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Lecture 1: Overview by Brian

0. Why Study Galois Representations? Here we discuss the link between analytic L-functions and
L-functions attached to varieties.

Let F be a number field and X a smooth projective variety over F .
Define the partial Euler product

ζ∗X(s) =
∏

v good place of F

ζ(X mod v, q−sv ), Re s�dimX 0.

Here X mod v denotes the smooth projective variety over k(v) ' Fqv
obtained by reduction of a smooth

proper model of X over the valuation ring of Fv.

Example. Let X be an elliptic curve over F . Then

ζ∗E(s) =
∏

E has good reduction at v

1− avq−sv + q1−2s
v

(1− q−sv )(1− q1−s
v )

= ζ∗F (s)ζ∗F (s−1)L∗(E, s)−1, av = qv+1−#E(k(v)).

We would like to do the following.
(1) Fill in the “bad” factors to obtain an L-function with a good functional equation, analytic continu-

ation, etc.
(2) Relate ζ∗X to arithmetic properties of X. (E.g., Birch-Swinnerton-Dyer conjecture, etc.)

A clue for (1) comes from Artin representations:

GF = Gal(F/F )
ρ //

++WWWWWWWWWWWWWWWWWWWW
GL(W ) = f.d. v.s./C

Gal(F ′/F ) = Gal. gp. of finite Gal. extn.
% �

33ggggggggggggggggggggg

Note that F ′/F is unramified at all but finitely many places. We define the Artin L-function of ρ to be

L(s, ρ) =
∏
v

det([1− ρ(Frobv)q−sv ]|W Iv )−1, W Iv = subspace of W fixed by inertia at v.

Grothendieck gave a related description of ζ∗X using continuous p-adic representations

GF → GL(Hi
ét,c(XF ,Qp)) =: GL(W i).

These are unramified almost everywhere, including at all good places away from p. Here the ith cohomology
group W i above vanishes for i > 2 dimX. Grothendieck proved that if we remove the contribution of p-adic
places to ζ∗X(s) then

ζ∗X(s) =
∏
i

L∗(s,W i)(−1)i

,

where L∗(s,W i) is like the Artin L-function without the “bad” factors and the p-adic places:

L∗(s,W i) =
∏

good v-p

det([1− Frobv q−sv ]|W i)−1.

Note: The expression for L∗(s,W i) requires some care, since q−sv is a complex number acting on a p-adic
vector space. What has to be proved is that the characteristic polynomial for the action of Frobv on W i

has rational coefficients (and is independent of p), so evaluation using q−sv makes sense (and the Riemann
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Hypothesis ensures absolute convergence of the product in a suitable right half-plane depending only in
dimX).

We conclude from all this that it is a good idea to study L-functions of reasonable p-adic representations.
Representation theory can often be used to fill in the bad factors later.

Eternal dangerous bend: The case of v|p is tricky! The complication is that “unramifiedness” is not
the right notion corresponding to “good reduction” for p-adic representations of Galois groups of p-adic
fields.

1. Modular Galois representations and modularity lifting theorems.

Definitions.

Definition. A p-adic representation of GF is a continuous linear representation ρ : GF → GL(W ), where
W is a finite dimensional vector space over a p-adic field K (i.e. a finite extension K/Qp) and ρ is unramified
at almost all places v of F .

Example. The repsentation Vp(E) = Tp(E)⊗Zp
Qp arising from the Tate module of an elliptic curve E over

F is historically the first really interesting example.

Example. Étale cohomology, with compact support: W i = Hi
ét,c(XF ,Qp) for any separated F -scheme X

of finite type. (Note that this is unramified at all but finitely many places, even if X is not smooth. The
proof rests on properties of constructible `-adic sheaves.)

Remark. In the definition of a p-adic representation it is equivalent to take the coefficient field to be Qp,
because of the following fact: any compact subgroup of GLn(Qp) is contained in GLn(K) for a finite extension
K/Qp. The proof of this uses the Baire Category Theorem. [Warning! It is false if we consider Cp instead
of Qp!] So we could do everything over Qp, but we will find it more convenient to take the coefficient field
K to be locally compact.

Definition. A mod p representation of GF is a continuous representation ρ : GF → GL(W ), where W is a
finite dimensional vector space over a finite extension k/Fp. Note that GL(W ) is thus a discrete topological
group, so the continuity condition entails that ρ factors through a finite Galois group Gal(F ′/F ).

Example. The p-torsion of an elliptic curve: E[p](F )⊗Fp Fpr .

Example. Étale cohomology: Hi
ét,c(XF ,Z/pZ).

Remark. It is “equivalent” to take the coefficient field to be Fp.
Reduction of Galois representations.

Proposition. Any p-adic representation ρ : GF → GLK(W ) has a GF -stable OK-lattice Λ ⊂ W ; i.e. ρ
induces a map ρ : GF → GLOK

Λ ≈ GLn(OK)� GLn(k) where k = OK/m. �

(Here by a lattice we mean a finitely generated OK-submodule of W such that K ⊗OK
Λ = W .) It is not

hard to see that the characteristic polynomial of ρ is independent of the choice of lattice Λ.

Theorem (Cor. of Brauer-Nesbit Theorem). Let ρss =
⊕
{Jordan-Holder factors of ρ}. Then ρss has the

same characteristic polynomial as ρ, and is determined up to isomorphism by its characteristic polynomial,
and is therefore independent of the choice of Λ.

In light of the theorem, we shall henceforce call ρss “the” reduction of ρ. Here are a bunch of things to
watch out for:

(1) ρss is often denoted ρ, even though it is certainly not just the “reduction mod p” of ρ in general.
(2) ρss may be unramified at some places where ρ is ramifield. For example, if ρ(Iv) ⊂ 1 + m ·MatnOK ,

then the inertia at v simply “disappears” mod v.
(3) If ρss is irreducible, then in fact the only stable lattices in W were of the form πiΛ, where π is a

uniformizer for K and i ∈ Z.
(4) Irreducibility is not the same as absolute irreducibility = irreducibility over k.
(5) ρ might be absolutely irreducible over K, yet ρss could be not only reducible, but even completely

trivial! (Hence completely reducible...)
Exercise: If ρ is reducible then any Jordan-Holder filtration of ρ induces a similar filtration for ρss. So the
last warning above is “one-directional”.
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Modular Galois representations. Let f ∈ Sk(Γ1(N), χ) be a Hecke eigenform of weight k ≥ 1. Let Kf ⊂ C
be the field generated over Q by all the Fourier coefficients a`(f) of f for primes ` - N . Then Kf is a number
field containing the values of the Nebentypus χ. Let λ be a place of Kf lying over p.

Theorem (Deligne, Deligne-Serre, Ribet). There exists a unique continuous irreducible p-adic representaion

ρf,λ : GQ → GL2(Kf,λ)

unramified at all ` - Np, such that for all such ` we have

sum of eigenvalues of Frob` = Tr(ρf,λ Frob`) = a`(f)[= T (`)-eigenvalue of f ]

and
det ◦ρf,λ = χ · εk−1

p

where εp : GQ → Z×p ⊂ O×Kf ,λ
is the p-adic cyclotomic character.

In particular, for ` - Np, the characteristic polynomial of ρf,λ(Frob`) is

t2 − a`(f)t+ χ(`)`k−1 ∈ Kf [t] ⊂ Kf,λ[t],

a non-obvious integrality property. Note that this polynomial is independent of λ.

Remark. The independence of λ and the precise control on the unramified primes implies that the collection
{ρf,λ}λ is a “compatible” family of of representations, with respect to Kf -characteristic polynomials, just
like {VpE}p is a “compatible” family of representions with respect to Q-characteristic polynomials. Cf.
Serre’s book Abelian `-adic representations.

Let us look at the partial Artin L-functions

L∗(s, ρf,λ) =
∏
`-Np

det
(
1− ρf,λ(Frob`) · `−s

)−1 =
∏
`-Np

1
1− a`(f)`−s + χ(`)`k−1−2s

=: L∗(s, f).

Remark. Note that for a complex conjugation c, det ρf,λ(c) = χ(−1)εk−1
p = (−1)k(−1)k−1 = −1, so all the

representations produced by the theorem above are odd !

Now consider the (semisimplified) reduction ρf,λ : GQ → GL2(kf,λ), which is continuous and semisimple,
but might be reducible. In general, we say a mod-p representation ρ is modular if it is isomorphic over Fp
to some ρf,λ.

Just suppose ρf,λ happens to be absolutely irreducible. By the last remark, it, too, is odd. Serre’s
conjecture is concerned with when mod-p representations with such properties are in fact modular.

Note that ρf,λ does not determine k or N . There could be congruences “g ≡ f” modulo λ for some
eigenform g ∈ Sk′(Γ1(N ′), χ′) (with the congruence taken in the sense of Fourier coefficients, say, relative to
a p-adic place of Q over λ on Kf and some chosen p-adic place of Kg). This would imply that ρf,λ = ρg,λ.
This is actually abusive notation, since to obtain such a comparison, we might need to extend scalars on the
residue fields of these reductions.

Wiles’s insight. The prototype of a modularity lifting theorem is the following.

Theorem (Not really a theorem). Given any p-adic representation ρ : GQ → GL2(Qp) such that ρ is
irreducible and modular over Fp, and ρ is “nice” (at p, in the sense of p-adic Hodge theory!) then ρ is
modular.

In this seminar, we’ll focus on those ρ such that

ρ|Dp ≈
(
ψ1 ∗
0 ψ2

)
where Dp is the decomposition group at p, ψ2 is an unramified character, and ψ1 is εk−1

p times an unramified
character. These representations are “essentially like the ones that come from elliptic curves with good
ordinary reduction at p”.
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3. Applications of the method.
• Serre’s conjecture.
• Sato-Tate.
• Gross-Zagier, Heegner points, Kolyvagin (need to provide a finite map X0(NE)→ E over Q, which

is done via Faltings’ theorem and the “modularity” of V`(E)).
• FLT. (Modularity of the Galois rep. attached to the Frey curve.)
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Lecture 2: Akshay on Serre’s Conjecture, Etc.

Fix embeddings Q ↪→ C and Q ↪→ Qp, and let k denote a finite subfield of the residue field of Qp.

1. Serre’s conjecture. Here’s the conjecture:

Let ρ : GQ → GL2(Fp) be irreducible and odd. Then there exists a newform f whose Galois representation
ρf : GQ → GL2(Qp) satisfies ρf ∼= ρ. (Here ρf always means semisimplication!) Moreover f is of level N(ρ)
and weight k(ρ) to be discussed below.

Remark. Apropos of reduction mod p: If V is a Qp-vector space and G ⊂ GL(V ) is a compact subgroup,
then there exists a G-fixed lattice in V for the following reason. Pick any lattice L ⊂ V . Then the G-stabilizer
of L is open and of finite index. So Λ =

∑
g∈G gL ⊂ V is also a lattice, and it is definitely G-stable. The

same works with coefficients in any finite extension of Qp, or even in Qp (since we saw last time that in this
latter case the image is contained in GLn(K) for some subfield K of finite degree over Qp.

The level N(ρ). Serre conjectured that N(ρ) = Artin conductor of ρ, which has the following properties.
• (p,N(ρ)) = 1.
• For ` 6= p, the `-adic valuation ord`N(ρ) depends only on ρ|I`

, and is given by

ord`N(ρ) =
∑
j≥0

1
[G0 : Gj ]

dim(V/V Gj )

Here, we set K = Qker ρ
to be the the field cut out by ρ, and Gj to be image under ρ of the lower-

numbered ramification filtration at ` of Gal(K/Q). In other words, if w is a place of K over `,
then

Gj = ρ{σ ∈ I` | ordw(σx− x) > j, ∀x ∈ OK,w}.
The filtration goes

G0 = ρ(I`) ⊃ G1 ⊃ G2 ⊃ · · ·
The first step is of index prime to `, while the latter groups are all `-groups. If K is tamely ramified
or unramified at `, then ord`N(ρ) = dim(V/V I`). The Hasse–Arf theorem ensures that the proposed
formula for the `-adic ordinal above is actually an integer.

The weight k(ρ).

Theorem (Deligne). Suppose f is a newform of weight < p and level prime to p (so χf is unramified at
p). Suppose f is ordinary at p, meaning ap(f) ∈ Z×p . Then ρf has a unique 1-dimensional unramified
quotient; i.e.

ρf |Dp
∼
(
αωk−1 ∗

0 β

)
for unramified characters α, β : Dp → F×p and ω the mod-p cyclotomic character.

