
Math 396. Universal bundles and normal bundles

1. Overview

We begin with a striking example.
Example 1.1. Let M be a smooth 2-manifold. Do there exist finitely many smooth vector fields
~v1, . . . , ~vr on M that span all tangent spaces (i.e., {~vi(m)} spans Tm(M) for all m ∈ M)? Equiv-
alently, is there a C∞ bundle surjection M ×Rr → TM for some r ≥ 1? (The constant sections
ei ∈ (M ×Rr)(M) maps to the ~vi ∈ (TM)(M) = VecM (M).) In the case of compact M , it is easy
to give an affirmative answer, as follows. Let {Ui} and {U ′i} be coverings by coordinate charts such
that Ui has compact closure contained in U ′i and the Ui’s cover M . By compactness of M , we may
take these collections to be finite. Using coordinates {xi1, . . . , xi,ni} on U ′i , the vector fields ∂xij
on U ′i span all tangent spaces, and we can find a smooth bump function φi equal to 1 on Ui and
supported in U ′i . Hence, each φi∂xij makes sense as a global smooth vector field and for each fixed
i with j varying from 1 to ni we get a spanning set for the tangent spaces over Ui. Thus, since the
Ui’s cover M , the entire collection gives an affirmative answer to the original question.

However, this proof uses no serious geometry and cannot give an explicit r. It also says nothing
in case M is non-compact. Is compactness just an artifact of the method of proof? In fact, it can
be proved that with no compactness assumption on the 2-manifold M , there exist 7 smooth vector
fields that do the job: we can always take r = 7 for 2-manifolds. How can one prove such things?
The key is to apply all of the techniques of our subject (especially the Whitney embedding theorem)
to the tangent bundle TM , viewed as a manifold in its own right, and to make a serious study of
the significance of Grassman manifolds. In this handout, we will develop the necessary techniques
to prove the above result (as well a higher-dimensional version, and other generalizations). This
illustrates the power of the theory of vector bundles to answer concrete questions whose formulation
does not involve vector bundles.

We now turn to a general problem with vector bundles, the solution of which is vital to the
application described above. For a positive integer c and a vector space V of dimension d+ 1 over
R, with 1 ≤ c ≤ d, recall that the underlying set of the compact smooth Grassmann manifold
Gc(V ) is a “parameter space” for the set of codimension-c subspaces of V . Let c′ = d + 1 − c, so
the points of Gc(V ) parameterize the set of c′-dimensional subspaces of V . In the case c = 1 (i.e.,
c′ = d), this is the projective space P(V ) whose points parameterize the set of hyperplanes in V .
But are these ad hoc constructions? That is, how do we know there isn’t some other reasonable
way to put a smooth manifold structure on the set of subspaces of V of a fixed codimension? Put in
more conceptual terms, is there a universal property satisfied by the Grassmannian Gc(V ), which
is to say a way to think about Gc(V ) independent of its explicit construction?

What constitutes a “good” method of parameterizing a set by the set of points of a manifold
anyway? The right answer to such questions was given by Grothendieck in the late 1950’s, revolu-
tionizing large chunks of mathematics in the process, and we will adapt his answer to our present
circumstances. The first indication that there may be a deeper way to understand the true sig-
nificance of Gc(V ) is to reflect on the fact that to each point x ∈ Gc(V ) we naturally associate a
subspace Wx ⊆ V of codimension c (i.e., of dimension c′ = d+ 1− c), and as x varies this subspace
Wx ranges through all codimension-c subspaces of V without repetition. In other words, we have
a “family” of subspaces {Wx}x∈Gc(V ) of a fixed vector space V . This sounds suspicously like the
data of a subbundle of rank c′ inside of the trivial bundle Gc(V ) × V → Gc(V ). Our aim in this
handout is to make precise sense of this observation.

First, we shall construct a C∞ subbundle W ⊆ Gc(V ) × V over Gc(V ) with rank c′ such that
its x-fiber is exactly the c′-dimensional subspace Wx ⊆ V that “corresponds” to the point x. Then
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we do something much more profound: we shall prove that for 0 ≤ p ≤ ∞ this is the universal
“Cp-varying family” of c′-dimensional subspaces of V . “Universal” means this: for 0 ≤ p ≤ ∞, if M
is any Cp premanifold with corners and E ⊆M×V is any Cp subbundle of constant rank c′ over M
inside of the trivial bundle M ×V →M (so the fibers E(m) for m ∈M are viewed as a Cp varying
family of c′-dimensional subspaces of V , parameterized by the points of M), then there is a unique
Cp map f : M → Gc(V ) such that under the canonical equality f∗(Gc(V )×V ) = M ×V of vector
bundles over M the Cp subbundle f∗M is equal to E ⊆M×V . This represents a vast strengthening
of the set-theoretic statement that the set of points of the Grassmannian parameterizes the set of
codimension-c subspaces of V . Indeed, this earlier feature of the Grassmannian is exactly the
special case of the above universal property upon taking M to be a 1-point space!

