power series (thanks to completeness of A!).
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Our map of interest therefore “is” an A-algebra map

Alal/(f) = K

and so it carries « to an element a of K that is a root of f. Since f is monic over A, we see a € A. Since f has
all lower-degree coefficients in the maximal ideal, necessarily a is in the maximal ideal too. That completes
the proof of the second part of the Claim.

Now it remains to show the first part of the Claim: R is Jacobson, and if M is a maximal ideal of
R[1/x] then R[1/xw]/M is of finite degree over A[1/w] = K. We argue by induction on the number n of
variables (motivated by the method of proof of the analytic Weierstrass Preparation theorem over C or
non-archimedean fields), the case n = 0 being trivial. Also, it is harmless (even for the Jacobson property)



to make a finite extension on K if we wish. We will use this later, to deal with a technical problem when
the residue field k is finite (which is of course the case of most interest to us).

Assume n > 0, and consider a nonzero f € R = Afz1,...,x,] contained in some chosen nonzero prime
or maximal ideal; clearly f can be scaled by m-powers so it is not divisible by 7. We want to get to the
situation in which f involves a monomial term that is just a power of a single variable. Pick a monomial
of least total degree appearing in f with coefficient in A*. (Such a term exists, since f is not divisible by
w.) This least total degree d must be positive (as otherwise f(0) € A*, so f € R*, a contradiction). By
relabeling, we may suppose x; appears in this monomial. If n = 1, this term is an A*-multiple of a power of
x1, so we're happy. Now assume n > 1 and consider the homogeneous change of variables which replaces x;
with x; + ¢;x1 for all 4 > 1 (and leaves x; alone), with ¢; € A to be determined in a moment. Each degree-d
monomial

arzit -zt
in f (before the change of variable) with total degree d contributes
alc? e cfl“x‘f
to the ¢ term after the change of variable (with 41 = d — (ig + --- + i,)). All other monomials can only
contribute to z¢ with coefficient in maximal ideal of A. Thus, these other terms can be ignored for the
purpose of seeing if we get z¢ to appear with an A*-coefficient after the change of variables.

To summarize (when n > 1), whatever ¢;’s we choose in A, we get after change of variable that x¢ appears
with coeflicient h(c) for some polynomial h in n — 1 variables over A that has some coefficient in A* (since
i1 is determined by is,...,,). Thus, h has nonzero reduction as a polynomial over the residue field k of A,
so as long as this reduction is nonzero at some point in k"~ ! we can choose the ¢’s to lift that into A?~!
to get the coefficient of z¢ to be in A*. If k is infinite, no problem. If k is finite (case of most interest!),
for some finite extension k' of k we can find the required point in £™!, so go back and replace A with
the corresponding unramified extension (and the chosen prime with each of the ones over it after scalar
extension) to do the job.

The upshot is that after a suitable change of variables (and possible replacement of A with a finite
extension in case k is finite), we can assume that f contains some z¢ with an A*-coefficient. Thus, if we
view f in

R = (Alza,...,zu])[x1]
then it satisfies the hypotheses of the general Weierstrass Preparation (with complete coefficient ring) as
in Lang’s Algebra. This implies that f is a unit multiple of a monic polynomial in x; whose lower-degree
coefficients are in the maximal ideal of R’ = Afzs, ..., x,] (which means A if n = 1). We can therefore scale
away the unit so that f is such a “distinguished” polynomial, and then do long division in R'[z1] due to
completeness of R’ to infer that
R/(f) = Rul/(f) = Rz1)/(F).

This is a finite free R’-module!