It follows that
ρf |Ip

∼
(
ωk−1 ∗

0 1

)
.

This can be seen concretely in the case of elliptic curves E with ordinary reduction: for ρf = V`(E) the
“connected-étale sequence”

E[pn]0 → E[pn]→ E[pn]/E[pn]0

associated to the pn-torsion on the Néron model E has last quotient is unramified. Now take limits on generic
fibers to deduce the theorem in this case.

Serre conjectured that

k(ρ) :=

{
1 + pa+ b “most of the time”
1 + pa+ b+ p− 1 ...

is the minimal weight at prime-to-p level. Here a ≤ b are integers to be defined below. In the ordinary, low
(< p) weight case, a = 0, b = k − 1.

We need to detour into the structure of I = Ip ⊂ GQ. By definition Iw C I � It, where Iw, the wild
ramification group, is the largest pro-p subgroup.
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Proposition. It ∼= Hom(Q/Z,F×p ) = lim←−r F×pr =
∏
` 6=p Z`(1). �

Think: Ẑ minus the p-part. The Tate-twisting notation records how the canonical Frobenius element in
Dp/Ip acts on the abelian quotient It of Ip. The map from left to right is g 7→ g(θr)/θr where θp−1

r = p.
The action of Frobp ∈ Dp/Ip is by raising to the pth power on the right side. The composite quotient map

ψr : It � F×pr

is called the level-r fundamental character, though the more canonical collection is its p-powers (thereby
being “independent of the choice of Fp”).

We can deduce that
(ρ|Ip

)ss ∼=
( χ1 0

0 χ2

)
.

To see this, note that ρ is assumed irreducible. On one hand Iw is pro-p, so by a counting argument it
must fix a nontrivial subspace when acting on a vector space over a finite field of characeristic p. On the
other hand Ip/Iw is abelian, so it has no irreducible 2-dimensional representations. Hence ρIp

is not itself
irreducible; i.e. it is upper triangular, so its semisimplification splits as a direct sum of characters.

Now since ρ|Ip
extends to a representation of Dp, the pair {χ1, χ2} must be preserved under the Frobenius

action of Dp/Ip. In other words, we have{
χp1 = χ1

χp2 = χ2

or

{
χp1 = χ2 χp

2

1 = χ1

χp2 = χ1 χp
2

2 = χ1

In the first case, each, χi factors through It → F×p . In the second case, each χi factors through It → F×p2 .
So in the first case we can write χ1 = ωa, χ2 = ωb for 0 ≤ a ≤ b, where ω : It → lim←−F×pr � F×p is the mod-p

cyclotomic character. In the second case we can likewise write χ1 = ψa+pb, χ2 = ψpa+b where ψ : It → F×p2
is the level-2 fundamental character. These are the a, b in Serre’s conjecture.

The exceptional case k(ρ) = 1 + pa + b + p − 1. Now we address where this case comes from (but without
precisely defining it). Consider the special cases

ρ|Ip
∼
(
ω2 ∗
0 1

)
and

ρ|Ip ∼ ( ω ∗0 1 ) .
In the first case the guess is k(ρ) = 3. In the second case the “standard” guess (a = 0, b = 1) is k(ρ) = 2.
But a naive combinatorial estimate says that the number of representations of the second type is roughly
twice as much as the number of the first type. On the other hand these are certainly fewer modular forms
of weight 2 than of weight 3. The “corrected” guess of p+ 1 for the second case when a = 0 and b = 1 could
provide the necessary extra modular representations.

Note: ρ|Dp
“comes from” a finite flat group scheme over Zp if it arises in weight 2; this property depends

only on the restriction to inertia, and it can be characterized in purely Galois-theoretic terms. This leads to
a special case in Serre’s conjecture related to the case k(ρ) = 2.

Emerton on Serre’s conjecture. Matt Emerton has a version of “mod p local Langlands” which gives the
following picture. There is a natural action of GL2(Af ) (with Af the finite adeles) on

HomGQ(ρ, lim−→
N

H1(X(N),Fp)) ∼=
′⊗
q

πq(ρ),

where the right side is a “factorization” into local “mod p automorphic” representations. Here πq(ρ) is finite
length but not necessarily irreducible, and depends only on ρ|Dq

. Supose ρ = ρf for f ∈ Snew
k (N). Then in

fact
ρ ↪→ H1(X(N),Symk−2 F2

p).

Here Symk−2 F2

p is viewed as a local system on X(N) as the Tate module of the “universal elliptic curve”
(up to some subtleties at the cusps). The right side is almost the same as [need to clarify appearance of
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GL2(Z/pZ)-invariants below ]

(H1(X(N(ρ)),Fp)⊗ Symk−2 F2

p)
GL2(Z/pZ) = ((

′⊗
πq(ρ))k(Np) ⊗ Symk−2 F2

p)
GL2(Z/pZ) 6= 0

[This needs to be extended a bit more to explain the relation with “independence” of the N and the k in
Serre’s conjecture.]

2. Hecke algebras. Let V = S2(Γ0(N)) for N squarefree. Let T ⊂ End(V ) be the Z-subalgebra generated
by all Hecke operators T (p), p - N and Up, p|N . (Recall that Up :

∑
anq

n 7→
∑
anpq

n.)
Fact: T is finite over Z.

Proof. One approach is to show that T preserves a lattice in V , by using the arithmetic theory of modular
curves (with models over Z). An alternative which is easier to carry out rigorously and involves just topo-
logical/analytic tools is to embed V into H1(X0(N),C) and extend the T-action to this space and prove it
preserves the lattice of integral cohomology (which can also be studied in terms of group cohomology). This
will be addressed in all weights ≥ 2 in Baran’s later lecture. �

Fact: The natural map from TC := T ⊗Z C onto the subalgebra C[T (p), Up | p ∈ Z] ⊂ End(V ) is an
isomorphism; that is, TC acts faithfully on V . This will also be proved in Baran’s lecture (in any weight at
least 2).

Fact: V is a free TC module of rank 1.

Proof. It is enough to construct a cyclic vector f ; i.e., T 7→ Tf gives a surjection TC � V . (It is automatically
then injective since T acts faithfully on V .) By multiplicity 1, we have V =

⊕
newforms fi

Vi where Vi is the
generalized Hecke eigenspace corresponding to fi. It suffices to check the existence of a cyclic vector for
each Vi, due to the Chinese Remainder Theorem for coprime maximal ideals of TC (which corresponding to
eigenforms). The existence of a cyclic vector for each Vi can be done explicitly. �

By the last fact, H1(X0(N),C) ∼= V ⊕ V is free of rank 2 over TC. Consequently H1(X0(N),Qp) is free
of rank 2 over TQp

. The latter is TQp
-linearly isomorphic to H1

ét(X0(N)Q,Qp), which also has a GQ-action
(that is Hecke equivariant, due to an alternative way to define the Hecke action via correspondences between
modular curves over Q). So we obtain a “modular” Galois representation:

GQ //

∃? %%LLLLLL
GL2 TQp

GL2(‘integral’)
?�

OO

We’d like to produce a GQ-stable TZp
-lattice inside our rank 2 TQp

module. This approach gets involved
with delicate commutative algebra properties of integral Hecke algebras (Gorenstein condition, etc.), and in
more general settings it is simpler to bypass such subtleties at the outset. So we will use a slicker method
with wider applicability which avoids making such a Hecke lattice.

Example. Consider level N = 33. Then dim(S2) = 3. The cusp forms in question come from two elliptic
curves. The first y2 + y = x3 ± x2 has conductor 11, giving rise to

f = q
∏
n

(1− qn)2(1− q11n)2 = q − 2q2 − q3 + 2q4 + q5 ± 2q6

of level 11, hence f ′(z) := f(3z) is level 33. The second y2 + xy = x3 + x2 − 11x gives rise to g =
q + q2 + q3 − q4 − 2q5 ± 2q6 in level 33. Observe that f ≡ g mod 3, which is no accident. Indeed, the Hecke
algebra T acting on the lattice Zf ⊕ Zf ′ ⊕ Zg in S2 is generated over Z by U3, which acts by

g 7→ −g, f ′ 7→ f, f 7→ −f − 3f ′.

From this we can find
T ∼= Z[x]/(x+ 1)(x2 + x+ 3).

So Spec T lying over Spec Z has two irreducible components,

Spec Z = Spec Z[x]/(x+ 1), Spec Z[x]/(x2 + x+ 3),
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which happen to meet at the fiber over (3) ∈ Spec Z. (This is precisely the reason for the congruence observed
earlier, as we will see in a moment.) The fiber in question consists of a single maximal ideal m ∈ Spec T, the
kernel of

T act on Zf→ Z� F3.

If we consider the completed localization Tm then we claim that after a suitable conjugation, GQ → GL2(TQ3
)

factors through GL2(Tm). Once this is done, then using the two specializations Tm → Z3 corresponding to
the two elliptic curves then recovers the 3-adic Tate modules of these elliptic curves as deformations of a
common mod-3 residual representation.

But how to make the representation land in GL2(Tm)? Consider the 3-adic eigenforms associated to min-
imal primes of T below m, of which there are 2 and so actually the ones from the elliptic curves above (for
a unique prime over 3 in the quadratic field associated to the second component of T). This gives represen-
tations from GQ into GL2(Z3) which are conjugate modulo 3. One checks that these mod-3 representations
are irreducible, and hence absolutely irreducible (due to oddness). Thus, the local fiber product ring

R = Z3 ×F3 Z3 = {(a, b) ∈ Z3 × Z3 | a ≡ b mod 3}
contains S = Tm and we get a representation GQ → GL2(R) upon fixing an isomorphism of the mod-3
reductions. Note that the traces in R at Frobenius elements away from 3 and 11 all lie in S, since T` ∈ T “is”
the trace (as can be checked modulo each minimal prime of the reduced TQ3). This is the key to descending
the representation into GL2(S), as we explain next.

3. Descent for Galois representations. Let R be a complete local ring with maximal ideal mR. Let
ρ : GQ → GLn(R) be residually absolutely irreducible and continuous. Suppose further more that ρ is odd.
Let S be a complete local subring of R with local inclusion map, so mS = mR ∩ S and we get an induced
isomorphism of residue fields S/mS

∼= R/mR. Assume that tr ρ(g) ∈ S for all g ∈ GQ.

Theorem. If n = 2 and the residue characteristic is not 2 then some GL2(R)-conjugate of ρ is valued in
GL2(S).

Proof. The argument is elementary, and apparently due to Wiles. By oddness, we can assume
(

1 0
0 −1

)
∈ im ρ.

For any
(
a b
c d

)
∈ im ρ, the trace 2a = tr(

(
a b
c d

)
+
(
a b
c d

) (
1 0
0 −1

)
) lies in S, so a ∈ S. Similarly one finds d ∈ S.

By residual irreducibility there is g ∈ GQ with ρ(g) ∼ ( ∗ u∗ ) where u is an R-unit. Conjugate by ( u 0
0 1 ), and

we find that ρ(g) ∼ ( ∗ 1
∗ ∗ ) for some g. Messing around with this and the previous idea, one can conclude that

b, c ∈ S as well. �

Note that the preceding argument did not use the completeness of S. Now we use it. [Where do we ever
use completeness of R or S below?] Taking S and R as above, and imposing no hypotheses on n or the
residue characteristic, we have:

Theorem. Assume ρ : G→ GLn(R) is residually absolutely irreducible, where G is any group at all. Then
some GLn(R)-conjugate of ρ is valued in GLn(S).

Proof. By Jacobson Density and the residual absolute irreducibility of ρ, there exist

x1, . . . , xn2 ∈ ρ(G) ⊂Mn(R)

such that xi span Mn(k), where k = R/mR is the residue field. It follows that the xi’s themselves freely
span Mn(R). (Relate them to a basis by a matrix; the reduction of that matrix mod mR is invertible over
k, so it must be invertible over R itself.)

Let B be the S-submodule of Mn(R) freely spanned over S by the xi. It is free of rank n2. The claim
is that B is in fact an S-algebra containing ρ(G). To see this, take y ∈ ρ(G). We can write y =

∑
aixi for

ai ∈ R. For each 1 ≤ j ≤ n2, the trace tr(yxj) is equal to
∑
i ai tr(xixj). Consider the matrix

(tr(xixj)) ∈Mn2S.