Example 1.2. In the case c = 1, we are studying hyperplane bundles (i.e., subbundles whose fibers
are hyperplanes). Take V = Rd+1 and c = 1. In this case, the above discussion says that over
P(Rd+1) = Pd(R) there is a C∞ hyperplane bundle H ⊆ P(Rd+1) × Rd+1 whose fiber over
x = [a0, . . . , ad] is the hyperplane Hx = {

∑
ajtj = 0} in Rd+1. Moreover, if M is any Cp

premanifold with corners and E ⊆ M ×Rd+1 is any Cp hyperplane bundle then there is a unique
Cp map f : M → Pd(R) such that under the equality f∗(Pd(R) ×Rd+1) = M ×Rd+1 we have
f∗(E) = H.

Explicitly, if E(m) ⊆ Rd+1 is the hyperplane
∑
ajtj = 0 then f(m) = [a0, . . . , an] ∈ Pd(R).

Thus, Pd(R) equipped with its universal hyperplane bundle H ⊆ Pd(R) × Rd+1 is the universal
smoothly varying family of hyperplanes in Rd+1. In particular, we should not think of Pd(R) as a
“bare” compact manifold, but rather as equipped with the data of the hyperplane bundle H. It is
this extra structure over Pd(R) that explains its real importance in differential geometry.

Example 1.3. The preceding example (taking V = Rd+1) carries over verbatim with any 1 ≤ c ≤ d,
except we replace “hyperplane bundle” with “codimension-c subbundle” and Pd(R) with Gc(d) =
Gc(Rd+1) throughout. Working with V = Rd+1 makes the situation feel more concrete, but since
varying subspaces have no canonical basis it tends to keep the structure clearer if we avoid a choice
of basis of V in the statements of results (though using a basis in the middle of a proof is a
reasonable thing to do). If we use V = Rd+1 throughout, it may become too tempting to try to
describe everything in terms of the standard coordinates, thereby leading to lots of big matrices.

Is there a down-to-earth illustration of why such a universal property gives something interesting?
As we will see later in this handout, in conjunction with the Whitney embedding theorem it
yields the following remarkable consequence: for any r ≥ 1 and n ≥ 1, any smooth vector bundle
with constant rank r over any smooth (perhaps non-compact) manifold with constant dimension
n is C∞-isomorphic to a pullback (by many smooth maps) of the universal subbundle over the
compact manifold G2n+r+1(R2n+2r+1). Roughly speaking, this says that in the general theory of
vector bundles over manifolds (especially classification problems), the universal subbundles over the
compact Grassmannians play a very distinguished role. This is the starting point of the theory of
characteristic classes, which constitutes the fundamental topological technique for studying vector
bundles on manifolds. (See the book “Characteristic classes” by Milnor and Stasheff for more on
this story; it assumes some knowledge of algebraic topology.)

Example 1.4. Let M be a smooth manifold with constant dimension n, and E = TM . This bundle
has constant rank n, and so its dual bundle E∨ also has rank n. The preceding paragraph applied
to E∨ asserts that E∨ can be realized as a C∞ subbundle of the trivial bundle M ×R4n+1 over
M . Dualizing this subbundle inclusion and using double duality, we express E ' E∨∨ as a bundle
quotient of (M × R4n+1)∨ ' M × (R4n+1)∨ ' M × R4n+1. Thus, the images s1, . . . , s4n+1 ∈
E(M) = VecM (M) of the frame of constant sections e1, . . . , e4n+1 of M × R4n+1 → M have the



3

property that {si(m)} spans E(m) = Tm(M) for all m ∈M . That is, we have built 4n+ 1 smooth
vector fields on M that span all tangent spaces of M . For n = 2, we have 4n+ 1 = 7.
Remark 1.5. It must be emphasized that by far the deepest input in the preceding results is the
Whitney embedding theorem in the non-compact case (it is applied to the total space of vector
bundles, which are never compact except possibly when bundle has rank 0). The course text proves
Whitney’s theorem only in the compact case, so you will have to look elsewhere to see how to
handle the general case.