We may now draw two consequences. First, if P is a prime ideal of R[1/7] containing f then R[1/7]/P is
module-finite over the ring R’[1/7] which is Jacobson by induction, so R[1/7]/P is Jacobson. Hence, P is the
intersection of all maximals over it, whence we have proved that R[1/7] is Jacobson. Second, for a maximal
ideal M of R[1/w] containing f, the ring map R'[1/w] — R[1/7]/M is module-finite so its prime ideal kernel
is actually maximal. That is, we get a mazimal ideal M’ of R'[1/x] such that R'[1/7]/M’ — R[1/x|/M is of
finite degree. By induction, R'[1/7]/M’ is of finite degree over K, so we are done. O

3. VISUALIZING R[1/p]

Let R = Afz1,...,z,]/(f1,..., fm) and K be in the last subsection. Observe that Homige 4—alg(R, A") =
Hompyac(a)—alg (R[1/7], A'[1/7] = Frac(A’)) for any finite dvr extension A" of A. This suggests the following
geometric perspective on the ring R[1/7]: it corresponds to the locus of geometric points (z;) with coordinates
in Frac(A) lying in the open polydisk {|z1],...,|zn| < 1} at which the convergent power series f1,..., fm all
vanish. To make this viewpoint precise, one must regard the spaces in question as rigid analytic spaces.



4. FINAL THOUGHT

We'll see that for Galois deformation rings R, the completions of R[1/p] at maximal ideals are deformation
rings for characteristic zero representations corresponding to the maximal ideals in question. This is very
interesting, since R itself was entirely about deforming mod p things!

5. BACK TO EXAMPLES OF EXPLICIT UNIVERSAL DEFORMATION RINGS

Caveat: These sorts of examples are kind of “useless”. The reference for N. Boston’s examples is Inv.
Math. 103 (1991).

Example 1 [loc. cit., Prop. 8.1.] Let E : y? = x(2?>—82+8), an elliptic curve with complex multiplication
by Q(v/—2). Let p be the representation on the 3-torsion:

Gq,(27,3,5,00) — GL2(F3).
In general we know that there is some surjection Zs[T1,...,Ty] — R(p) where we know the smallest d is
(by NAK) d = dimmpg/(m%,3), and mp/(m%,3) = H'(Gg (27,3,5,00}, Ad(p)). Here the adjoint module is
Ad(p) = Endr, (p) with Gg t27,3,5,00} acting by conjugation via p. In this particular case one can compute
that d =5, so

R(p) = Zs[T1, ..., T5]/1
where the ideal of relations has the form

I=46- (fv g)
for
f=8u*—8u?+1,g=8¢—4u, u=(1+T4T5)"?

and § (which may involve all the T;s) is obtained by choosing a certain presentation of a pro-3 group (coming
from a wild inertia group, perhaps for the splitting field of 7?), and setting § = det(p" (y) — 1) where ¥ is
a particular generator in said presentation. Consequently one can write down some “explicit” deformations
of P by looking for solutions to the relations above in a Zg-algebra...

Example 2 [Boston-Ullom]. Let £ = X((49) and p = pp 5 the representation on the 3-torsion:
Go,{3,7,00y — GL2(F3).
In this case the universal deformation ring is particularly simple:
R Zs[Ty,...,Tu] /(1 +Ty)* — 1).

We have (1+74)% —1 = Ty(T7 +3T4+3). The quadratic factor is irreducible over Q3, but not over Q3(v/—3).
So, loosely speaking, Spec R has two irreducible components but three “geometric” irreducible components:
Ty = 0 and Ty equal to either of the conjugate roots of the quadratic factor. For example, to recover the
3-adic Tate module of E one considers the map R — Zj3 given by mapping all T;s to 0. This is a sort of
“canonical” Zs-point of Spec R. Since the quadratic factor of the relation is Qs-irreducible, so that quadratic
field cannot be Q3-embedded into Q3, every Zs-point lies in the Ty = 0 component.

The lesson to take from this seems to be that it can be hard to detect components, or more generally
aspects of the geometry, of Spec R, when only looking at p-adic points over a small field like QQ,,; we have to
expect to work with points in many finite extensions in order to effectively probe the geometry. All this is
by way of motivation for our interest in characteristic zero points of deformation rings, and (for example)
our willingness to throw out all possible nastiness at p by studying R[1/p] instead of R itself.