Due to non-degeneracy of the trace pairing for matrix algebras over a field, a matrix of traces of products
of basis elements for a matrix algebra over a field is invertible. So the reduction of this matrix mod mR (the
same as its reduction mod mS) is invertible. Hence it is invertible itself, so the ai are in S and hence y ∈ B.
Thus, ρ(G) ⊂ B. In particular 1 ∈ B. It’s not hard to check B is closed under multiplication, so it’s a finite
S-algebra that is free of rank n2 and contains Mn(S).
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If k′ denotes the residue field of S, then since the map Mn(S) → Mn(R) induces the injective map
Mn(k′) → Mn(k) modulo maximal ideals we conclude that the inclusion Mn(S) → B induces an injective
map Mn(k′) → B ⊗S k′. But B ⊗S k′ has rank n2, so Mn(S) → B is a map between finite free S-modules
of rank n2 and induces an isomorphism modulo mS . Thus, it is an equality. �

4. Universal deformation ring. As before let k be a finite field and ρ : G → GLn(k) an absolutely
irreducible representation of a profinite group G. A lifting of ρ over a complete local Noetherian ring A
with residue field k is a representations ρ : G→ GLn(A) equipped with an isomorphism ρ⊗A k ∼= ρ. We will
be especially interested in the case when G = GQ,S , the Galois group of the largest extension of Q unramified
outside of a fixed finite set of places S, or when G is the Galois group of a local (especially p-adic) field.
These groups satisfy a certain finiteness property Φp: their open subgroups have only finitely many index-p
open subgroups.

Claim. Assume that G satisfies Φp. There exists a complete local noetherian ring Rρ and a deformation
ρuniv : GQ,S → GLn(Rρ) such that for any deformation (ρA, A) there exists a unique ring map Rρ → A such
that ρA factors through ρuniv , up to residually trivial conjugation. (Here the map GLn(Rρ) → GLn)(A) is
induced by the map Rρ → A.)

The proof of this will be explained next time by Mok.

Example. Let G be a finite group of order not divisible by p and consider G
ρ→ GLn(k) where the charac-

teristic of k is p. Then Rρ = W (k), the ring of Witt vectors for k. This will follow from the vanishing of
p-torsion group cohomology for G and the computation of the “reduced” cotangent space to the deformation
ring as in Mok’s talk next time.

Example. Suppose ρ : GQ,S → GL2(k) is odd, and H2(GQ,Ad0(ρ)) = 0. Then Rρ = W (k)[[X1, X2, X3]]. So
generically, one expects the universal deformation ring to be 3-dimensional over W (k).

5. Hecke algebras again. Let ρ : GQ,S → GL2(k) be absolutely irreducible. Pick a level N . Let f1, . . . , fm
be all the newforms of weight 2 and level dividing N , such that ρf ∼ ρ ⊗k Fp; we assume this set of fi’s is
non-empty! Let fi have coefficients contained in Ki, a number field with maximal order Oi, and let Oi,λ be
the completion of Oi in Qp.

Let T be the W (k)-subalgebra of
∏

Oi spanned by the images of all the T (`) with (`,Np) = 1.
We have a map T→ Oi,λ → Fp sending T (`) to tr ρ(Frob`), independent of i. Call the kernel m ⊂ T, and

let Tm be the completed localization. Thus, the representation∏
ρfi

: GQ,S → GL2(
∏

Oi,λ)

admits a conjugate valued in GL2(Tm), by using the same kind of argument carried out earlier with the
elliptic curves of levels 11 and 33. Note that the residue field of Tm is equal to k.

By universality of Rρ we obtain a local W (k)-algebra map Rρ � Tm satisfying tr ρFrob` 7→ T (`), so
this map is surjective. An R = T theorem says that this map identifies Tm with a certain quotient of Rρ
determined by local data. (In practice one needs some more flexibility, such as to include a Hecke operator
at p, or to impose determinant conditions, to invert p before claiming to have an isomorphism, etc.)
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Lecture 3. Mok on Deformations

LetG be a profinite group and ρ : G→ GLn(k) a representation defined over a finite field k of characteristic
p. Let Λ be a complete discrete valuation ring with residue field k, e.g. Λ = W (k). Let CΛ be the category
of artinian local Λ-algebras with residue field k, and local morphisms. Let ĈΛ be the category of complete
Noetherian local Λ-algebras with residue field k, i.e. the pro-category of CΛ.

1. Deformation functors. Define Def(ρ) : ĈΛ → Sets by

Def(ρ)(A) = {(ρ,M, ι)}/ ∼
where M is a free A-module of rank n, ρ : G → GLA(M) is a continuous representation, ι : ρ ⊗A k ∼= ρ is
an isomorphism, and two such triples are equivalent when the representations are isomorphic in a manner
which respects the ι’s. Define the framed deformation functor Def�(ρ) by

Def�(ρ)(A) = {(ρ,M, ι, β)/ ∼

where β is a basis for M lifting the standard basis for kn under ι. Morally, Def� is the set of liftings of ρ
into GLn(A).

There is a forgetful functor Def� → Def.
Equivalent definitions are

Def�(ρ)(A) = {ρ : G→ GLnA | ρ mod mA = ρ},

Def(ρ)(A) = Def�(ρ)(A)/(conjugation by Γn(A) := ker(GLn(A)→ GLn(k))).

Note: it is easy to see that Def�(ρ)(A) = lim←−i Def�(ρ)(A/mi
A). It is also true (but requires an argument)

that Def(ρ)(A) = lim←−i Def(ρ)(A/mi
A). In other words “we can compute these functors on the level of artinian

quotients”, so we just need to consider them on the category CΛ.

2. p-finiteness. We cannot hope to represent Def(ρ) or Def�(ρ) in ĈΛ (which only contains Noetherian
rings) unless G is “not too big”.

Definition. We say G satisfies the p-finiteness condition if for every open subgroup H ⊂ G of finite
index, there are only finitely many continuous group homomorphisms H → Z/pZ (i.e., only finitely many
open subgroups of index p). (This holds if and only if for any such H, the maximal pro-p quotient of H is
topologically finitely generated.)

We are interested in two cases.
(1) G = GK for a local field K finite over Q` (allowing ` = p!).
(2) G = GK,S for a number field K and S a finite set of ramified primes.

In case (1), H = GK′ for a finite extension K ′/K, and the p-finiteness condition follows from the fact
that the local field K ′ of characteristic 0 has only finitely many extensions of any given degree (such as
degree p). For (2), H corresponds to some finite extension K ′/K unramified outside of S, so the index-p
open subgroups of H correspond to certain degree-p extensions of K ′ unramified away from the places of
K ′ over S. Thus, the p-finiteness follows from the Hermite-Minkowski theorem, which says that only
finitely many extensions of K of bounded degree unramified outside S.

Returning to the general situation, assume G satisfies p-finiteness. By Schlessinger’s criterion, we will
eventually see that Def�(ρ) is always representable in ĈΛ, so there exists a universal framed deformation ring
R�
ρ ∈ ĈΛ and a universal framed deformation ρ�

ρ satisfying the natural universality property. We will also
see that Def(ρ) is itself representable by a universal deformation ring (Rρ, ρuniv), at least when EndG(ρ) = k.
This will be the case if ρ is absolutely irreducible, and also if n = 2 and ρ is a non-split extension of distinct
characters.
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3. Zariski tangent space to the deformation functors. Let k[ε] denote the ring of dual numbers of k.
The tangent space to a functor F : ĈΛ → Sets is F (k[ε]) =: tF . Initially this is just a set; the hypotheses of
Schlessinger’s criterion give it a natural structure of k-vector space (compatibly with natural transformations
in F ).

Let V ∈ Def(ρ)(k[ε]) = tDef(ρ). Then by definition there is given a specified isomorphism V/εV ∼= ρ, so
we obtain an exact sequence

0→ εV → V → ρ→ 0.
But it is easy to see that εV is naturally k[G]-isomorphic to ρ as well. Hence we see

tDef(ρ) = Ext1
k[G](ρ, ρ) = H1(G,Ad(ρ));

this respects the k-linear structure on both sides.
More explicitly, given ρ ∈ Def�(ρ)(k[ε]) we can write ρ(g) = ρ(g) + εΦ(g)ρ(g) for Φ(g) ∈ Ad(ρ). One can

compute that the condition that ρ is a group homomorphism is the 1-cocycle condition on Φ. So tDef�(ρ) =
Z1(G,Ad(ρ)). Similarly one checks that two framed deformations are conjugate under Γ0(k[ε]) = In+εMn(k)
if and only if their associated cocycles differ by a 1-coboundary. We conclude that tDef(ρ) = H1(G,Ad(ρ)),
and

dimk B
1(G,Ad(ρ)) = dim Ad(ρ)− dim H0(G,Ad(ρ))

is the number of framed variables. The p-finiteness hypothesis says precisely that dimZ1,dim H1 <∞.
If moreover EndG(ρ) = k then h0(G,Ad(ρ)) = 1, and we are in the representable situation. The forgetful
functor Def�(ρ) → Def(ρ) induces a map Rρ → R�

ρ , which turns out to be formally smooth, and thus
realizes R�

ρ as a ring of formal power series (in some number d of variables) over Rρ. The number d is
precisely the number of framed variables, which in this case is n2 − 1.

Concretely, what is going on is that if ρ has only scalar endomorphism (so likewise for any lifting of ρ)
and we consider the universal deformation Rρ then to “universally” specify a basis which residually lifts
the identity is precisely to applying conjugation by a residually trivial matrix which is unique up to a unit
scaling factor. And we can eliminate the unit scaling ambiguity by demanding (as we always may in a unique
way) that the upper left matrix entry is not merely a unit but is equal to 1. Thus, the framing amounts
to specifying a “point” of the formal Rρ-group of PGLn at the identity, which thereby proves the asserted
description of the universal framed deformation ring in these cases as a formal power series ring over Rρ in
n2 − 1 variables. To be explicit, over

R�(ρ) = R(ρ)[[Yi,j ]]1≤i,j≤n,(i,j)6=(1,1)

the universal framed deformation is the lifting ρuniv equipped with the basis obtained from the standard one
by applying the invertible matrix 1n + (Yi,j) where Y1,1 := 0.

It must be stressed that we will later need to work with cases in which ρ is trivial (of dimension 2), so Rρ
does not generally exist. This is why the framed deformation ring is useful.

3. References.
• Mazur’s articles in “Galois groups over Q” and “Modular Forms and Fermat’s Last Theorem”.
• Kisin’s notes from CMI summer school in Hawaii.

4. More on Zariski tangent spaces to deformation functors. From now on fix G to be either GK for
local K or GK,S for a number field K. Fix ρ : G→ GLn(k) and suppose the characteristic of the finite field
k is p. If F is a deformation functor represented by R ∈ ĈΛ, recall that

F (A) = HomΛ-alg(R,A), tF = F (k[ε]) = HomΛ-alg(R, k[ε]) = HomΛ-alg(R/(m2
R + mΛR), k[ε]).

The last equality is because the Λ-algebra maps are local morphisms, so in particular they send mR to εk[ε],
and hence m2

R to zero. But by general nonsense we have

R/(m2
R + mΛR) = k ⊕ mR

m2
R + mΛR

,

where the second summand is square zero. Thus we see

tF = Homk(
mR

m2
R + mΛR

, k) = t∗R,
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where for A ∈ ĈΛ we define the reduced Zariski cotangent space of A to be

t∗A =
mA

m2
A + mΛR

.

Exercise. Fix a map A
f→ B in ĈΛ. Then f is surjective if and only if t∗f : t∗A → t∗B is surjective. [Use

completeness... it’s a Nakayamal’s lemma sort of thing.]
A corollary of the Exercise is that if d = dimk tF = dimk t

∗
R then we can pick a k-basis x1, . . . , xd of t∗R, lift

it to a collection x̃i ∈ mR ⊂ R, and then the map Λ[[X1, . . . , Xd]]→ R sending Xi to x̃i will be surjective. A
priori bounds for the number of generators in the kernel (and hence on the dimension of R) can be obtained
by estimating certain H2s in the cohomology of G, which will be discussed later. These dimension bounds
are sometimes useful, but usually not strong enough to give good control on R.

5. Examples.

A local case. Let K/Q` be local with ` 6= p and G = GK . Let ρ be the trivial representation of dimension n.
Then in particular EndG ρ ) k, so only the framed deformation functor is representable. In this case we can
actually construct R�(ρ) by hand. If ρ : G→ GLnA is a deformation of the trivial representation ρ, then G
lands in the kernel ΓnA ⊂ GLnA. Now ΓnA = In+Mn(mA), explicitly, which is a pro-p group isomorphism
to the additive group Mn(A). In particular ρ factors throug h the maximal pro-p quotient of G.