After we prove the universal property of Grassmannians, we will require one further ingredient
before we can explain the preceding remarkable assertion relating general vector bundles to those
over Grassmannians. It will be necessary to make a digression to study the concept of normal
bundles along submanifolds (roughly, the space of directions pointing “away” from a submanifold,
taken modulo directions along the manifold). Normal bundles are certain quotient bundles that are
an important tool in their own right, as will be seen later in the course, but for our present purposes
they play a crucial role in proving the above ubiquitous nature of the universal subbundles over
Grassmannians in the general theory of vector bundles over arbitrary manifolds. The geometric
significance of normal bundles emerges when one studies the geometry of how submanifolds of a
fixed ambient manifold interact with each other.

2. Universal bundles over Grassmannians

We now undertake two goals: to “glue” the c′-dimensional subspaces Wx ⊆ V for x ∈ Gc(V )
into a rank-c′ subbundle W of the trivial bundle Gc(V ) × V → Gc(V ), and to prove that the
resulting data is the universal pair (E,M) consisting of a rank-c′ subbundle E ⊆ M × V over a
smooth manifold M (i.e., all such pairs are obtained from the one over the Grassmannian Gc(V )
via pullback along a uniquely determined smooth map to the Grassmannian). We begin with the
construction over the Grassmannian:

Theorem 2.1. Fix 1 ≤ c ≤ d and let c′ = d + 1 − c = dimV − c. Let G = Gc(V ), and for each
x ∈ G let Wx ⊆ V be the corresponding c′-dimesional subspace of V . There is a unique rank-c′

subbundle W ⊆ G× V over G whose x-fiber is Wx ⊆ V for every x ∈ G.

Proof. The uniqueness is clear: if W and W ′ are two such subbundles then W (x) = W ′(x) inside of
V for all x and so as embedded smooth submanifolds of G× V we have W = W ′ set-theoretically
and thus as subbundles (see Lemma 2.1 in the handout on subbundles and quotient bundles). Our
problem is therefore one of existence. By Lemma 2.1 in the handout on subbundles and quotient
bundles, if W is to exist then it must be a smooth closed submanifold of G× V and its underlying
set has to be the union of the subsets Wx ⊆ (G × V )(x) = V for all x ∈ G. We call this subset
W , so W ⊆ G × V has x-fiber equal to the c′-dimensional subspace of (G × V )(x) = V for all
x ∈ G. Hence, by Theorem 2.5 in the handout on subbundles and quotient bundles it is necessary
and sufficient to prove that the subset W ⊆ G× V is a closed C∞ submanifold.

This problem is local over G (why?), so it suffices to find an open covering of G by open subsets
U such that the part of W lying over U (i.e., the union of the Wx’s for x ∈ U) is a closed C∞

submanifold in the open locus U × V in G× V over U . Let {v0, . . . , vd} be an ordered basis of V ,
and for each ordered c-tuple I = {i1 < · · · < ic} in {0, . . . , d} let UI ⊆ G be the corresponding
standard open subset that is (as smooth manifold) a Euclidean space RI×I′ with I ′ = {0, . . . , d}−I.
Recall that the points of UI are exactly the c′-dimensional subspaces Wx ⊆ V such that vi1 , . . . , vic
represent a basis of the c-dimensional quotient V/Wx. Explicitly, the coordinates of x ∈ UI are the
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unique tuple (aii′(x))(i,i′)∈I×I′ ∈ RI×I′ such that Wx has as basis the c′ vectors

(1) vi′ −
∑
i∈I

aii′(x)vi = vi′ −
c∑
j=1

aij ,i′(x)vij

for i′ ∈ I ′. As we vary x through UI , the point (aii′(x)) ∈ RI×I′ varies.
What is the subset WI = ∪x∈UIWx inside of UI ×V = RI×I′ ×V ' RI×I′ ×Rd+1 (the final step

using the chosen ordered basis {v0, . . . , vd} of V )? In other words, given a point

((aii′), (b0, . . . , bd)) ∈ RI×I′ ×Rd+1,

what is the condition that
∑
bjvj ∈ V lies in Wx? That is, under what condition on the bj ’s (in

terms of the aii′ ’s) does it happen that
∑
bjvj is in the span of the linearly independent vectors in

(1)? Rather than write out the equations, we use the explicit fibral basis as a guide for what to do:
consider the mapping

UI ×RI′ → UI × V
defined by

((aii′), (bi′)) 7→ ((aii′),
∑
i′∈I′

bi′(vi′ −
∑
i∈I

aii′vi))

= ((aii′),
∑
i′∈I′

bi′vi′ −
∑
i∈I

(
∑
i′∈I′

aii′bi′)vi).