6. BACK TO CHARACTERISTIC 0

Now let A be a p-adic dvr with fraction field K and residue field k. Let R = A[X,,..., X,]/I be the
universal deformation ring of a residual representation p : I' — GLy(k), for a profinite group I' satisfying
the requisite p-finiteness conditions (e.g. Gk for local K or G, g for a number field K).
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Remark. We have seen above that for any maximal ideal m C R[1/p], the residue field R[1/p]/m is of finite
degree over k. The intuition for this fact is that these closed points of Spec R[1/p] correspond to Galois
orbits over K of K-solutions to I = 0 in the open unit n-polydisk. (The case n = 1 is a consequence of
the Weierstrass Preparation Lemma. One can relate the geometry of Spec R[1/p] to the geometry of the
aforementioned “rigid analytic space” I = 0. For example, if R[1/p] is connected (no nontrivial idempotents)
then I = 0 is connected in the sense of rigid geometry. One can also match up the dimensions of the
components. The input for this equivalence is the (self-contained!) §7 of de Jong’s IHES paper Crystalline
Dieudonné theory ..., but we won’t use it.

We also saw above that any K-algebra map R[1/p] — K’ for a finite extension K'/K is actually given by
sending all the X;s to elements x; € mgs C Og, C K'. In other words, R C R[1/p] actually lands in Og/!

Now fix a K-algebra map = : R[1/p] - K' into a finite extension of K. (“Contemplate a p-adic point of
Spec R”.) Let

pz: T "= GLn(R) — GLn(R[1/p]) — GLy(K')
be the specialized representation. (In the Boston-Ullom example above, when we take z : R[1/3] — Q3 to
be the map sending all the T;s to zero, then p, is the 3-adic Tate module of X((49).)
Goal: Understand the dimension dim R[1/p|m, = dim R[1/p]}; . (Here (-)" denotes completion.)
For instance, is this complete local ring regular? Perhaps even a power series ring over K'? If so, then its
dimension is dimm, /m2.

Theorem. Let p, :T — GLn(R[1/p),) be induced from p™" by the natural map R — R[1/p], . Then
the diagram

univ

I~ GLn(R[1/p]},)

P
cont

GLy (K")

v

commutes, and in fact p;ni is the universal for continuous deformations of py.

More precisely, if one considers the category e of complete local noetherian K'-algebras with residue field
K', and the functor on the category C of artinian quotients of objects in € which picks out those deformations
of pg which are continuous for the p-adic topology on such artinian quotients, regarded as finite-dimensional

K'-vector spaces, then R[1/ply, s the representing object.

Remark. If A is a complete local Noetherian F-algebra and the characteristic of F' is zero, and A/m = F”
is a finite extension of F', then there exists a unique F-algebra lift F/ — A. Why? By completeness we have
Hensel’s lemma and by characteristic zero we have F'/F separable. So we can find solutions in A to the
defining polynomial of F’ over F.

Why do we care about the theorem?

(1) The deformation ring R[1/p]y  is isomorphic to K'[T1, ..., T,] if and only if R[1/p]}, is regular (by
the Cohen structure theorem), and the power series description is precisely the condition that the
corresponding deformation functor for p, is formally smooth (i.e., no obstruction to lifting artinian
points in characteristic 0). This holds precisely when H?(I', Ad(p,)) = 0. So that is interesting: a
computation in Galois cohomology in characteristic 0 can tell us information about the structure of
R[1/p] at closed points.

(2) (mgy/m2)¥ = H!. (T,Ad(p.)), by the continuity condition we imposed on the deformations in the
theorem.

Combining (1) and (2), we can check regularity of R[1/p] at a closed point and in such cases then even
compute dim, R[1/p] by doing computations in (continuous) Galois cohomology with p-adic coefficients!