In particular ρ|IK
factors through the p-part of the tame quotient Itame

K = IK/I
wild
K of the inertia IK of

K. The picture to keep in mind is the tower of field extensions

K ↪→ Kunr ↪→ Ktame ↪→ K.

Now from the structure of local fields we know that the p-part of Itame
K is

I
tame,(p)
K = Zp(1).

Here the twist means that if σ ∈ Itame,(p)
K then FrobK σ Frob−1

K = σq where q = `r = #(OK/mK). Fix a lift
f ∈ G of FrobK and τ a topological generator of Itame,(p)

K . What we can conclude is that a lift ρ to any A is
specified by the images of f and τ , subject to the relation

ρ(f)ρ(τ) = ρ(τ)qρ(f).

So we can take
R�(ρ) = Λ[[{fij , τij}1≤i,j≤n]]/I

where the ideal of relations I is generated by the ones given by the matrix equations

[In + (fij)][In + (τij)] = [In + (τij)]q[In + (fij)].

A global case. For a global case we’ll consider characters of G = GK,S . Note that we have a wonderful fact
in this case. The Teichmüller lift [·] : k → W (k) is a multiplicative section of W (k) → k. This allows us
to twist any character ρ by the Teichmüller lift [ρ−1] of its reciprocal. to conclude that R(ρ) = R(1) where
1 : G→ k× is the trivial character. In other words, the universal deformation of a character ρ is just a twist
of the universal deformation of the trivial character (using the same coefficient ring).

Arguing just like in the local case, it follows that any lift ρ to A of the trivial mod p character ρ, must
factor through the maximal pro-p quotient Gab,(p)

K,S of the abelianization of GK,S .
Let us specialize now to the case K = Q [the case of a general number field is similar, but requires class

field theory]. Assume p ∈ S, since otherwise stuff is boring. By the Kronecker-Weber theorem we know that
Gab

Q,S =
∏
`∈S Z×` , which implies that the maximal pro-p quotient is

G
ab,(p)
Q,S =

∏
`∈S,`≡1(p)

(F×` )(p) × (1 + pZp).

So we can, in this case, simply take R = Λ[[Gab,(p)
Q,S ]] to be the formal group algebra over Λ. From the

description of Gab,(p)
Q,S we can be very explicit:

R =
Λ[[{X`}`∈S,`≡1(p), T ]]

({((X` + 1)pordp(`−1) − 1)}`∈S,`≡1(p))
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In particular if S = {p,∞} then R ∼= Λ[[T ]].
For a general number field K this relates to the Leopoldt conjecture which says that rkZp

(Gab,(p)
K,S ) = 1+r2,

where r2 is the number of conjugate pairs of complex embeddings of K.

6. Local and Global. We can relate the two examples from the last subsection in the following manner,
which will be extremely important later in one of Kisin’s key improvements of Wiles’ method. Let G = GK,S ,
ρ : GK,S → GLn(k) a fixed residual representations, and Σ a finite set of primes. For each v ∈ Σ we have

ρ|Gv
: GKv

= Gv ↪→ GK � GK,S
ρ→ GLn(k).

We have local framed deformation rings R�
v := R�(ρ|Gv

). Define a variation of the global framed deformation
functor by

Def�,Σ(ρ)(A) = {(ρA, {βv}v∈Σ)}/ ∼;
here, ρA is a deformation of ρ and βv is a basis for ρA|Gv which reduces to the standard basis for ρ. Then
in fact Def�,Σ(ρ) is also representable, by a ring R�,Σ

K,S . For each v ∈ Σ we have a forgetful map

Def�,Σ(ρ)→ Def(ρ|Gv
)

and hence on the revel of representing objects, an algebra

R�
v → R�,Σ

K,S .

In concrete terms, this is saying that if we form the universal deformation of ρ equipped with a framing
along Σ and then forget the framing away from v and restrict to Gv, the resulting framed deformation of
ρ|Gv

with coefficients in R�,Σ
K,S is uniquely obtained by specializing the universal framed deformation of ρ|Gv

along a unique local Λ-algebra homomorphism R�
v → R�,Σ

K,S .
Hence, by the universal property of completed tensor products (to be discussed in Samit’s talk rather

generally) we get an important map ⊗̂
Λ
R�
v → R�,Σ

K,S

in ĈΛ. (Note that we have to take the completion of the algebraic tensor product, which is not itself a complete
ring. For example, Λ[[x]]⊗Λ Λ[[y]] is a gigantic non-noetherian ring, but the corresponding completed tensor
product is Λ[[x, y]].) This is a rather interesting extra algebra structure on the global framed deformation
ring, much richer than its mere Λ-algebra structure; of course, this all has perfectly good analogues without
the framings, assuming that ρ and its local restrictions at each v ∈ Σ have only scalar endomorphisms.

This idea of viewing a global deformation ring as an algebra over a (completed) tensor product of local
deformation rings is the key to Kisin’s method for “patching” deformation rings in settings going far beyond
the original Taylor-Wiles method (where only the Λ-algebra structure was used).

Lecture 4. Brian on Characteristic Zero points of Deformation Rings

1. Some observations. Fix ρ : GQ,S → GL2(k) absolutely irreducible, and let ρ : GQ,S → GL2(R) be the
universal deformation. We’re interested in the map R → Tm for some Hecke algebra defined in terms of ρ.
Note that the Hecke algebra is 1-dimensional, and even finite free over Zp. The universal deformation ring
R, however, often has dimension > 1 and nonzero p-torsion. In other words, the surjection R � Tm is not
even close to being an isomorphism in general.

Example. Consider X0(49) which is an elliptic curve. [Cf. Nigel Boston’s papers on explicit deformation
rings for the details of this example.] Let ρ the representation from the 3-torsion of E, and let S = {3, 7,∞}.
Boston computed the universal deformation as

ρ : GQ,S → GL2

(
Z3[[x1, x2, x3]]
(1 + x1)3 − 1

)
.

Just by looking at the ring on the right side, it’s clear that its dimension is at least 2. (This example doesn’t
illustrate the phenomenon of p-torsion, but oh well...)
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Morally, the reason for the higher dimension of R is that we are not imposing any local conditions at all
for the places in S.

A key observation is that even when we succeed in proving a modularity lifting theorem, we don’t know
until we’re done that R is Zp-finite and flat. In other words, even when in fact R turns out to be nice, we
have very little grasp of why it is nice without proving an R = T theorem.

However, this is really not so bad. For example, if we could show that R[1/p] ∼= Tm[1/p], that’s totally
fine. After all, we’re trying to study deformations of ρ over p-adic integer rings, which are p-torsion free and
reduced, so we rig the Hecke algebra to have the same properties. In other words, we only care about
the “p-adic points” of R so we can just as well study the structure of R[1/p]/nilpotents. And via Kisin’s
methods, it turns out that a thorough understanding of the “structure” of this ring is attainable in interesting
cases and is exactly what is needed for modularity lifting theorems. Things we would like to know:

• Characterize in some moduli-theoretic manner the connected components of its spectrum (e.g., so
we can detect when two p-adic points lie on the same component).

• Dimension.
• Singularities, i.e. the extent to which an appropriately defined notion of smoothness fails to hold.

For the last point, it is just as good in practice to pass to a formally smooth R-algebra (such as a power
series ring over R). So we can consider the framed deformation ring.

Remark. A key point is that R[1/p] is very far from being a local ring. For example, say R = Zp[[x]] (which
is a rough prototype of the sort of ring that arises). Then

R[1/p] = Zp[[x]][1/p] = {f ∈ Qp[[x]] | denominators are bounded powers of p} ( Qp[[x]].

This ring has lots of Qp-algebra maps Zp[[x]][1/p]� OK [1/p] for finite extensions K/Qp, sending x into mK .
Hence it has lots of maximal ideals.

2. Digression on Jacobson rings.

Definition. A Jacobson ring is a Noetherian ring A such that any p ∈ SpecA is the intersection of the
maximal ideals containing p.

Clearly a quotient of a Jacobson ring is Jacobson. Less evident, but in the exercises of Atiyah-MacDonald,
is that a finitely generated algebra over a Jacobson ring is Jacobson. Note that any field is Jacobson, as is any
Dedekind domain with infinitely many primes (but not a dvr, nor a local ring which is not 0-dimensional!).
In particular, a general localization of a Jacobson ring is certainly not Jacobson, though localization at a
single element is (since it is a finitely generated algebra).

A consequence of the definition is that if X0 = MaxSpec(A)
j
↪→ SpecA = X, then j is a dense quasihome-

omorphism, which means that U0 = X0 ∩ U ↔ U is a bijection between the collections of open sets in X0

and X. Jacobson rings abstract the nice properties enjoyed by algebras of finite type over a field.

Claim. If R is a quotient of a formal power series ring over a complete dvr A with uniforizer π then R[1/π]
is Jacobson, and for all maximal ideals m ⊂ R[1/π], the quotient R[1/π]/m is finite over the fraction field
K = A[1/π] of A. Moreover, every K-algebra map from R[1/π] to a finite extension K ′ of K carries R into
the valuation ring A′ of K ′, with the map R→ A′ actually a local map.

Note it is elementary that every K-algebra map from R[1/π] to a finite extension K ′ of K has kernel that
is maximal: the kernel P is at least a prime ideal, and R[1/π]/P is an intermediate ring between the field
K and the field K ′ of finite degree over K, so it is a domain of finite dimension over a field (namely K) and
hence is itself a field. Hence, P is maximal.

Also, everything in the Claim can be deduced from facts in rigid geometry concerning K-affinoid algebras,
by using the approach in deJong’s IHES paper Crystalline Dieudonné theory via formal and rigid geometry.
For convenience, we give a direct proof using commutative algebra, avoiding rigid geometry (but inspired by
it for some of the arguments).

The proof of the Claim is somewhat long (and was omitted in the lecture).

Proof. To prove the claim, first note that if the claim holds for R then it holds for any quotient of R. Hence,
it suffices to treat the case when R = A[[x1, . . . , xn]] is a formal power series ring over A. We first check the
more concrete second part of the Claim: for finite K ′/K, any K-algebra map R[1/π] → K ′ carries R into
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the valuation ring A′ of K ′ with R → A′ moreover a local map. In other words, we are studying A-algebra
maps R→ K ′. This can be uniquely “promoted” to an A′-algebra map

A′ ⊗A R→ K ′,

and we can pass the tensor product through the “formal power series” formation since A′ is a finite free
A-module. In other words, we can rename A′ as A to reduce to the case K ′ = K. So we claim that any
A-algebra map R → K must be “evaluation” at an n-tuple in the maximal ideal of A. If we can show it
carries each xi to some ai in the maximal ideal of A then the map kills xi − ai for all i. By completeness
of R it would be legal to make a “change of variables” renaming xi − ai as xi to reduce to the case when
the map kills all xi’s. Since the quotient of R by the ideal generated by the xi’s is identified with A, after
inverting π we get K (as a K-algebra!), so we’d have proved what we want.

Let’s now show that indeed each xi is carried to some ai in the maximal ideal of A. By composing the
given A-algebra map R→ K with the natural inclusion A[[xi]]→ R we are reduced to the case n = 1. That
is, we wish to prove that any A-algebra map A[[x]]→ K must carry x to an element a in the maximal ideal
of A. This map must kill some nonzero f ∈ A[[x]], as A[[x]][1/π] has infinite K-dimension as a vector space,
and we can write f = πef0 for some e ≥ 0 and some f0 not divisible by π. Thus, f0 also dies in K, so by
renaming it as f we arrange that f has some coefficient not divisible by π. This coefficient must occur in
positive degree, as otherwise f would be a unit, which is absurd (as it is in the kernel of a map to a field).
Now by the formal Weierstrass Preparation Theorem (in one variable –see Lang’s Algebra), if d > 0 is the
least degree of a coefficient of f not divisible by π then f is a unit multiple of a “distinguished” polynomial:
a monic polynomial in x of degree d over A with all lower-degree coefficients divisible by π. Scaling away the
unit, we can assume that f is a monic polynomial of degree d > 0 with all lower-degree coefficients divisible
by π. Hence, A[[x]]/(f) = A[x]/(f) by long-division of formal power series (thanks to completeness of A!).
Our map of interest therefore “is” an A-algebra map

A[x]/(f)→ K

and so it carries x to an element a of K that is a root of f . Since f is monic over A, we see a ∈ A. Since f has
all lower-degree coefficients in the maximal ideal, necessarily a is in the maximal ideal too. That completes
the proof of the second part of the Claim.