This is visibly a smooth mapping of trivial bundles over UI , and on fibers over x ∈ UI it is a linear
map RI′ → V that is an injection onto the subspace with basis (1); that is, the fibral image is the
subspace Wx ⊆ V !

Aha, so we have built a subbundle UI ×RI′ inside of UI × V whose x-fiber is Wx ⊆ V for all
x ∈ UI . In particular, its image is a closed smooth submanifold (see Lemma 2.1 in the handout
on subbundles and quotient bundles), and this image is exactly the subset WI that we needed to
prove is a closed smooth submanifold of UI × V . �

Now we consider general pairs (E,M) with M a Cp premanifold with corners and E a rank-c′ Cp

subbundle of M×V . The preceding theorem gives a specific such pair (W,Gc(V )) over M = Gc(V )
(viewed in the Cp sense). This is a very special construction because it is the universal one; that
is, all other pairs are obtained from it by “unique pullback”:
Theorem 2.2. Let M be a Cp premanifold with corners, 0 ≤ p ≤ ∞, and let E ⊆M × V be a Cp

subbundle of rank c′ = dimV − c. There is a unique Cp mapping f : M → Gc(V ) such that inside
of f∗(Gc(V ) × V ) = M × V we have f∗(W ) = E, with W ⊆ Gc(V ) × V the rank-c′ subbundle
constructed above.

Before we prove Theorem 2.2, we emphasize that this theorem gives a property of (W,Gc(V ))
(viewed in the Cp sense) with intrinsic meaning regardless of the method used to construct the pair
in the first place. That is, if tomorrow somebody shows you some other pair (W ′, G′) that “Cp

parameterizes” families of subspaces of dimension c′ inside of V in a universal manner (which is to
say, satisfying the same property as indicated for (W,Gc(V )) in the above theorem), their output
will have to be uniquely Cp isomorphic to (W,Gc(V )). That is, there is a unique Cp isomorphism
f : G′ ' Gc(V ) such that f∗(W ) = W ′ inside of G′ × V . We are therefore justified in calling
W the universal subbundle over Gc(V ); it is definitely to always be thought of as a subbundle of
Gc(V )× V (rather than as just a “bare” vector bundle over Gc(V )), since the subbundle aspect is
what makes it interesting.
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Proof. Let us first show that the map f has only one possibility in the set-theoretic sense. If there
is to be a Cp map f : M → Gc(V ) such that f∗(W ) = E inside of f∗(Gc(V ) × V ) = M × V ,
then on fibers over m ∈ M we must have Wf(m) = E(m) as c′-dimensional subspaces of V . That
is, f(m) ∈ Gc(V ) must be the unique point for which the corresponding c′-dimensional subspace
Wf(m) ⊆ V is exactly E(m). Note that here we are using the old “set-theoretic parameterization”
property of the points of Gc(V ), namely that the points of the Grassmannian are in bijection with
the set of c′-dimensional subspaces of V (and the bundle W encodes this via its fibers over the
Grassmannian).

Hence, we now proceed in reverse: we define the map of sets f : M → Gc(V ) by requiring that
f(m) ∈ Gc(V ) is the unique point such that the c′-dimensional subspace Wf(m) ⊆ V is E(m) ⊆ V .
The problem is to prove that f is a Cp mapping. Note that this problem is local on M , since we
have already constructed the unique possible f globally! Hence, it suffices to study the situation
over opens that cover M .

Since there is a covering of M by opens over which E is trivial, by working on such opens we
reduce the apparently overwhelming generality of our task to the special case when the subbundle
E → M inside of M × V is trivial as a vector bundle. It will be necessary to make some further
refinements on M , and the reader should observe how the argument below gradually “rediscovers”
the manifold structure on the Grassmannian.

Pick an ordered basis {v0, . . . , vd} of V and let {s1, . . . , sc′} be a trivializing frame for E. The
inclusion E ↪→M × V carries sj to some Cp section of M × V →M , say

sj 7→
∑
i

hijvi

with vi : M →M × V the constant section m 7→ (m, vi) and hij ∈ C∞(M). In other words, for all
m ∈M the subspace E(m) ⊆ V has as basis the vectors

sj(m) =
∑
i

hij(m) · vi(m) =
∑
i

hij(m) · vi ∈ V.

The linear independence of the sj(m)’s implies that the matrix (hij(m)) with d+ 1 = dimV rows
and c′ columns has linearly independent columns. That is, the column rank is c′. Hence, the row
rank is also c′, so there exist c′ linearly independent rows. Upon picking such rows, we get a c′× c′
submatrix with independent rows and hence it is invertible. That is, for each m ∈M there is some
non-vanishing determinant det(hj′j(m))j′∈J ′,1≤j≤c′ with J ′ ⊆ {0, . . . , d} a subset of size c′.

