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Fix embeddings Q →֒ C and Q →֒ Qp, and let k denote a finite subfield of the residue field of Qp.

1. Serre’s conjecture

Here’s the conjecture:

Let ρ : GQ → GL2(Fp) be irreducible and odd. Then there exists a newform f whose Galois representation

ρf : GQ → GL2(Qp) satisfies ρf
∼= ρ. (Here ρf always means semisimplication!) Moreover f is of level N(ρ)

and weight k(ρ) to be discussed below.

Remark. Apropos of reduction mod p: If V is a Qp-vector space and G ⊂ GL(V ) is a compact subgroup,
then there exists a G-fixed lattice in V for the following reason. Pick any lattice L ⊂ V . Then the G-stabilizer
of L is open and of finite index. So Λ =

∑
g∈G gL ⊂ V is also a lattice, and it is definitely G-stable. The

same works with coefficients in any finite extension of Qp, or even in Qp (since we saw last time that in this
latter case the image is contained in GLn(K) for some subfield K of finite degree over Qp.

The level N(ρ). Serre conjectured that N(ρ) = Artin conductor of ρ, which has the following properties.

• (p,N(ρ)) = 1.
• For ℓ 6= p, the ℓ-adic valuation ordℓN(ρ) depends only on ρ|Iℓ

, and is given by

ordℓN(ρ) =
∑

j≥0

1

[G0 : Gj ]
dim(V/V Gj)

Here, we set K = Q
ker ρ

to be the the field cut out by ρ, and Gj to be image under ρ of the lower-
numbered ramification filtration at ℓ of Gal(K/Q). In other words, if w is a place of K over ℓ,
then

Gj = ρ{σ ∈ Iℓ | ordw(σx− x) > j, ∀x ∈ OK,w}.

The filtration goes
G0 = ρ(Iℓ) ⊃ G1 ⊃ G2 ⊃ · · ·

The first step is of index prime to ℓ, while the latter groups are all ℓ-groups. If K is tamely ramified
or unramified at ℓ, then ordℓN(ρ) = dim(V/V Iℓ). The Hasse–Arf theorem ensures that the proposed
formula for the ℓ-adic ordinal above is actually an integer.

The weight k(ρ).

Theorem (Deligne). Suppose f is a newform of weight < p and level prime to p (so χf is unramified at

p). Suppose f is ordinary at p, meaning ap(f) ∈ Z
×

p . Then ρf has a unique 1-dimensional unramified

quotient; i.e.

ρf |Dp
∼

(
αωk−1 ∗

0 β

)

for unramified characters α, β : Dp → F
×

p and ω the mod-p cyclotomic character.

It follows that
ρf |Ip

∼
(

ωk−1 ∗
0 1

)
.

This can be seen concretely in the case of elliptic curves E with ordinary reduction: for ρf = Vℓ(E) the
“connected-étale sequence”

E[pn]0 → E[pn]→ E[pn]/E[pn]0

associated to the pn-torsion on the Néron model E has last quotient is unramified. Now take limits on generic
fibers to deduce the theorem in this case.
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Serre conjectured that

k(ρ) :=

{
1 + pa+ b “most of the time”

1 + pa+ b+ p− 1 ...

is the minimal weight at prime-to-p level. Here a ≤ b are integers to be defined below. In the ordinary, low
(< p) weight case, a = 0, b = k − 1.

We need to detour into the structure of I = Ip ⊂ GQ. By definition Iw ⊳ I ։ It, where Iw , the wild
ramification group, is the largest pro-p subgroup.

Proposition. It ∼= Hom(Q/Z,F
×

p ) = lim
←−r

F×
pr =

∏
ℓ 6=p Zℓ(1). �

Think: Ẑ minus the p-part. The Tate-twisting notation records how the canonical Frobenius element in
Dp/Ip acts on the abelian quotient It of Ip. The map from left to right is g 7→ g(θr)/θr where θp−1

r = p.
The action of Frobp ∈ Dp/Ip is by raising to the pth power on the right side. The composite quotient map

ψr : It ։ F×
pr

is called the level-r fundamental character, though the more canonical collection is its p-powers (thereby
being “independent of the choice of Fp”).