Now it remains to show the first part of the Claim: R is Jacobson, and if M is a maximal ideal of
R[1/π] then R[1/π]/M is of finite degree over A[1/π] = K. We argue by induction on the number n of
variables (motivated by the method of proof of the analytic Weierstrass Preparation theorem over C or
non-archimedean fields), the case n = 0 being trivial. Also, it is harmless (even for the Jacobson property)
to make a finite extension on K if we wish. We will use this later, to deal with a technical problem when
the residue field k is finite (which is of course the case of most interest to us).

Assume n > 0, and consider a nonzero f ∈ R = A[[x1, . . . , xn]] contained in some chosen nonzero prime
or maximal ideal; clearly f can be scaled by π-powers so it is not divisible by π. We want to get to the
situation in which f involves a monomial term that is just a power of a single variable. Pick a monomial
of least total degree appearing in f with coefficient in A×. (Such a term exists, since f is not divisible by
π.) This least total degree d must be positive (as otherwise f(0) ∈ A×, so f ∈ R×, a contradiction). By
relabeling, we may suppose x1 appears in this monomial. If n = 1, this term is an A×-multiple of a power of
x1, so we’re happy. Now assume n > 1 and consider the homogeneous change of variables which replaces xi
with xi + cix1 for all i > 1 (and leaves x1 alone), with ci ∈ A to be determined in a moment. Each degree-d
monomial

aIx
i1
1 · · ·xinn

in f (before the change of variable) with total degree d contributes

aIc
i2
2 · · · cinn xd1

to the xd1 term after the change of variable (with i1 = d − (i2 + · · · + in)). All other monomials can only
contribute to xd1 with coefficient in maximal ideal of A. Thus, these other terms can be ignored for the
purpose of seeing if we get xd1 to appear with an A×-coefficient after the change of variables.

To summarize (when n > 1), whatever ci’s we choose in A, we get after change of variable that xd1 appears
with coefficient h(c) for some polynomial h in n− 1 variables over A that has some coefficient in A× (since
i1 is determined by i2, . . . , in). Thus, h has nonzero reduction as a polynomial over the residue field k of A,
so as long as this reduction is nonzero at some point in kn−1 we can choose the c’s to lift that into An−1
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to get the coefficient of xd1 to be in A×. If k is infinite, no problem. If k is finite (case of most interest!),
for some finite extension k′ of k we can find the required point in k′n−1, so go back and replace A with
the corresponding unramified extension (and the chosen prime with each of the ones over it after scalar
extension) to do the job.

The upshot is that after a suitable change of variables (and possible replacement of A with a finite
extension in case k is finite), we can assume that f contains some xd1 with an A×-coefficient. Thus, if we
view f in

R = (A[[x2, . . . , xn]])[[x1]]
then it satisfies the hypotheses of the general Weierstrass Preparation (with complete coefficient ring) as
in Lang’s Algebra. This implies that f is a unit multiple of a monic polynomial in x1 whose lower-degree
coefficients are in the maximal ideal of R′ = A[[x2, . . . , xn]] (which means A if n = 1). We can therefore scale
away the unit so that f is such a “distinguished” polynomial, and then do long division in R′[[x1]] due to
completeness of R′ to infer that

R/(f) = R′[[x1]]/(f) = R′[x1]/(f).
This is a finite free R′-module!

We may now draw two consequences. First, if P is a prime ideal of R[1/π] containing f then R[1/π]/P is
module-finite over the ring R′[1/π] which is Jacobson by induction, so R[1/π]/P is Jacobson. Hence, P is the
intersection of all maximals over it, whence we have proved that R[1/π] is Jacobson. Second, for a maximal
ideal M of R[1/π] containing f , the ring map R′[1/π]→ R[1/π]/M is module-finite so its prime ideal kernel
is actually maximal. That is, we get a maximal ideal M ′ of R′[1/π] such that R′[1/π]/M ′ → R[1/π]/M is of
finite degree. By induction, R′[1/π]/M ′ is of finite degree over K, so we are done. �

3. Visualizing R[1/p]. Let R = A[[x1, . . . , xn]]/(f1, . . . , fm) and K be in the last subsection. Observe
that Homloc.A−alg(R,A′) = HomFrac(A)−alg(R[1/π], A′[1/π] = Frac(A′)) for any finite dvr extension A′ of
A. This suggests the following geometric perspective on the ring R[1/π]: it corresponds to the locus of
geometric points (xi) with coordinates in Frac(A) lying in the open polydisk {|x1|, . . . , |xn| < 1} at which
the convergent power series f1, . . . , fm all vanish. To make this viewpoint precise, one must regard the spaces
in question as rigid analytic spaces.

4. Final thought. We’ll see that for Galois deformation rings R, the completions of R[1/p] at maximal
ideals are deformation rings for characteristic zero representations corresponding to the maximal ideals in
question. This is very interesting, since R itself was entirely about deforming mod p things!

5. Back to examples of explicit universal deformation rings. Caveat: These sorts of examples are
kind of “useless”. The reference for N. Boston’s examples is Inv. Math. 103 (1991).

Example 1 [loc. cit., Prop. 8.1.] Let E : y2 = x(x2 − 8x+ 8), an elliptic curve with complex multiplication
by Q(

√
−2). Let ρ be the representation on the 3-torsion:

GQ,{2?,3,5,∞} → GL2(F3).

In general we know that there is some surjection Z3[[T1, . . . , Td]] � R(ρ) where we know the smallest d is
(by NAK) d = dim mR/(m2

R, 3), and mR/(m2
R, 3) = H1(GQ,{2?,3,5,∞},Ad(ρ)). Here the adjoint module is

Ad(ρ) = EndF3(ρ) with GQ,{2?,3,5,∞} acting by conjugation via ρ. In this particular case one can compute
that d = 5, so

R(ρ) = Z3[[T1, . . . , T5]]/I
where the ideal of relations has the form

I = δ · (f, g)
for

f = 8u4 − 8u2 + 1, g = 8e3 − 4u, u = (1 + T4T5)1/2

and δ (which may involve all the Tis) is obtained by choosing a certain presentation of a pro-3 group (coming
from a wild inertia group, perhaps for the splitting field of ρ?), and setting δ = det(ρ

univ
(y)− 1) where y is

a particular generator in said presentation. Consequently one can write down some “explicit” deformations
of ρ by looking for solutions to the relations above in a Z3-algebra...
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Example 2 [Boston-Ullom]. Let E = X0(49) and ρ = ρE,3 the representation on the 3-torsion:

GQ,{3,7,∞} → GL2(F3).

In this case the universal deformation ring is particularly simple:

R ∼= Z3[[T1, . . . , T4]]/((1 + T4)3 − 1).

We have (1+T4)3−1 = T4(T 2
4 +3T4 +3). The quadratic factor is irreducible over Q3, but not over Q3(

√
−3).

So, loosely speaking, SpecR has two irreducible components but three “geometric” irreducible components:
T4 = 0 and T4 equal to either of the conjugate roots of the quadratic factor. For example, to recover the
3-adic Tate module of E one considers the map R → Z3 given by mapping all Tis to 0. This is a sort of
“canonical” Z3-point of SpecR. Since the quadratic factor of the relation is Q3-irreducible, so that quadratic
field cannot be Q3-embedded into Q3, every Z3-point lies in the T4 = 0 component.

The lesson to take from this seems to be that it can be hard to detect components, or more generally
aspects of the geometry, of SpecR, when only looking at p-adic points over a small field like Qp; we have to
expect to work with points in many finite extensions in order to effectively probe the geometry. All this is
by way of motivation for our interest in characteristic zero points of deformation rings, and (for example)
our willingness to throw out all possible nastiness at p by studying R[1/p] instead of R itself.

6. Back to Characteristic 0. Now let Λ be a p-adic dvr with fraction field K and residue field k. Let
R = Λ[[Xn, . . . , Xn]]/I be the universal deformation ring of a residual representation ρ : Γ→ GLN (k), for a
profinite group Γ satisfying the requisite p-finiteness conditions (e.g. GK for local K or GK,S for a number
field K).

Remark. We have seen above that for any maximal ideal m ⊂ R[1/p], the residue field R[1/p]/m is of finite
degree over k. The intuition for this fact is that these closed points of SpecR[1/p] correspond to Galois
orbits over K of K-solutions to I = 0 in the open unit n-polydisk. (The case n = 1 is a consequence of
the Weierstrass Preparation Lemma. One can relate the geometry of SpecR[1/p] to the geometry of the
aforementioned “rigid analytic space” I = 0. For example, if R[1/p] is connected (no nontrivial idempotents)
then I = 0 is connected in the sense of rigid geometry. One can also match up the dimensions of the
components. The input for this equivalence is the (self-contained!) §7 of de Jong’s IHES paper Crystalline
Dieudonné theory . . . , but we won’t use it.

We also saw above that any K-algebra map R[1/p]→ K ′ for a finite extension K ′/K is actually given by
sending all the Xis to elements xi ∈ mK′ ⊂ OK′ ⊂ K ′. In other words, R ⊂ R[1/p] actually lands in OK′ !

Now fix a K-algebra map x : R[1/p]� K ′ into a finite extension of K. (“Contemplate a p-adic point of
SpecR”.) Let

ρx : Γ
ρ
univ

→ GLN (R)→ GLN (R[1/p])→ GLN (K ′)
be the specialized representation. (In the Boston-Ullom example above, when we take x : R[1/3] → Q3 to
be the map sending all the Tis to zero, then ρx is the 3-adic Tate module of X0(49).)

Goal: Understand the dimension dimR[1/p]mx = dimR[1/p]∧mx
. (Here (·)∧ denotes completion.)

For instance, is this complete local ring regular? Perhaps even a power series ring over K ′? If so, then its
dimension is dim mx/m

2
x.

Theorem. Let ρ
univ

x : Γ → GLN (R[1/p]∧mx
) be induced from ρ

univ
by the natural map R → R[1/p]∧mx

. Then
the diagram

Γ
ρ
univ
x //

cont

ρx

%%LLLLLLLLLLLL GLN (R[1/p]∧mx
)

��
GLN (K ′)

commutes, and in fact ρ
univ

x is the universal for continuous deformations of ρx.
More precisely, if one considers the category Ĉ of complete local noetherian K ′-algebras with residue field

K ′, and the functor on the category C of artinian quotients of objects in Ĉ which picks out those deformations
of ρx which are continuous for the p-adic topology on such artinian quotients, regarded as finite-dimensional
K ′-vector spaces, then R[1/p]∧mx

is the representing object.
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Remark. If A is a complete local Noetherian F -algebra and the characteristic of F is zero, and A/m = F ′

is a finite extension of F , then there exists a unique F -algebra lift F ′ ↪→ A. Why? By completeness we have
Hensel’s lemma and by characteristic zero we have F ′/F separable. So we can find solutions in A to the
defining polynomial of F ′ over F .

Why do we care about the theorem?
(1) The deformation ring R[1/p]∧mx

is isomorphic to K ′[[T1, . . . , Tn]] if and only if R[1/p]∧mx
is regular (by

the Cohen structure theorem), and the power series description is precisely the condition that the
corresponding deformation functor for ρx is formally smooth (i.e., no obstruction to lifting artinian
points in characteristic 0). This holds precisely when H2(Γ,Ad(ρx)) = 0. So that is interesting: a
computation in Galois cohomology in characteristic 0 can tell us information about the structure of
R[1/p] at closed points.

(2) (mx/m
2
x)∨ ∼= H1

cont(Γ,Ad(ρx)), by the continuity condition we imposed on the deformations in the
theorem.

Combining (1) and (2), we can check regularity of R[1/p] at a closed point and in such cases then even
compute dimxR[1/p] by doing computations in (continuous) Galois cohomology with p-adic coefficients!

7. Proof of theorem.

Step 1: Reduce to the case K ′ = K. Here is the trick. Set Λ′ = OK′ . Note that Λ′ ⊗Λ R is local because
(Λ′ ⊗Λ R)/mR = Λ′ ⊗Λ k = k′ is a field. The Λ′-algebra Λ′ ⊗Λ R is the universal deformation ring of ρ⊗k k′
(where k′ is the residue field of K ′) when using Λ′-coefficients; this behavior of deformation ring with respect
to finite extension of the coefficients will be proved in Samit’s talk. Consider the diagram

K ′ ⊗K R[1/p] x′ // K ′

(Λ′ ⊗Λ R)[1/p]

Λ′ ⊗Λ R

OO

// Λ′

OO

Exercise: (Λ′ ⊗Λ R)[1/p]∧mx′
∼= R[1/p]∧mx

as K ′-algebras.
So we can rename Λ′ as Λ, completing the reduction.