For each subset J ′ ⊆ {0, . . . , d} with size c′, let MJ ′ ⊆ M be the open subset over which the
determinant det(hj′j)j′∈J ′,1≤j≤c′ is non-vanishing. The preceding argument shows that as J ′ varies
over its finitely many possibilities, the associated open sets MJ ′ (some of which may well be empty)
cover M .

Remark 2.3. We digress to note that we are beginning to see shadows of the construction of the
Grassmannian. With respect to the chosen ordered basis of V the subset MJ ′ is the set of m ∈M
such that in the c-dimensional quotient V/E(m) the c vectors vj for j ∈ J = {0, . . . , d}−J ′ represent
a basis (as the problem of expressing the vj′ ’s for j′ ∈ J ′ as linear combinations of these vj ’s modulo
the span E(m) of the independent s1(m), . . . , sc′(m) is exactly the problem of inverting the c′ × c′
submatrix of coefficients for s1(m), . . . , sc′(m) along the vj′ ’s for j′ ∈ J ′). Thus, MJ ′ = f−1(UJ)
where UJ ' RJ×J ′ ⊆ Gc(V ) is the standard Euclidean chart associated to J .

Since our main problem is local on M , we therefore lose no generality in working on the MJ ′ ’s
separately. That is, we may assume M = MJ ′ for some fixed subset J ′ ⊆ {0, . . . , d} of size c′.
Letting J be the complement of J ′ with size c, Remark 2.3 shows that condition M = MJ ′ is exactly
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the condition that the set-theoretic map f : M → Gc(V ) whose smoothness we wish to prove has
image contained in the open subset UJ . It is therefore equivalent to prove that the set-theoretic
map f : M → UJ is Cp. Aha, but UJ = RJ×J ′ has global Cp (even C∞) coordinates! Hence, to
check that the map f to UJ is Cp all we have to do is to check that the component functions of f
are Cp. We will not compute these functions explicitly, as an inverse matrix intervenes, but we will
describe them in terms of some matrix operations from which the desired Cp property will drop
out (essentially because of the universal Cramer formula for how to invert an invertible matrix).

Consider the problem of solving the system of linear equations

(2) vj′ =
∑
j∈J

bjj′vj +
c′∑
k=1

βkj′sk(m)

for all j′ ∈ J ′ with m ∈ M fixed. Since Wf(m) = E(m) is the subspace with basis given by the
sk(m)’s, the point (bjj′) ∈ RJ×J ′ is exactly the tuple of coordinates of f(m) ∈ UJ . Thus, we
know that the bjj′ ’s exist and are uniquely determined (so the βkj′ ’s are as well, since the sk(m)’s
are a basis of E(m)). The numbers bjj′ = bjj′(m) ∈ R as functions of m ∈ M are therefore
the component functions of the set-theoretic map f : M → UJ = RJ×J ′ . Hence, our problem is
precisely to prove that m 7→ bjj′(m) is Cp for each (j, j′) ∈ J × J ′.

Look at the coefficient of vj on each side of (2). Since j′ ∈ J ′ and j ∈ J with J ∩ J ′ = ∅, there
is no vj on the left side. Hence, when we expand the sk(m)’s in terms of the basis {v0, . . . , vd} of
V then the total coefficient of vj on the right side of (2) must vanish. That is,

bjj′ = −
c′∑
k=1

βkj′hjk

as functions on M . The h’s are Cp functions, so our problem is to show βkj′ is Cp for all 1 ≤ k ≤ c′
and each j′ ∈ J ′. Now we fix i ∈ J ′ and compare coefficients of vi on both sides of (2): the coefficient
on the left is δij′ , and since J is disjoint from J ′ the coefficient on the right is

∑c′

k=1 βkj′hik. In
other words, if we let i, j′ vary through the set of indices J ′ of size c′ and we let k vary from 1 to c′,
then we get the matrix equation (hik)(βkj′) = idc′×c′ . Since M = MJ ′ , the c′ × c′ submatrix (hik)
built from the rows with i ∈ J ′ is invertible, and so our matrix equation can indeed be uniquely
solved for the βkj′ ’s (with j′ ∈ J ′) in terms of the hik’s (with i ∈ J ′) via Cramer’s formula for
inverting a matrix. In particular, we get a formula for βkj′ as a rational function in the hik’s (for
1 ≤ k ≤ c′ and i ∈ J ′) with non-vanishing denominator. Hence, the Cp property of the h’s gives
the same for the β’s as functions on M . �

Let us summarize what we have proved: for any Cp premanifold with corners M (0 ≤ p ≤ ∞)
and any Cp subbundle E ⊆ M × V with rank c′ = d + 1 − c = dimV − c, the set-theoretic map
f : M → Gc(V ) sending m ∈ M to the point f(m) ∈ Gc(V ) that “classifies” the codimension-c
subspace E(m) ⊆ (M×V )(m) = V is a Cp mapping, and moreover f∗(W ) = E inside of M×V (as
this may be checked on fibers over M , where it follows from the definition of f). The real content
is that f is a Cp mapping and not merely set-theoretic.