We can deduce that
(ρ|Ip

)ss ∼=
( χ1 0

0 χ2

)
.

To see this, note that ρ is assumed irreducible. On one hand Iw is pro-p, so by a counting argument it
must fix a nontrivial subspace when acting on a vector space over a finite field of characeristic p. On the
other hand Ip/Iw is abelian, so it has no irreducible 2-dimensional representations. Hence ρIp

is not itself
irreducible; i.e. it is upper triangular, so its semisimplification splits as a direct sum of characters.

Now since ρ|Ip
extends to a representation of Dp, the pair {χ1, χ2} must be preserved under the Frobenius

action of Dp/Ip. In other words, we have
{
χp

1 = χ1

χp
2 = χ2

or

{
χp

1 = χ2 χp2

1 = χ1

χp
2 = χ1 χp2

2 = χ1

In the first case, each, χi factors through It → F×
p . In the second case, each χi factors through It → F×

p2 .

So in the first case we can write χ1 = ωa, χ2 = ωb for 0 ≤ a ≤ b, where ω : It → lim
←−

F×
pr ։ F×

p is the mod-p

cyclotomic character. In the second case we can likewise write χ1 = ψa+pb, χ2 = ψpa+b where ψ : It → F×
p2

is the level-2 fundamental character. These are the a, b in Serre’s conjecture.

The exceptional case k(ρ) = 1+ pa+ b+ p− 1. Now we address where this case comes from (but without
precisely defining it). Consider the special cases

ρ|Ip
∼

(
ω2 ∗
0 1

)

and
ρ|Ip
∼ ( ω ∗

0 1 ) .

In the first case the guess is k(ρ) = 3. In the second case the “standard” guess (a = 0, b = 1) is k(ρ) = 2.
But a naive combinatorial estimate says that the number of representations of the second type is roughly
twice as much as the number of the first type. On the other hand these are certainly fewer modular forms
of weight 2 than of weight 3. The “corrected” guess of p+ 1 for the second case when a = 0 and b = 1 could
provide the necessary extra modular representations.

Note: ρ|Dp
“comes from” a finite flat group scheme over Zp if it arises in weight 2; this property depends

only on the restriction to inertia, and it can be characterized in purely Galois-theoretic terms. This leads to
a special case in Serre’s conjecture related to the case k(ρ) = 2.
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Emerton on Serre’s conjecture. Matt Emerton has a version of “mod p local Langlands” which gives
the following picture. There is a natural action of GL2(Af ) (with Af the finite adeles) on

HomGQ
(ρ, lim
−→
N

H1(X(N),Fp)) ∼=

′⊗

q

πq(ρ),

where the right side is a “factorization” into local “mod p automorphic” representations. Here πq(ρ) is finite
length but not necessarily irreducible, and depends only on ρ|Dq

. Supose ρ = ρf for f ∈ Snew
k (N). Then in

fact
ρ →֒ H1(X(N), Symk−2 F

2

p).

Here Symk−2 F
2

p is viewed as a local system on X(N) as the Tate module of the “universal elliptic curve”
(up to some subtleties at the cusps). The right side is almost the same as [need to clarify appearance of

GL2(Z/pZ)-invariants below ]

(H1(X(N(ρ)),Fp)⊗ Symk−2 F
2

p)
GL2(Z/pZ) = ((

′⊗
πq(ρ))

k(Np) ⊗ Symk−2 F
2

p)
GL2(Z/pZ) 6= 0

[This needs to be extended a bit more to explain the relation with “independence” of the N and the k in

Serre’s conjecture.]