Step 2: Observe that since ρ is absolutely irreducible, so is ρx. Consequently any deformation of ρx has only
scalar endomorphisms.

Step 3: Consider any deformation

Γ
θ //

ρx ##GGGGGGGGG GLN (A)

��
GLN (K)

where A is a finite local K-algebra with residue field K. We would like to show that there exists a unique
K-map R[1/p]∧mx

→ A which takes ρ
univ

x to θ, up to conjugation. Why is this sufficient? Because if so, then
there would be lifts of ρx to GLN (A), one coming from ρ

univ

x and the other being θ, which are GLN (A)-
conjugate to one another by some matrix M . Upon reduction to GLN (K), the matrix M would centralize
ρx. So by Step 2, M must be a scalar endomorphism c ∈ K×. Consequently we can replace M by c−1M
to conclude that the two lifts are conjugate to one another by a matrix which is residually trivial. The
latter is precisely what we need to prove that ρ

univ

x is universal. (Note that if we used framed deformations
throughout then this little step wouldn’t be needed. It is important because in later applications we will
certainly want to apply the Theorem to cases for which ρ is not absolutely irreducible. The reader can check
that the proof of the Theorem works in the framed setting once the preceding little step is bypassed.)
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The map we need is the same as making a local K-algebra map

R[1/p]mx
→ A

with the same property with respect to θ, since A is a complete K-algebra. (Note that this “uncompletion”
step is only possible since we already did Step 1! We originally completed R[1/p]mx , which is a K-algebra
and generally not a K ′-algebra.) The latter is the same as a K-algebra map R[1/p]→ A such that R[1/p]→
A→ K is the original point x, which takes ρ

univ
to θ. (“It’s all a game in trying to get back to R”.) In other

words, we wanted a dotted map in the diagram

R //

∃!ex
��

R[1/p]

x
""FFFFFFFF

∃!? //___ A

��
Λ // K

(The existence of x̃ is by one of the propositions from §6.) But R[1/p] is just a localization of R and A is
a Λ[1/p]-algebra (it is a K-algebra!), so in fact the existence of a unique dotted map above is equivalent to
the existence of a unique dotted map α in the diagram

R

ex
��

α

∃!? //___ A

��
Λ // K

such that α takes ρ
univ

to θ. Now unfortunately A is not in the category ĈΛ [typically it is something like
K[t]/(t7)], so θ is not quite a deformation of ρ, so we cannot appeal directly to the universal property of
(R, ρ

univ
). Instead we need to mess around a bit.

Here’s the point. A = K ⊕mA and mA is a finite-dimensional K-vector space which is nilpotent.

Claim. mA = lim−→ I where the limit is taken over Λ-finite multiplicatively stable Λ-modules I.

(Idea of the proof: take products and products and more products. By nilpotence and finite-dimensionality
of mA over K, you don’t have to keep going forever. Then take the Λ-span of finite collections of such products
to get the desired I’s.)

Write ΛI for Λ⊕ I.
Lemma/Exercise: Any Λ-algebra map R → A lands in some ΛI . (Hint: choose I containing the images

of all the X’s.)
So it’s enough to show two things.
(1) For some I we have a map R → ΛI giving a deformation θI of the “integral lattice” version ρex of

ρx. The image of Γ under ρ
univ

is topologically finitely generated (since GLN (R) is essentially pro-p
and Γ satisfies the p-finiteness condition), so then there exists some I0 such that θ factors through
GLN (ΛI0), giving a map θI0 : Γ→ GLN (ΛI0).

(2) The map from (1) is unique.
Indeed, by then comparing any two I and I ′ with a common one, we’d get the desired existence and
uniqueness at the level of coefficients in A.

To prove (1), note that ΛI ∈ ĈΛ and θI deforms ρex, and hence ρ. Here is the picture:

ρ
univ ∃ //_______

!!

θI

��
ρex

��
ρ

The induced map R → ΛI respects the map to Λ coming from the fact that ρex deforms ρ, because if not,
then we would have another map R→ ΛI → Λ, which contradicts the universal property of R.



20 SAM LICHTENSTEIN

To prove (2) just use the uniqueness from the universal property of (R, ρ
univ

) for deforms on ĈΛ.

1. Samit on Dimensions of Deformation Rings

This lecture is about getting bounds for the dimension of deformation rings, by bounding the number of
generators and relations. The reference for this lecture is Kisin’s article in CDM, or stuff from his Hawaii
notes.

1.1. Local setup and statement. Let K/Qp be finite, O = OK , π a uniformizer, k = O/(π), Γ a profinite
group satisfying the p-finiteness condition “Φp”, and ρ : Γ→ GLn(k) a mod π representation. We consider
deformations to complete local noetherian O-algebras with residue field k. The framed deformation ring R�

ρ

always exists, so we have a universal representation

Γ
ρ�
univ→ GLn(R�

ρ ).

Assuming EndΓ ρ = k, we also know Rρ exists, and we then get a universal deformation

Γ
ρuniv

→ GLn(Rρ).

Recall that
D�
ρ (k[ε]) = Homk(mR�/(m2

R� , π), k) ∼= Z1(Γ, ad ρ)
and Dρ(k[ε]) = H1(Γ, ad ρ) as k-vector spaces.

Theorem. Let r = dimk Z
1(Γ, ad ρ). Then there exists an O-algebra isomorphism

O[[x1, . . . , xr]]/(f1, . . . , fs) ∼= R�
ρ

where s = dimk H2(Γ, ad ρ).

Corollary. (i) dimR�
ρ ≥ 1 + n2 − χ(Γ, ad ρ) = 1 + n2 − h0(ad ρ) + h1(ad ρ)− h2(ad ρ).

(ii) dimRρ ≥ 2− χ(Γ, ad ρ).

Proof of corollary. From O we get a contribution of 1. hence we get dimR�
ρ ≥ 1+dimZ1−h2. Now (i) follows

formally noting that dimZ0 = dimC0 = n2. (Use h1 = dimZ1 − dimB1 and dimB1 = dimC0 − dimZ0 =
dimC0 − h0.) Then (ii) is immediate using the fact that R�

ρ is basically a PGLn-bundle over Rρ. �

1.2. Proof of Theorem 1.1. Using completeness [exercise] we can choose a surjection

ϕ : O[[x]] := O[[x1, . . . , xr]]� R�
ρ .

(Send the xi’s to elements which reduce to a basis for the tangent space Z1(Γ, ad ρ) of the framed deformation
ring.) The problem is to show that the minimal number of generators of the kernel J = kerϕ ⊂ O[[x]] is at
most s. Let m = mO[[x]] ⊂ O[[x]] be the maximal ideal (π, x1, . . . , xr). It would suffice to construct a linear
injection (J/mJ)∗ ↪→ H2(Γ, ad ρ). There is a subtle technical problem in an attempt to construct such an
injection. We explain the problem, and then the fix to get around it.

For each γ ∈ Γ choose a set-theoretic lift ρ̃(γ) ∈ GLn(O[[x]]/mJ) of ρ�(γ) ∈ GLn(O[[x]]/J) = GLn(R�).
We need to make this choice so that ρ̃ is a continuous function of γ. It is not clear if the map

O[[x]]/mJ� O[[x]]/J
admits a continuous section as topological spaces, so it is not clear how to find a continuous ρ̃. To handle
this problem, we now prove:

Claim: For r > 0, let Jr = (J + mr)/mr ∈ O[[x]]/mr and let mr = m/mr. For r � 0, the natural map
J/mJ→ Jr/mrJr is an isomorphism.

Proof. The map is surjective, and for injectivity we have to show that J ∩ (mJ + mr) = mJ for large r.
Certainly mJ lies in the intersection for all r, so since J/mJ has finite length we see that the intersection
stabilizes at some intermediate ideal for r � 0. This stabilizing ideal must then be the total intersection.
But by Artin-Rees applied to mJ as a finite O[[x]]-module, the intersection of all (mJ + mr)’s is mJ. �
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By the Claim, to prove the desired result about minimal number of generators of J, we can replace O[[x]]
and R� := R�

ρ with their quotients by rth power of maximal ideal for some large r. The quotient of
R� by rth power of its maximal ideal is universal in the category of complete local noetherian O-algebras
whose maximal ideal has vanishing rth power (exercise!). So working within this full subcategory of local
O-algebras, we can still exploit universal mapping properties. But we gain the advantage that now our rings
are of finite length as O/πr-modules, so in particular they’re all discrete with their max-adic topology and
hence the Galois representations which arise have open kernel. We can therefore find the required continuous
section, working throughout with local rings whose maximal ideal has a fixed but large order of nilpotence.

So we now proceed in such a modified setting (so the definition of J changes accordingly, but the Claim
shows that this does not affect J/mJ, which is to say the minimal number of generators of J). In particular,
in the new setting we will construct a k-linear injection of J/mJ into H2(Γ, ad ρ), thereby finishing the proof.

For f ∈ (J/mJ)∗. let
ρf (γ, δ) = f(ρ̃(γδ)ρ̃(δ)−1ρ̃(γ)−1 − 1),

where we apply the map f “entry-wise” to the given matrix in Matn×n(J/mJ). That is, the map ϕf has the
form

Γ2 → Matn×n(J/mJ)
f→ Matn×n(k).

Now we observe the following facts.
(1) ϕf ∈ Z2(Γ, ad ρ).
(2) [ϕf ] ∈ H2(Γ, ad ρ) is independent of the choice of lift ρ̃.
(3) f 7→ [ϕf ] is k-linear.
(4) f 7→ [ϕf ] is injective, but more precisely we have [ϕf ] = 0⇔ we can choose ρ̃ to be a homomorphism

“mod Jf” where Jf = ker(J→ J/mJ f→ k)⇔ f = 0⇔ Jf = J.
Note that (4) provides the desired linear injection, and hence proves the theorem; (1)-(3) are necessary to
make sense of (4).

Let us prove the facts above.
(1) This is a formal computation, which goes as follows. Note that we can identify Matn×n(J/mJ) under

addition with (1 +Matn×n(J/mJ)) under multiplication, since J ⊂ m. Using this identification, we
have

dϕf (γ, δ, ε) = γϕf (δ, ε)− ϕf (γδ, ε) + ϕf (γ, δε)− ϕf (γ, δ) ∈ Matn×n(k).
If we want to prove this is zero, it’s enough to check “upstairs” in Matn×n(J/mJ), i.e. before applying
f . Thus we really want to check that

(ρ̃(γ)ρ̃(δε)ρ̃(ε)−1ρ̃(δ)−1ρ̃(γ)−1)× (ρ̃(γδ)ρ̃(ε)ρ̃(γδε)−1)

× (ρ̃(γδε)ρ̃(δε)−1ρ̃(γ)−1)× (ρ̃(γ)ρ̃(δ)ρ̃(γδ)−1) ?= 1 .

The trick is to insert the bracketed term (which is 1) below:

ρ̃(γ)ρ̃(δε)ρ̃(ε)−1ρ̃(δ)−1ρ̃(γ)−1ρ̃(γδ)

insert︷ ︸︸ ︷
ρ̃(δ)−1ρ̃(δ) ρ̃(ε)ρ̃(γδε)−1

× ρ̃(γδε)ρ̃(δε)−1ρ̃(γ)−1 × (ρ̃(γ)ρ̃(δ)ρ̃(γδ)−1) ?= 1 .

Now observe that the bracketed terms below reduce to 0 in Matn×n(k) and hence can be commuted
with one another (!):

ρ̃(γ)

I︷ ︸︸ ︷
ρ̃(δε)ρ̃(ε)−1ρ̃(δ)−1

II︷ ︸︸ ︷
ρ̃(γ)−1ρ̃(γδ)ρ̃(δ)−1 ρ̃(δ)ρ̃(ε)ρ̃(γδε)−1

× ρ̃(γδε)ρ̃(δε)−1ρ̃(γ)−1 × (ρ̃(γ)ρ̃(δ)ρ̃(γδ)−1) ?= 1 .

After swapping I and II one sees that in fact everything cancels magically. (Is there is a “conceptual”
proof of (1)?)
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(2) This is similar to (1). First write ρ̃new(γ) = a(γ)ρ̃(γ) for some

a : Γ→ 1 +Matn×n(J/mJ).

The idea is to show formally that a(γ) (which is of course a continuous 1-cocycle on Γ) changes ϕf
by d a. This is done with a similar “insert 1 cleverly and commute stuff” trick as in (1).