3. Normal bundles

Our main goal is to show how to use Whitney’s embedding theorem for smooth manifolds to
prove the following remarkable result (also see Corollary 3.12 for a wonderful variant):
Theorem 3.1. If X is a C∞ manifold with constant dimension n ≥ 1 and E → X is a C∞ vector
bundle with constant rank r ≥ 1, then there exists a smooth mapping f : X → G2n+r+1(R2n+2r+1)
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such that the pullback f∗(W ) of the universal rank-r subbundle over the Grassmannian is isomorphic
to E as a C∞ vector bundle over X.

We emphasis that f in this theorem is far from unique. The uniqueness aspect of the universal
mapping property of Grassmannians is not inconsistent with this, as E is not canonically presented
as a subbundle of anything over X. The crux of the proof will be to show the fact (not at all
obvious!) that the rank-r bundle E is necessarily a C∞ subbundle of X×R2n+2r+1. The proof will
exhibit E as such a subbundle in zillions of different ways, and so that is why we will have very
little control over what the map f actually is (since it will be determined by the mechanism by
which we exhibit E as a subbundle of X ×R2n+2r+1). With some stronger techniques in topology,
one can show that all choices of f may be related to each other in a manageable way upon passing
to a so-called “infinite Grassmannian” (that we will not discuss here). In this sense, the lack of
control over f turns out to not be a hindrance in applications of Theorem 3.1.

The proof of Theorem 3.1 requires a new and very important concept, that of normal bundles.
The notion of normal bundle arises whenever one has a submanifold. An important example for
our purposes is this: the zero section 0 : X → E identifies X is a closed smooth submanifold of E.
Note how here we are really viewing E as a smooth manifold in its own right; that is, the geometry
of the total space of E is what matters (and not just its “vertical structure” as a vector bundle
over X).
Definition 3.2. Let i : Y ↪→ X be a Cp embedding of Cp manifolds with p ≥ 1, so di : TY → TX
induces a Cp−1 subbundle TY → i∗(TX) over Y . The Cp−1 quotient bundle NY/X = (i∗(TX))/TY
over Y is the normal bundle to Y in X; its y-fiber is Ti(y)(X)/Ty(Y ), the “space of directions in
X at y taken modulo the directions along Y .”

Note that the normal bundle lives on the submanifold.
Remark 3.3. Roughly speaking, the normal bundle encodes the global twistedness of Y inside of X:
it tells how to move “away from Y ” within the space X, at least infinitesimally near Y (through
tangential information). Note that if U ⊆ X is an open set containing Y , then NY/U = NY/X .

Before we study normal bundles in general, let’s look at some interesting examples with hyper-
surfaces and transverse intersections in an inner product space (such as Rn with its standard inner
product, the case n = 3 being a perfectly interesting one). First, we explain how to relate normal
bundles to “orthogonal complements”.
Example 3.4. Let (V, 〈·, ·〉) be an inner product space with dimension n > 1. For each x ∈ V there
is a canonical linear isomorphism jx : V ' Tx(V ) given by v 7→ Dx,v, and so via jx we may transfer
the inner product on V to an inner product 〈·, ·〉x on Tx(V ) (that is, for ~v, ~w ∈ Tx(V ) we define
〈~v, ~w〉x = 〈j−1

x (~v), j−1
x (~w)〉). Concretely, if {vi} is an orthonormal basis of V and {ti} is the dual

system of linear coordinates then ∂tj |x = Dx,vi = jx(vi), so {∂tj |x} is an orthonormal basis of Tx(V )
with respect to 〈·, ·〉x.