7. PROOF OF THEOREM

Step 1: Reduce to the case K’ = K. Here is the trick. Set A’ = Og-. Note that A’ ®, R is local because
(N ®p R)/mp =N ®p k=F is afield. The A’-algebra A’ ®, R is the universal deformation ring of p ®j, &k’
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(where k' is the residue field of K’) when using A’-coefficients; this behavior of deformation ring with respect
to finite extension of the coefficients will be proved in Samit’s talk. Consider the diagram

K' @k R]1/p| —"—> K

(A @A R)[1/p]

T

AN @p R
Ezercise: (A @ R)[1/ply , = R[1/ply, as K'-algebras.
So we can rename A’ as A, completing the reduction.

AI

Step 2: Observe that since p is absolutely irreducible, so is p,. Consequently any deformation of p, has
only scalar endomorphisms.

Step 3: Consider any deformation

r—%~ GLy(A)

N
GLn(K)
where A is a finite local K-algebra with residue field K. We would like to show that there exists a unique
K-map R[l/p]ﬁ.‘z — A which takes p;mv to 0, up to conjugation. Why is this sufficient? Because if so, then
there would be lifts of p, to GLy(A), one coming from p,  and the other being #, which are GLx(A)-
conjugate to one another by some matrix M. Upon reduction to GLy(K), the matrix M would centralize
pz. So by Step 2, M must be a scalar endomorphism ¢ € K*. Consequently we can replace M by ¢~ ' M
to conclude that the two lifts are conjugate to one another by a matrix which is residually trivial. The
latter is precisely what we need to prove that pimv is universal. (Note that if we used framed deformations
throughout then this little step wouldn’t be needed. It is important because in later applications we will
certainly want to apply the Theorem to cases for which 7 is not absolutely irreducible. The reader can check
that the proof of the Theorem works in the framed setting once the preceding little step is bypassed.)
The map we need is the same as making a local K-algebra map

R[1/plm, — A
with the same property with respect to 8, since A is a complete K-algebra. (Note that this “uncompletion”
step is only possible since we already did Step 1! We originally completed R[1/p]m,, which is a K-algebra
and generally not a K’-algebra.) The latter is the same as a K-algebra map R[1/p] — A such that R[1/p] —
A — K is the original point z, which takes p. to #. (“It’s all a game in trying to get back to R”.) In other
words, we wanted a dotted map in the diagram

R—>R1/p Sy

AN

A

(The existence of Z is by one of the propositions from §6.) But R[l/p] is just a localization of R and A is
a A[1/p]-algebra (it is a K-algebral), so in fact the existence of a unique dotted map above is equivalent to
the existence of a unique dotted map « in the diagram
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such that a takes p. to #. Now unfortunately A is not in the category éA [typically it is something like
K[t]/(t")], so 6 is not quite a deformation of p, so we cannot appeal directly to the universal property of
(R,p"). Instead we need to mess around a bit.

Here’s the point. A = K ®m4 and m4 is a finite-dimensional K-vector space which is nilpotent.

Claim. my = lim I where the limit is taken over A-finite multiplicatively stable A-modules I.

(Idea of the proof: take products and products and more products. By nilpotence and finite-dimensionality
of m 4 over K, you don’t have to keep going forever. Then take the A-span of finite collections of such products
to get the desired I’s.)

Write Ay for A I.

Lemma/Exercise: Any A-algebra map R — A lands in some Aj. (Hint: choose I containing the images
of all the X’s.)

So it’s enough to show two things.

(1) For some I we have a map R — Aj giving a deformation 6; of the “integral lattice” version pz of
ps. The image of I' under p is topologically finitely generated (since GLy (R) is essentially pro-p
and I satisfies the p-finiteness condition), so then there exists some Iy such that 6 factors through
GLnN(Ag,), giving a map 07, : ' — GLy(Ap,).

(2) The map from (1) is unique.

Indeed, by then comparing any two I and I’ with a common one, we’d get the desired existence and
uniqueness at the level of coefficients in A.
To prove (1), note that A; € éA and 0; deforms pz, and hence p. Here is the picture:

The induced map R — Aj respects the map to A coming from the fact that pz deforms p, because if not,
then we would have another map R — A; — A, which contradicts the universal property of R.
To prove (2) just use the uniqueness from the universal property of (R,p ) for deforms on C,.