(3) OK.

(4) The last equivalence in (4) is clear. For the other two equivalences, the implications “⇐” are OK.
The implication that [ϕf ] = 0 implies we can choose ρ̃ to be a homomorphism mod Jf follows from
the previous calculation [omitted] that ρ̃  a · ρ̃ changes ϕ by d a. In particular, if ϕ is already a
coboundary, then by changing the choice of lift we can make ϕ = 0, which is the same as saying our
lift is a homomorphism mod Jf . So the crux of the matter is the second “⇒”.

Here’s the situation. We have a diagram

Γ
ρ�
univ //

eρ %%KKKKKKKKKKKK GLn(O[[x]]/J) = GLn(R�)

))RRRRRRRRRRRRRR

GLn(O[[x]]/mJ)

33hhhhhhhhhhhhhhhhhhh

f∗

// GLn(O[[x]]/Jf )

can

OO

// GLn(k)

We’d like to prove that O[[x]]/Jf → O[[x]]/J is an isomorphism. By the universality of R� we get the
map

O[[x]]/J ∃!→ O[[x]]/Jf
can→ O[[x]]/J

and again by universality the composition is the identity. Now it would be enough to check that
J ⊂ Jf . Note that the image of xi in O[[x]]/J maps to xi + ai ∈ O[[x]]/Jf where ai is some element of
J. It will suffice to show that if g(x1, . . . , xn) ∈ J then g maps to g itself in O[[x]]/Jf .

First we claim that J ⊂ (m2, π) [recall that J = ker(O[[x]] � R�)]. Indeed, if g ∈ J then
g = g0 +

∑
gixi + O(m2). Moreover g0 ∈ (π) and each gi lies in (π) since the xi’s map to a basis

of m/(m2, π). Thus g ∈ (m2, π). Consequently, it’s enough to show what we want for g ∈ (m2, π).
[This will be important later on!]

But if g ∈ (m2, π) then under O[[x]]/J→ O[[x]]/Jf we still have

g = g0 +
∑

gixi +O(m2) 7→ g0 +
∑

gi(xi + ai) +O(m2),

and the observation is that when we subtract off g from this we get
∑
giai in the O(m) term, which

[by inspection] is in mJ ⊂ Jf . Similarly one sees that the higher order terms vanish mod Jf .
This concludes the proof of (4), hence the claim, hence the theorem.

1.3. Completed tensor products.

Example. Let R be a Noetherian ring, and consider R[x] ⊗R R[y] ∼= R[x, y]. However R[[x]] ⊗R R[[y]] is
something weird, being just a part of R[[x, y]]. It’s easy to see that it does at least inject into R[[x, y]]. The
idea is that M ⊗ RI ↪→ M I for any free R-module RI (here I is an arbitrary index set) but this map fails
to be an isomorphism.

To check the injectivity, note that it’s OK for M finite free, which allows one to deduce it for M finitely
presented, and then pass to a direct limit to conclude the general case. Applying this to I = Z and M = R[[x]]
gives what we want in our case. But to see that our map R[[x]] ⊗ R[[y]] ↪→ R[[x, y]] is not surjective, observe
that

∑
xnyn is not in the image!

Definition. Let O be a complete Noetherian local ring and R,S complete Noetherian local O-algebras
(meaning the structure maps are local morphisms). Assume at least one of the residue field extensions
O/mO ⊂ R/mR and O/mO ⊂ S/mS is finite. Then set m C R⊗O S to be the ideal generated by

mR ⊗O S +R⊗O mS .

[Note: (R⊗O S)/m ∼= kR⊗kO
kS is not necessarily a field, or even a local ring, but it is artinian.] Now define

the completed tensor product R⊗̂OS to be the m-adic completion of R⊗O S.
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Universal property. R⊗̂OS is the coproduct in the category of complete semilocal Noetherian O-algebras and
continuous maps. It is thus the universal (i.e. initial) complete semilocal Noetherian O-algebra equipped
with continuous O-algebra maps from R and S.

Example. We have O[[x]]⊗̂OO′[[y]] ∼= O′[[x, y]] when O′ is any complete Noetherian local O-algebra. We also
have

(O[[x1, . . . , xr]]/J)⊗̂O(O′[[y1, . . . , ys]]/J′) ∼= O′[[x1, . . . , xr, y1, . . . , ys]]/(J, J′)
in this setup.

1.4. Global setup and statement. Let F be a number field, and p a prime. Let S be a finite set of places
of F containing {v|p}. Fix an algebraic closure F/F and let FS ⊂ F be the maximal extension unramified
outside S. Let GF,S = Gal(FS/F ). Let Σ ⊂ S be any subset of places [for now; later we’ll impose conditions].

For v ∈ Σ, fix algebraic closures F v/Fv and choose embeddings F ↪→ F v, or, what is the same thing,
choices of decomposition group Gal(F v/Fv) = Gv ⊂ GF,S . Now let K/Qp be a finite extension, and O, π,
and k be as above. Fix a character ψ : GF,S → O×.

Let Vk be a finite dimensional continuous representation of GF,S over k such that detVk = ψmodπ.
Since we’re fixing det = ψ in this subsection, we’ll be dealing (from now on in this talk) with ad0 Vk rather

than adVk. [More on this later.] A caution is in order: if p|dimVk then ad0 Vk is not a direct summand of
adVk. Usually the scalars in adVk give a splitting, but when p|dimVk the scalars actually sit inside ad0 Vk.
Hence we shall assume from now on that p - dimVk.

For each v ∈ Σ fix a basis βv of Vk. We’re going to consider deformation functors (and the representing
rings) with determinant conditions. Set D�,ψ

v to be the functor of framed deformations of Vk|Gv
with the

basis βv, with fixed determinant ψmodπ, and let R�,ψ
v be the ring (pro-)representing it. This always exists.

Likewise let D�,ψ
F,S be the functor of deformations VA of Vk with determinant ψmodπ, equipped with an

A-basis β̃v of VA lifting βv for each v ∈ Σ. Let R�,ψ
F,S be the ring representing it. Again, this always exists.

We have analogous respective unframed counterparts Rψv and RψF,S under the usual condition that Vk has
only scalar endomorphisms as a representation space for Gv and GF,S respectively.

Now define R�,ψ
Σ =

⊗̂
v∈ΣR

�,ψ
v [completed tensor product over O]. Since each R�,ψ

v has the same residue
field, in this case the completed tensor product actually is local! Let m�

ψ be its maximal ideal. Analogously
define RψΣ and mΣ. Denote the maximal ideal of the local ring R�,ψ

F,S by m�
F,S and likewise that of RψF,S by

mF,S .
There is a natural RψΣ-algebra structure on RψF,S via the universal property of ⊗̂O. Indeed, for each v ∈ Σ,

by restricting the universal deformation of Vk valued in RψF,S to Gv ⊂ GF,S the universal property of Rψv
induces a canonical local O-algebra morphism Rψv → RψF,S . We then use the universal property of completed
tensor products.

Theorem. For i ≥ 1 let hiΣ (resp. ciΣ) denote the k-dimension of the kernel (resp. cokernel) of the map

θi : Hi(GF,S , ad0 Vk)→
∏
v∈Σ

Hi(Gv, ad0 Vk).

Then we have an isomorphism of RψΣ-algebras

RψF,S
∼= RψΣ[[x1, . . . , xr]]/(f1, . . . , fr+s)

where r = h1
Σ and s = c1Σ + h2

Σ − h1
Σ.

To get the desired presentation, as in the proof of Theorem 1.1, first consider a surjection

B := RψΣ[[x1, . . . , xr]]� RψF,S

where r = dimk coker(mΣ/(m2
Σ, π) → mF,S/(m2

F,S , π)); this surjectivity uses completeness. Dualizing, we
have

r = dimk ker(Homk(mF,S/(m2
F,S , π), k)→ Homk(mΣ/(m2

Σ, π), k)).
Using the computation from Mok’s lecture, this is

dimk ker θ1 = h1
Σ.
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The key point that makes these computations work is that the completed tensor product represents the
product of the functors represented by the Rψv , which is most easily checked by computing on artinian points
(for which the completed tensor product collapses to an ordinary tensor product). That then brings us down
to the elementary fact that the tangent space of the product of functors is the product of the tangent spaces.

Denote by m the maximal ideal of B, and by J the kernel ker(B � RψF,S). Now comes a delicate
technical point. Like in the proof of Theorem 1.1, we can set-theoretically lift ρ : GF,S → GLn(RψF,S)
to ρ̃ : GF,S → GLn(B/mJ), not necessarily a homomorphism, and there arises the problem of finding a
continuous such ρ̃. We seek a better method than the trick as earlier with finite residue fields because we
wish to later apply the same technique to future situations involving characteristic-0 deformation theory, for
which the residue field is a p-adic field and not a finite field. The reader who prefers to ignore this problem
should skip the next section.

1.5. Continuity nonsense. To explain the difficulty and its solution, let us first formulate a general situ-
ation. Consider a surjective map R′ � R between complete local noetherian rings with kernel J killed by
mR′ , and assume that we are in one of two cases:

Case 1: residue field k is finite of characteristic p, so R and R′ are given the usual max-adic topologies
that are profinite. These topologies are the inverse limits of the discrete topologies on artinian quotients.

Case 2 (to come up later!): residue field k is a p-adic field and R and R′ are Qp-algebras, whence uniquely
k-algebras in a compatible way (by Hensel). Their artinian quotients are then finite-dimensional as k-vector
spaces, and so are naturally topologized as such (making them topological k-algebras, with transition maps
that are quotient maps, as for any k-linear surjections between k-vector spaces of finite dimension). Give
R and R′ the inverse limit of those topologies (which induce the natural k-linear topologies back on the
finite-dimensional artinian quotients).

In both cases, let ρ : G → GLn(R) be a continuous representation. We seek to make an obstruction
class in a “continuous” H2(G, ad ρ) (over k) for measuring whether or not ρ can be lifted to a continuous
representation into GLn(R′). The problem is to determine if ρ has a continuous set-theoretic lifting (moreover
with with a fixed determinant if we wish to study deformations with a fixed determinant, assuming that p
doesn’t divide n).

We saw earlier how to handle Case 1 when R is artinian, by a trick. That trick rested on ρ at artinian level
factoring through a finite quotient of G. Such an argument has no chance of applying when k is a p-adic field
in interesting cases, and we’re sure going to need that later when studying generic fibers of deformation rings
and proving smoothness by proving vanishing of a p-adic H2. So we need an improvement of the method
from artinian Case 1 which addresses the following two points:

(i) what to do when k is p-adic,
(ii) how to incorporate additional things like working with a fixed determinant.
Actually, (ii) will be very simple once we see how to deal with (i), as we will see below. This is important

because in practice we want to deal with more general constraints than just “fixed determinant” and so
we want a general method which works for any “reasonable property”, not just something ad hoc for the
property of fixed determinant.

To deal with (i) (and along the way, (ii)), we will use a variant on fix from artinian Case 1. That argument
allows us to reduce to deal with the case when R and R′ are artinian, but we need to show in that artinian
setting we can make a continuous set-theoretic lifting without the crutch of “factoring through finite quotient
of G” (which is available for finite k but not p-adic k).

First conjugate so the reduction ρ0 : G → GLn(k) lands in GLn(Ok). Then by using the method from
Brian’s talk on p-adic points of deformation rings, we can find a finite flat local Ok-algebra Ok-lattice A
inside of R with residue field equal to that of Ok and containing the compact ρ(G), and then we can find a
similar such A′ in R′ mapping onto A. We’d like to lift

ρ : G→ GLn(A)

to GLn(A′) set-theoretically in a continuous way. Note that GLn(A′)→ GLn(A) is surjective.
The point is that GLn(A) and GLn(A′) are respectively open in GLn(R) and GLn(R′) with subspace

topologies that arise from the ones on A inside R and A′ inside R′ which are their natural topologies as
finite free Ok-modules. This makes them profinite, much as GLn(R) and GLn(R′) were in the case of finite



NOTES FROM MODULARITY LIFTING SEMINAR AT STANFORD, 2009-2010 25

k. So we have reduced ourselves to the following situation, in which we will use an argument suggested by
Lurie that also gives another approach for handling the case of finite k as well.