We let i : M ↪→ V be an embedded Cp submanifold of V , 1 ≤ p ≤ ∞, so TM is a Cp−1 subbundle
of the Cp−1 pullback bundle i∗(TV ), with quotient equal to NM/V by definition. But there is a
more appealing way to visualize this normal bundle: it is an orthogonal complement to TM in
i∗(TV ). More specifically, for each m ∈ M let Tm(M)⊥ be the orthogonal complement to Tm(M)
in Ti(m)(V ) with respect to 〈·, ·〉i(m). I claim that these Tm(M)⊥’s fit together into the fibers of
a Cp−1 subbundle (TM)⊥ in i∗(TV ), so the natural bundle map TM ⊕ (TM)⊥ → i∗(TV ) is an
isomorphism (as it is on fibers) and the composite (TM)⊥ → i∗(TV ) → NM/V is an isomorphism
(as again we may check on fibers: Tm(M)⊥ → Ti(m)(V )/Tm(M) is an isomorphism, as always for
orthogonal complements to a subspace of an inner produce space). That is, the bundle (TM)⊥

of “directions orthogonal to M in V along M” is identified with the normal bundle. This is the
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reason for the name “normal bundle”. In the course text, (TM)⊥ is taken as the definition of the
normal bundle. There is no doubt that the identification of the normal bundle in our sense with an
orthogonal bundle is one of the fundamental reasons for interest in normal bundles in differential
geometry, but it is regretable to impose the data of inner products in the definition of normal
bundles because we have seen that the notion of normal bundle makes sense without any inner
products on tangent spaces. Indeed, the normal bundle is intrinsic to the geometry of how one
manifold sits in another. The inner products are extra structure on the ambient manifold, and if
we change this extra structure then the normal bundle really does not change (a fact that is hard
to “see” if one does not give the general definition as we have done).

It remains to show that the orthogonal complements Tm(M)⊥ really do form the fibers of a
subbundle of i∗(TV ) over M . Recall that TV → V is naturally trivialized (via “constant vector
fields”) as TV ' V × V ; on fibers over x ∈ V , it is the map Tx(V ) ' V inverse to jx : V ' Tx(V ).
Thus, we get i∗(TV ) 'M ×V (on fibers over m ∈M , this is the natural identification Ti(m)(V ) '
V ). Hence, upon viewing M as a Cp−1 manifold and renaming p − 1 ≥ 0 as p, our problem is to
prove:

Lemma 3.5. Choose p ≥ 0 and a Cp submanifold M in V , as well as a Cp subbundle E in M×V .
The orthogonal complements E(m)⊥ ⊆ V with respect to the inner product on V form the fibers of
a Cp subbundle E⊥ of M × V .

As we shall see, this lemma ultimately comes down to a “universal procedure” in linear algebra:
the Gramm-Schmidt process.

Proof. We may assume M is connected, or more specifically that E has constant rank r. Let
N = dimV , and we may assume 1 ≤ r < N (since the cases r = 0 and N = r are trivial). The
dimension of E(m)⊥ is equal to the positive constant N − r for all m ∈ M . By the criterion in
Theorem 2.5 in the handout on subbundles and quotient bundles, it therefore suffices to prove that
the union E⊥ of the E(m)⊥’s is a closed Cp submanifold of M × V . This problem is local over
M , so we may assume E is trivial, say with trivializing sections s1, . . . , sr ∈ E(M). Since E is
a subbundle of M × V , by working locally over M we may even suppose that the collection {sj}
extends to a trivializing frame {s1, . . . , sN} of the ambient bundle M × V . (See Corollary 2.4 in
the handout on subbundles and quotient bundles.) For each m ∈ M , how do we compute E(m)⊥

in terms of the s1(m), . . . , sN (m)?
For r < j ≤ N we let s′j(m) be the orthogonal projection of sj(m) onto E(m)⊥. Fix an

orthonormal basis {ei} of V . By smoothness of the sj ’s, for 1 ≤ j ≤ N we have sj =
∑
hijei

with hij ∈ C∞(M) and ei ∈ (M × V )(X) the constant section on the basis vector ei of V . Since
{ei(m) = ei} is an orthonormal basis of V for all m ∈M and {s1(m), . . . , sr(m)} is a basis of E(m),
there is a “universal formula” for the basis s′r+1(m), . . . , s′N (m) of E(m)⊥, as follows. We first apply
the “universal procedure” of Gramm-Schmidt to the ordered basis {s1(m), . . . , sr(m)} of E(m) to
get an orthonormal basis {s′1(m), . . . , s′r(m)} for E(m) ⊆ V ; the coefficients of s′1, . . . , s

′
r with

respect to the fiberwise-orthonormal frame e1, . . . , eN are certain universal “smooth” expressions
in the Cp functions hij (involving square roots of positive quantities, and so forth), so s′1, . . . , s