2. Hecke algebras

Let V = S2(Γ0(N)) for N squarefree. Let T ⊂ End(V ) be the Z-subalgebra generated by all Hecke
operators T (p), p ∤ N and Up, p|N . (Recall that Up :

∑
anq

n 7→
∑
anpq

n.)
Fact: T is finite over Z.

Proof. One approach is to show that T preserves a lattice in V , by using the arithmetic theory of modular
curves (with models over Z). An alternative which is easier to carry out rigorously and involves just topo-
logical/analytic tools is to embed V into H1(X0(N),C) and extend the T-action to this space and prove it
preserves the lattice of integral cohomology (which can also be studied in terms of group cohomology). This
will be addressed in all weights ≥ 2 in Baran’s later lecture. �

Fact: The natural map from TC := T ⊗Z C onto the subalgebra C[T (p), Up | p ∈ Z] ⊂ End(V ) is an
isomorphism; that is, TC acts faithfully on V . This will also be proved in Baran’s lecture (in any weight at
least 2).

Fact: V is a free TC module of rank 1.

Proof. It is enough to construct a cyclic vector f ; i.e., T 7→ Tf gives a surjection TC ։ V . (It is automatically
then injective since T acts faithfully on V .) By multiplicity 1, we have V =

⊕
newforms fi

Vi where Vi is the
generalized Hecke eigenspace corresponding to fi. It suffices to check the existence of a cyclic vector for
each Vi, due to the Chinese Remainder Theorem for coprime maximal ideals of TC (which corresponding to
eigenforms). The existence of a cyclic vector for each Vi can be done explicitly. �

By the last fact, H1(X0(N),C) ∼= V ⊕ V is free of rank 2 over TC. Consequently H1(X0(N),Qp) is free

of rank 2 over TQp
. The latter is TQp

-linearly isomorphic to H1
ét(X0(N)Q,Qp), which also has a GQ-action

(that is Hecke equivariant, due to an alternative way to define the Hecke action via correspondences between
modular curves over Q). So we obtain a “modular” Galois representation:

GQ
//

∃?
%%L

L

L

L

L

L

GL2 T
Qp

GL2(‘integral’)
?�

OO

We’d like to produce a GQ-stable T
Zp

-lattice inside our rank 2 T
Qp

module. This approach gets involved

with delicate commutative algebra properties of integral Hecke algebras (Gorenstein condition, etc.), and in
more general settings it is simpler to bypass such subtleties at the outset. So we will use a slicker method
with wider applicability which avoids making such a Hecke lattice.



4

Example. Consider level N = 33. Then dim(S2) = 3. The cusp forms in question come from two elliptic
curves. The first y2 + y = x3 ± x2 has conductor 11, giving rise to

f = q
∏

n

(1 − qn)2(1− q11n)2 = q − 2q2 − q3 + 2q4 + q5 ± 2q6

of level 11, hence f ′(z) := f(3z) is level 33. The second y2 + xy = x3 + x2 − 11x gives rise to g =
q + q2 + q3 − q4 − 2q5 ± 2q6 in level 33. Observe that f ≡ g mod 3, which is no accident. Indeed, the Hecke
algebra T acting on the lattice Zf ⊕ Zf ′ ⊕ Zg in S2 is generated over Z by U3, which acts by

g 7→ −g, f ′ 7→ f, f 7→ −f − 3f ′.

From this we can find
T ∼= Z[x]/(x + 1)(x2 + x+ 3).

So Spec T lying over Spec Z has two irreducible components,

Spec Z = Spec Z[x]/(x+ 1), Spec Z[x]/(x2 + x+ 3),

which happen to meet at the fiber over (3) ∈ Spec Z. (This is precisely the reason for the congruence observed
earlier, as we will see in a moment.) The fiber in question consists of a single maximal ideal m ∈ Spec T, the
kernel of

T
act on Zf
→ Z ։ F3.

If we consider the completed localization Tm then we claim that after a suitable conjugation, GQ → GL2(TQ3

)

factors through GL2(Tm). Once this is done, then using the two specializations Tm → Z3 corresponding to
the two elliptic curves then recovers the 3-adic Tate modules of these elliptic curves as deformations of a
common mod-3 residual representation.

But how to make the representation land in GL2(Tm)? Consider the 3-adic eigenforms associated to min-
imal primes of T below m, of which there are 2 and so actually the ones from the elliptic curves above (for
a unique prime over 3 in the quadratic field associated to the second component of T). This gives represen-
tations from GQ into GL2(Z3) which are conjugate modulo 3. One checks that these mod-3 representations
are irreducible, and hence absolutely irreducible (due to oddness). Thus, the local fiber product ring

R = Z3 ×F3
Z3 = {(a, b) ∈ Z3 × Z3 | a ≡ b mod 3}

contains S = Tm and we get a representation GQ → GL2(R) upon fixing an isomorphism of the mod-3
reductions. Note that the traces in R at Frobenius elements away from 3 and 11 all lie in S, since Tℓ ∈ T “is”
the trace (as can be checked modulo each minimal prime of the reduced TQ3

). This is the key to descending
the representation into GL2(S), as we explain next.

3. Descent for Galois representations

Let R be a complete local ring with maximal ideal mR. Let ρ : GQ → GLn(R) be residually absolutely
irreducible and continuous. Suppose further more that ρ is odd. Let S be a complete local subring of R with
local inclusion map, so mS = mR ∩ S and we get an induced isomorphism of residue fields S/mS

∼= R/mR.
Assume that tr ρ(g) ∈ S for all g ∈ GQ.

Theorem. If n = 2 and the residue characteristic is not 2 then some GL2(R)-conjugate of ρ is valued in

GL2(S).

Proof. The argument is elementary, and apparently due to Wiles. By oddness, we can assume
(

1 0
0 −1

)
∈ im ρ.

For any
(

a b
c d

)
∈ im ρ, the trace 2a = tr(

(
a b
c d

)
+

(
a b
c d

) (
1 0
0 −1

)
) lies in S, so a ∈ S. Similarly one finds d ∈ S.

By residual irreducibility there is g ∈ GQ with ρ(g) ∼ ( ∗ u
∗ ) where u is an R-unit. Conjugate by ( u 0

0 1 ), and
we find that ρ(g) ∼ ( ∗ 1

∗ ∗ ) for some g. Messing around with this and the previous idea, one can conclude that
b, c ∈ S as well. �

Note that the preceding argument did not use the completeness of S. Now we use it. [Where do we ever

use completeness of R or S below?] Taking S and R as above, and imposing no hypotheses on n or the
residue characteristic, we have:

Theorem. Assume ρ : G→ GLn(R) is residually absolutely irreducible, where G is any group at all. Then

some GLn(R)-conjugate of ρ is valued in GLn(S).
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Proof. By Jacobson Density and the residual absolute irreducibility of ρ, there exist

x1, . . . , xn2 ∈ ρ(G) ⊂Mn(R)

such that xi span Mn(k), where k = R/mR is the residue field. It follows that the xi’s themselves freely
span Mn(R). (Relate them to a basis by a matrix; the reduction of that matrix mod mR is invertible over
k, so it must be invertible over R itself.)

Let B be the S-submodule of Mn(R) freely spanned over S by the xi. It is free of rank n2. The claim
is that B is in fact an S-algebra containing ρ(G). To see this, take y ∈ ρ(G). We can write y =

∑
aixi for

ai ∈ R. For each 1 ≤ j ≤ n2, the trace tr(yxj) is equal to
∑

i ai tr(xixj). Consider the matrix

(tr(xixj)) ∈Mn2S.

Due to non-degeneracy of the trace pairing for matrix algebras over a field, a matrix of traces of products
of basis elements for a matrix algebra over a field is invertible. So the reduction of this matrix mod mR (the
same as its reduction mod mS) is invertible. Hence it is invertible itself, so the ai are in S and hence y ∈ B.
Thus, ρ(G) ⊂ B. In particular 1 ∈ B. It’s not hard to check B is closed under multiplication, so it’s a finite
S-algebra that is free of rank n2 and contains Mn(S).

If k′ denotes the residue field of S, then since the map Mn(S) → Mn(R) induces the injective map
Mn(k′) → Mn(k) modulo maximal ideals we conclude that the inclusion Mn(S) → B induces an injective
map Mn(k′) → B ⊗S k

′. But B ⊗S k
′ has rank n2, so Mn(S) → B is a map between finite free S-modules

of rank n2 and induces an isomorphism modulo mS . Thus, it is an equality. �

4. Universal deformation ring

As before let k be a finite field and ρ : G→ GLn(k) an absolutely irreducible representation of a profinite
group G. A lifting of ρ over a complete local Noetherian ring A with residue field k is a representations
ρ : G → GLn(A) equipped with an isomorphism ρ ⊗A k ∼= ρ. We will be especially interested in the case
when G = GQ,S , the Galois group of the largest extension of Q unramified outside of a fixed finite set of
places S, or when G is the Galois group of a local (especially p-adic) field. These groups satisfy a certain
finiteness property Φp: their open subgroups have only finitely many index-p open subgroups.

Claim. Assume that G satisfies Φp. There exists a complete local noetherian ring Rρ and a deformation
ρuniv : GQ,S → GLn(Rρ) such that for any deformation (ρA, A) there exists a unique ring map Rρ → A such
that ρA factors through ρuniv , up to residually trivial conjugation. (Here the map GLn(Rρ) → GLn)(A) is
induced by the map Rρ → A.)

The proof of this will be explained next time by Mok.

Example. Let G be a finite group of order not divisible by p and consider G
ρ
→ GLn(k) where the charac-

teristic of k is p. Then Rρ = W (k), the ring of Witt vectors for k. This will follow from the vanishing of
p-torsion group cohomology for G and the computation of the “reduced” cotangent space to the deformation
ring as in Mok’s talk next time.

Example. Suppose ρ : GQ,S → GL2(k) is odd, and H2(GQ,Ad0(ρ)) = 0. Then Rρ = W (k)[[X1, X2, X3]]. So
generically, one expects the universal deformation ring to be 3-dimensional over W (k).

5. Hecke algebras again

Let ρ : GQ,S → GL2(k) be absolutely irreducible. Pick a level N . Let f1, . . . , fm be all the newforms of

weight 2 and level dividing N , such that ρf ∼ ρ⊗k Fp; we assume this set of fi’s is non-empty! Let fi have
coefficients contained in Ki, a number field with maximal order Oi, and let Oi,λ be the completion of Oi in

Qp.
Let T be the W (k)-subalgebra of

∏
Oi spanned by the images of all the T (ℓ) with (ℓ,Np) = 1.

We have a map T→ Oi,λ → Fp sending T (ℓ) to tr ρ(Frobℓ), independent of i. Call the kernel m ⊂ T, and
let Tm be the completed localization. Thus, the representation

∏
ρfi

: GQ,S → GL2(
∏

Oi,λ)

admits a conjugate valued in GL2(Tm), by using the same kind of argument carried out earlier with the
elliptic curves of levels 11 and 33. Note that the residue field of Tm is equal to k.
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By universality of Rρ we obtain a local W (k)-algebra map Rρ ։ Tm satisfying tr ρFrobℓ 7→ T (ℓ), so
this map is surjective. An R = T theorem says that this map identifies Tm with a certain quotient of Rρ

determined by local data. (In practice one needs some more flexibility, such as to include a Hecke operator
at p, or to impose determinant conditions, to invert p before claiming to have an isomorphism, etc.)