Let H ′ → H be a continuous surjective map of profinite groups, and ρ : G→ H a continuous homomor-
phism. We claim that there is a continuous set-theoretic lifting G → H ′ of ρ that also respects properties
like “fixed det” in the case of intended applications. To see this, let F � G be a surjection from a “free
profinite group”. The composite map

F � G→ H

can be lifted continuously to F → H ′ even as a homomorphism by individually lifting from H to H ′ the
images of each member of the “generating set” for the free profinite F . Those individual lifts can be rigged to
have a desired det, or whatever other “reasonable homomorphic property” can be checked pointwise through
a surjection, and so such a property is inherited by the map F → H ′. But what about G→ H ′? If we can
find a continuous set-theoretic section of F � G then composing that section with F → H ′ will give the
required G→ H ′. So our continuity problems will be settled once we prove the following fact.

Claim: If f : G′ → G is a continuous homomorphism between profinite groups then it has a continuous
section (as topological spaces).

Proof. For closed normal subgroups N ′ C G′ and N := f(N ′) = closed normal in G, consider continuous
sections s : G/N → G′/N ′ to the induced quotient map G′/N ′ → G/N arising from f . For example, such
an s exists if N ′ = G′ (so N = G). If (N ′, s) and (M ′, t) are two such pairs with N ′ containing M ′, say
(M ′, t) ≥ (N ′, s) if

t : G/M → G′/M ′ and s : G/N → G′/N ′

are compatible via the projections G/M � G/N and G′/M ′ � G′/N ′.
I claim that the criterion for Zorn’s Lemma is satisfied. Let {(N ′i , si)} be a chain of such pairs, and let

N ′ =
⋂
N ′i . Then the natural map

G′/N ′ → lim←−G
′/N ′i

is surjective (since an inverse limit of surjections G′/N ′ → G′/N ′i between compact Hausdorff spaces), yet also
injective and thus a homeomorphism. Likewise, for N :=

⋂
Ni the map G/N → lim←−G/Ni a homeomorphism,

and I claim that N = f(N ′). Indeed, if x is in N then f−1(x) meets each N ′i in a non-empty closed set, and
these satisfy the finite intersection property since {N ′i} is a chain ordered by inclusion, so f−1(x) contains a
point in the intersection N ′ of all N ′i . That says x is in f(N ′) as desired. (The inclusion of f(N ′) inside of
N is clear.)

It follows that the compatible continuous sections si : Gi/Ni → G′i/N
′
i induced upon passing to the

projective limit define a continuous section

s : G/N → G′/N ′,

so (N ′, s′) is an upper bound on the chain {(N ′i , si)}.
Now we apply Zorn’s Lemma to get a maximal element (N ′, s). This is a continuous section s : G/N →

G′/N ′ where N = f(N ′). I claim N ′ = {1}, so we will be done. If not, then since N ′ ∩ U ′ for open normal
subgroups U ′ in G′ define a base of opens in N ′ around 1 (as N ′ gets its profinite topology as subspace
topology from G′), there must exist such U ′ so that N ′ ∩ U ′ is a proper subgroup of N ′. Replacing G′

with G′/(N ′ ∩ U ′) and G with quotient by image of N ′ ∩ U ′ in G brings us to the case where N is finite
and non-trivial yet (N ′, s) retains the maximality property (no continuous section using a proper [closed]
subgroup of N ′ normal in G′). We seek a contradiction.

Since N ′ and N are finite, the quotient maps q′ : G′ � G′/N ′ and q : G� G/N are covering spaces with
finite constant degree > 0. By total disconnectedness, these covering spaces admit sections. Composing s
with a section to q′ gives a continuous section G/N → G′ to

G′
f→ G

q→ G/N.

Composing such a section with q gives a continuous map t : G → G′ so that f(t(g)) = gmodN , so
by profiniteness of G and finiteness of N we get an open normal subgroup U in G such that for each
representative gi of G/U there exists ni ∈ N such that f(t(giu)) = nigiu for all u ∈ U . But ni = f(n′i),
so replacing t on giU with (n′i)

−1t for each i gives a new t so that f(t(giu)) = giu for all u ∈ U and all i,
which is to say ft = 1G. This exhibits a continuous section t to f , contradicting that N was arranged to be
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nontrivial and maximal with respect to the preceding Zorn’s Lemma construction. Hence, in fact N above
is {1} so we are done. �

1.6. Proof of Theorem 1.4. Returning to the situation of interest, we now have a continuous ρ̃ that can
even be arranged to satisfy det ρ̃ ≡ ψmod mJ. Still following the argument from the proof of Theorem
1.1, define for f ∈ Homk(J/mJ, k) the continuous 2-cocycle ϕf as before, and observe that this time the
determinant condition entails that [ϕf ] ∈ H2(GF,S , ad0 Vk). The proof of the well-definedness of [ϕf ] is as
before. Also we still have the equivalence that [ϕf ] = 0 if and only if ρ̃ can be chosen to be a homomorphism
mod ker f .

Now for the restriction of ρ to each Gv, we know we can find a continuous lift, namely coming from the
universal representation ρv at v:

Gv
ρv→ GLn(Rψv )→ GLn(RψΣ)→ GLn(B)

where the other maps are the obvious ones. Hence the class [ϕf ]|Gv
∈ H2(Gv, ad0 Vk) is always trivial. In

other words, we have a k-linear map Homk(J/mJ, k) Φ→ ker θ2 satisfying f 7→ [ϕf ]; the target has dimension
h2

Σ by definition. Therefore [easy exercise] it suffices to show that dimk ker Φ ≤ c1Σ. (All we need is the
inequality, because we can always throw in extra trivial “relations” fi = 0 into the denominator of RψF,S .)

Let I = ker(mΣ/(m2
Σ, π) → mF,S/(m2

F,S , π)). Then Homk(I, k) ∼= coker(θ1). So it is enough to construct
a linear injection ker Φ ↪→ Homk(I, k).

Step 1: Observe that I = ker(m/(m2, π) → mF,S/(m2
F,S , π)) because we chose the xi’s to map onto a

basis of coker(mΣ/(m2
Σ, π) → mF,S/(m2

F,S , π)). (In other words, none of the extra stuff in m dies when we
map to mF,S .)

Step 2: We next claim that J/mJ surjects onto I. To prove this, first note that the map J/mJ →
m/(m2, π) comes from tensoring

0→ J→m→ mF,S → 0
over B with B/m and then reducing mod π. We need to show that this map is surjective onto I. Fix
x ∈ I ⊂m/(m2, π). We know

J/mJ� ker(m/m2 → mF,S/m
2
F,S).

We can lift x to x̃ ∈ m/m2. Since x maps to zero in mF,S/(m2
F,S , π), x̃ maps to πrmod m2

F,S for some
r ∈ RψF,S . But now we can just choose some r̃ ∈ B mapping to r ∈ RψF,S (i.e. mod J). Now replace x̃ with
x̃− (πr̃ mod m2) so that x̃ has vanishing image in mF,S/m

2
F,S . That says x̃ is in the image of J/mJ in m/m2,

so x is hit by J/mJ as desired.
Step 3: By Step 2 we get Homk(I, k) ↪→ Homk(J/mJ, k) ⊃ ker Φ. So we need to show that ker Φ ⊂

Homk(I, k). In other words, if [ϕf ] = 0 then we claim that f : J/mJ → k should factor through I, or
equivalently vanish on K = ker(J/mJ� I). Or equivalently, we need to show that K = J ∩ (m2, π) ⊂ Jf =
ker f . But in fact this is really what we showed at the end of the proof of Theorem 1.1 when we showed
property (4) of Φ.

1.7. The framed case. Let
η : m�

Σ/((m
�
Σ)2, π)→ m�

F,S/((m
�
F,S)2, π).

Then
R�,ψ
F,S
∼= R�,ψ

Σ [[x1, . . . , xr� ]]/(f1, . . . , fr�+s�),

where r� = dimk coker η and r� + s� = h2
Σ + dimk ker η.

The proof is the same as in the unframed case, just with extra squares floating around all over the place.
But now our H’s have turned into Z’s (that is, elements of the tangent space which were cohomology classes
are now cocycles) so it’s better to phrase the result as above.

1.8. Formulas for r’s and s’s.

Theorem. Suppose that {v|p} ⊂ Σ, that {v|∞} ⊂ S, and that S − Σ contains at least one finite prime.
Then (with notation as above)

s =
∑

v|∞,v 6∈Σ

dimk(ad0 Vk)Gv .



NOTES FROM MODULARITY LIFTING SEMINAR AT STANFORD, 2009-2010 27

Remark. We also have r� ≥ #Σ− 1, r� ?= r + #Σ− 1, s� = s−#Σ + 1.

Proof. Let Y = ad0 Vk and X = Y ∨(1). (In the notation of Rebecca’s talk, X = Y ′; it is written as a
“twisted Pontrjagin dual” here because instead of being Hom into Q/Z (trivial G-module) the target is given
the action of the cyclotomic character.) Recall the end of the Poitou-Tate exact sequence (from Rebecca’s
talk)

H2(GF,S , Y )→
∏
v∈S

H2(Gv, Y )→ H0(GF,S , X)∨ → 0.

Split the product into two pieces:∏
v∈S

H2(Gv, Y ) =
∏
v∈Σ

H2(Gv, Y )×
∏

v∈S−Σ

H2(Gv, Y ).

The claim is that as long as the second factor is nonzero (which it is by hypothesis), it surjects onto
H0(GF,S , X)∨. Indeed, trivially H0(GF,S , X) ↪→ H0(Gv, X) since restricting to the decomposition group gives
more invariants. Dually, we have H0(Gv, X)∨ � H0(GF,S , X)∨. But by the Tate pairing, H0(Gv, X)∨ ∼=
H2(Gv, Y ). On each factor, the last map in the Tate-Poitou sequence is none other than the composition
H2(Gv, Y ) ∼= H0(Gv, X)∨ � H0(GF,S , X)∨. Thus the claim is true.

Now we do a little diagram chase. We have

H2(GF,S , Y )→
∏
v∈Σ

H2(Gv, Y )×
∏

v∈S−Σ

H2(Gv, Y )→ H2(GF,S , X)∨ → 0.

The claim is that H2(GF,S , Y ) �
∏
v∈Σ H2(Gv, Y ). Indeed, given (av)Σ ∈

∏
v∈Σ H2(Gv, Y ), suppose its

image in H2(GF,S , X)∨ is γ. Since
∏
v∈S−Σ H2(Gv, Y )� H2(GF,S , X)∨, we can find

(bv)S−Σ ∈
∏

v∈S−Σ

H2(Gv, Y )

such that the image of (bv)S−Σ in H2(GF,S , X)∨ is −γ. Then

(av)Σ × (bv)S−Σ ∈ ker(
∏
S

H2(Gv, Y )� H2(GF,S , X)∨),

whence this tuple is in the image of H2(GF,S , Y ). Projecting onto the
∏
v∈Σ factor proves the claim. But

the surjectivity of H2(GF,S , Y )�
∏
v∈Σ H2(Gv, Y ) says precisely that c2Σ = dim coker θ2 = 0.

Consequently we have h2
Σ = h2(GF,S , Y ) −

∑
v∈Σ h

2(Gv, Y ). So by the formulas at the end of Theorem
1.4,

s = −h1
Σ + c1Σ + h2

Σ = −h1(GF,S , Y ) +
∑
v∈Σ

h2(Gv, Y ) + h2(GF,S , Y )−
∑
v∈Σ

h2(Gv, Y ).

Now recall that we have assumed throughout that EndGF,S
Vk = (adVk)GF,S = k (since we need this

to make sure the unframed deformation ring even exists!). In particular, (ad0 Vk)GF,S = 0. That is,
h0(GF,S , Y ) = h0(Gv, Y ) = 0. So we can add h0(GF,S , Y ) −

∑
v∈Σ h

0(Gv, Y ) to s and nothing changes.
But now we recognize from the equation above that in fact s = χ(GF,S , Y )−

∑
v∈Σ χ(Gv, Y ).

We now invoke the Tate global Euler characteristic formula. [Reference: Milne, Arithmetic Duality
Theorems Ch. I, Thm. 5.1.] We conclude that

χ(GF,S , Y ) =
∑
v|∞

h0(Gv, Y )− [F : Q] dimk Y.

We also have for v < ∞, v - p, that χ(Gv, Y ) = 0. For v < ∞, v|p, we have χ(Gv, Y ) = −[Fv : Qp] dimk Y .
For v|∞, we have χ(Gv, Y ) = h0(Gv, Y ). One sees that in s = χ(GF,S , Y ) −

∑
v∈Σ χ(Gv, Y ), the degree

contributions all cancel out, so there are no non-archimedean terms. Of the archimedean places, all those in
Σ cancel as well, and we are left with the statement of the theorem. �


