
Lecture 1: Overview

Brian Conrad
October 2, 2009

Notes by Sam Lichtenstein

1. Why Study Galois Representations?

Here we discuss the link between analytic L-functions and L-functions attached to varieties.
Let F be a number field and X a smooth projective variety over F .
Define the partial Euler product

ζ∗X(s) =
∏

v good place of F

ζ(X mod v, q−sv ), Re s≫dimX 0.

Here Xmod v denotes the smooth projective variety over k(v) ≃ Fqv
obtained by reduction of a smooth

proper model of X over the valuation ring of Fv.

Example. Let X be an elliptic curve over F . Then

ζ∗E(s) =
∏

E has good reduction at v

1 − avq
−s
v + q1−2s

v

(1 − q−sv )(1 − q1−sv )
= ζ∗F (s)ζ∗F (s−1)L∗(E, s)−1, av = qv+1−#E(k(v)).

We would like to do the following.

(1) Fill in the “bad” factors to obtain an L-function with a good functional equation, analytic continu-
ation, etc.

(2) Relate ζ∗X to arithmetic properties of X . (E.g., Birch-Swinnerton-Dyer conjecture, etc.)

A clue for (1) comes from Artin representations:

GF = Gal(F/F )
ρ

//
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GL(W ) = f.d. v.s./C

Gal(F ′/F ) = Gal. gp. of finite Gal. extn.
%

�
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Note that F ′/F is unramified at all but finitely many places. We define the Artin L-function of ρ to be

L(s, ρ) =
∏

v

det([1 − ρ(Frobv)q
−s
v ]|W Iv )−1, W Iv = subspace of W fixed by inertia at v.

Grothendieck gave a related description of ζ∗X using continuous p-adic representations

GF → GL(Hi
ét,c(XF ,Qp)) =: GL(W i).

These are unramified almost everywhere, including at all good places away from p. Here the ith cohomology
group W i above vanishes for i > 2 dimX . Grothendieck proved that if we remove the contribution of p-adic
places to ζ∗X(s) then

ζ∗X(s) =
∏

i

L∗(s,W i)(−1)i

,

where L∗(s,W i) is like the Artin L-function without the “bad” factors and the p-adic places:

L∗(s,W i) =
∏

good v∤p

det([1 − Frobv q
−s
v ]|W i)−1.

Note: The expression for L∗(s,W i) requires some care, since q−sv is a complex number acting on a p-adic
vector space. What has to be proved is that the characteristic polynomial for the action of Frobv on W i

has rational coefficients (and is independent of p), so evaluation using q−sv makes sense (and the Riemann
Hypothesis ensures absolute convergence of the product in a suitable right half-plane depending only in
dimX).

We conclude from all this that it is a good idea to study L-functions of reasonable p-adic representations.
Representation theory can often be used to fill in the bad factors later.
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Eternal dangerous bend: The case of v|p is tricky! The complication is that “unramifiedness” is not
the right notion corresponding to “good reduction” for p-adic representations of Galois groups of p-adic
fields.

2. Modular Galois representations and modularity lifting theorems

Definitions.

Definition. A p-adic representation of GF is a continuous linear representation ρ : GF → GL(W ), where
W is a finite dimensional vector space over a p-adic field K (i.e. a finite extension K/Qp) and ρ is unramified
at almost all places v of F .

Example. The repsentation Vp(E) = Tp(E)⊗Zp
Qp arising from the Tate module of an elliptic curve E over

F is historically the first really interesting example.

Example. Étale cohomology, with compact support: W i = Hi
ét,c(XF ,Qp) for any separated F -scheme X

of finite type. (Note that this is unramified at all but finitely many places, even if X is not smooth. The
proof rests on properties of constructible ℓ-adic sheaves.)

Remark. In the definition of a p-adic representation it is equivalent to take the coefficient field to be Qp,

because of the following fact: any compact subgroup of GLn(Qp) is contained in GLn(K) for a finite extension
K/Qp. The proof of this uses the Baire Category Theorem. [Warning! It is false if we consider Cp instead

of Qp!] So we could do everything over Qp, but we will find it more convenient to take the coefficient field
K to be locally compact.

Definition. A mod p representation of GF is a continuous representation ρ : GF → GL(W ), where W is a
finite dimensional vector space over a finite extension k/Fp. Note that GL(W ) is thus a discrete topological
group, so the continuity condition entails that ρ factors through a finite Galois group Gal(F ′/F ).

Example. The p-torsion of an elliptic curve: E[p](F ) ⊗Fp
Fpr .

Example. Étale cohomology: Hi
ét,c(XF ,Z/pZ).

Remark. It is “equivalent” to take the coefficient field to be Fp.

Reduction of Galois representations.

Proposition. Any p-adic representation ρ : GF → GLK(W ) has a GF -stable OK-lattice Λ ⊂ W ; i.e. ρ
induces a map ρ : GF → GLOK

Λ ≈ GLn(OK) ։ GLn(k) where k = OK/m. �

(Here by a lattice we mean a finitely generated OK-submodule of W such that K ⊗OK
Λ = W .) It is not

hard to see that the characteristic polynomial of ρ is independent of the choice of lattice Λ.

Theorem (Cor. of Brauer-Nesbit Theorem). Let ρss =
⊕

{Jordan-Holder factors of ρ}. Then ρss has the
same characteristic polynomial as ρ, and is determined up to isomorphism by its characteristic polynomial,
and is therefore independent of the choice of Λ.

In light of the theorem, we shall henceforce call ρss “the” reduction of ρ. Here are a bunch of things to
watch out for:

(1) ρss is often denoted ρ, even though it is certainly not just the “reduction mod p” of ρ in general.
(2) ρss may be unramified at some places where ρ is ramifield. For example, if ρ(Iv) ⊂ 1 + m ·MatnOK ,

then the inertia at v simply “disappears” mod v.
(3) If ρss is irreducible, then in fact the only stable lattices in W were of the form πiΛ, where π is a

uniformizer for K and i ∈ Z.
(4) Irreducibility is not the same as absolute irreducibility = irreducibility over k.
(5) ρ might be absolutely irreducible over K, yet ρss could be not only reducible, but even completely

trivial! (Hence completely reducible...)

Exercise: If ρ is reducible then any Jordan-Holder filtration of ρ induces a similar filtration for ρss. So the
last warning above is “one-directional”.
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Modular Galois representations. Let f ∈ Sk(Γ1(N), χ) be a Hecke eigenform of weight k ≥ 1. Let
Kf ⊂ C be the field generated over Q by all the Fourier coefficients aℓ(f) of f for primes ℓ ∤ N . Then Kf is
a number field containing the values of the Nebentypus χ. Let λ be a place of Kf lying over p.

Theorem (Deligne, Deligne-Serre, Ribet). There exists a unique continuous irreducible p-adic representaion

ρf,λ : GQ → GL2(Kf,λ)

unramified at all ℓ ∤ Np, such that for all such ℓ we have

sum of eigenvalues of Frobℓ = Tr(ρf,λ Frobℓ) = aℓ(f)[= T (ℓ)-eigenvalue of f ]

and
det ◦ρf,λ = χ · ǫk−1

p

where ǫp : GQ → Z×

p ⊂ O
×

Kf ,λ
is the p-adic cyclotomic character.

In particular, for ℓ ∤ Np, the characteristic polynomial of ρf,λ(Frobℓ) is

t2 − aℓ(f)t+ χ(ℓ)ℓk−1 ∈ Kf [t] ⊂ Kf,λ[t],

a non-obvious integrality property. Note that this polynomial is independent of λ.

Remark. The independence of λ and the precise control on the unramified primes implies that the collection
{ρf,λ}λ is a “compatible” family of of representations, with respect to Kf -characteristic polynomials, just
like {VpE}p is a “compatible” family of representions with respect to Q-characteristic polynomials. Cf.
Serre’s book Abelian ℓ-adic representations.

Let us look at the partial Artin L-functions

L∗(s, ρf,λ) =
∏

ℓ∤Np

det
(

1 − ρf,λ(Frobℓ) · ℓ
−s

)

−1
=

∏

ℓ∤Np

1

1 − aℓ(f)ℓ−s + χ(ℓ)ℓk−1−2s
=: L∗(s, f).

Remark. Note that for a complex conjugation c, det ρf,λ(c) = χ(−1)ǫk−1
p = (−1)k(−1)k−1 = −1, so all the

representations produced by the theorem above are odd !

Now consider the (semisimplified) reduction ρf,λ : GQ → GL2(kf,λ), which is continuous and semisimple,

but might be reducible. In general, we say a mod-p representation ρ is modular if it is isomorphic over Fp
to some ρf,λ.

Just suppose ρf,λ happens to be absolutely irreducible. By the last remark, it, too, is odd. Serre’s
conjecture is concerned with when mod-p representations with such properties are in fact modular.

Note that ρf,λ does not determine k or N . There could be congruences “g ≡ f” modulo λ for some
eigenform g ∈ Sk′(Γ1(N

′), χ′) (with the congruence taken in the sense of Fourier coefficients, say, relative to
a p-adic place of Q over λ on Kf and some chosen p-adic place of Kg). This would imply that ρf,λ = ρg,λ.
This is actually abusive notation, since to obtain such a comparison, we might need to extend scalars on the
residue fields of these reductions.

Wiles’s insight. The prototype of a modularity lifting theorem is the following.

Theorem (Not really a theorem). Given any p-adic representation ρ : GQ → GL2(Qp) such that ρ is

irreducible and modular over Fp, and ρ is “nice” (at p, in the sense of p-adic Hodge theory!) then ρ is
modular.

In this seminar, we’ll focus on those ρ such that

ρ|Dp
≈

(

ψ1 ∗

0 ψ2

)

where Dp is the decomposition group at p, ψ2 is an unramified character, and ψ1 is ǫk−1
p times an unramified

character. These representations are “essentially like the ones that come from elliptic curves with good
ordinary reduction at p”.
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3. Applications of the method

• Serre’s conjecture.
• Sato-Tate.
• Gross-Zagier, Heegner points, Kolyvagin (need to provide a finite map X0(NE) → E over Q, which

is done via Faltings’ theorem and the “modularity” of Vℓ(E)).
• FLT. (Modularity of the Galois rep. attached to the Frey curve.)