′
r

are Cp sections of M × V →M . Now for r < j ≤ N we define

s′j(m) = sj(m)−
r∑
i=1

〈s′i(m), sj(m)〉s′i(m),

and so clearly s′r+1, . . . , s
′
N are all Cp sections as well. These are fiberwise independent, so they

define a Cp subbundle of M × V , and this is exactly E⊥ as a subset of M × V . Hence, E⊥ is a
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closed Cp submanifold, as required to infer from these local considerations that the original global
E⊥ is a Cp subbundle of M × V . �

Example 3.6. Let us now apply Example 3.4 to the study of normal bundles along hypersurfaces in
the inner product space V . Let U ⊆ V be an open set, and f : U → R a Cp function with p ≥ 1.
Assume for some c ∈ R that f has no critical points on H = f−1(c), so i : H ↪→ V is an embedded
Cp submanifold (closed in U). In this case, I claim that the Cp−1 normal bundle NH/V = NH/U on
H is trivial, essentially due to a “normal gradient vector field”.

To make this precise, for each x ∈ U let (∇f)(x) ∈ Tx(U) be the unique vector such that
〈(∇f)(x), ·〉x = (df)(x) as functionals on Tx(U), where 〈·, ·〉x is the inner product on Tx(U) arising
from the isomorphism V ' Tx(V ) = Tx(U). For all h ∈ H the functional df(i(h))) on Ti(h)(V ) ' V
is nonzero (no critical points on H) and has kernel that is the hyperplane Ti(h)(H), so (∇f)(i(h)) ∈
Ti(h)(H) is a nonzero vector in the line Ti(h)(H)⊥. That is, h 7→ (∇f)(i(h)) is a non-vanishing
set-theoretic section of the orthogonal line bundle (TH)⊥ relative to the hyperplane bundle TH
in i∗(TV ). As we saw in the discussion preceding Lemma 3.5, (TH)⊥ is naturally isomorphic to
NH/V .

I claim that the gradient field ∇f : x 7→ (∇f)(x) is a Cp−1 section of TU = (TV )|U , so the
resulting Cp−1 pullback section i∗(∇f) of i∗(TV ) over H lies in the line subbundle (TH)⊥ and is
nowhere-vanishing (as we see on fibers over H: (∇f)(i(h)) ∈ Th(H)⊥ in Ti(h)(V ) is nonzero for all
h ∈ H). Hence, it trivializes the line bundle (TH)⊥. We conclude that, granting the Cp−1 property
of the gradient field, for such a hypersurface H defined as a level set without critical points the
normal bundle NH/V on H is trivial.

To prove that ∇f is Cp−1 on U , we just compute in local coordinates: if {ei} is an orthonormal
basis of V and {ti} is the dual coordinate system on V then (∇f)(x) =

∑
(∂tjf)(x)∂tj |x in Tx(U) =

Tx(V ) for all x ∈ U because forming the inner product of this sum against
∑
aj∂tj |x gives the output

(3)
∑

(∂tjf)(x)aj =
∑

(df)(x)(∂tj |x) · aj = (df)(x)(
∑
j

aj∂tj |x).

(Here we have used that {∂tj |x} is an orthonormal basis of Tx(V ) with respect to 〈·, ·〉x, as ∂tj |x =
Dx,ej with {ej} an orthonormal basis of V .) The equation (3) says that inner product against∑

(∂tjf)(x)∂tj |x in Tx(V ) via 〈·, ·〉x is evaluation of the functional (df)(x), as required in the
definition of the gradient vector (∇f)(x). From the explicit formula we have just derived for the
gradient, its coefficient functions with respect to the tangent space basis of ∂tj ’s is the collection of
functions ∂tjf that are Cp−1. (Warning: this formula for the gradient vector rests crucially on the
fact that the tj ’s are dual to an orthonormal basis of V , so that {∂tj |x} is an orthonormal basis of
Tx(V ) with respect to 〈·, ·〉x for all x ∈ V .)
Example 3.7. In the preceding example with gradients, we have used the crutch of f to exhibit
a continuous (even Cp−1) non-vanishing normal vector field along H in V , and as a Cp−1 section
of i∗(TV ) over H it gives a fiberwise basis in Ti(h)(V )/Th(H) = NH/V (h). For example, consider
the special case H = Sn inside V = Rn+1 (with the standard inner product), with f =

∑
x2
j (so

H = f−1(1)). Pick x = (b0, . . . , bn) ∈ Sn, so since the standard coordinates {xi} on V are dual to
the standard basis {ei} that is an orthonormal basis,

(∇f)(x) =
∑
i

(∂xif)(x)ei =
∑
i

2biei = (2b0, . . . , 2bn)
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in Rn+1 ' Tx(Rn+1). Geometrically, (∇f)(x) is the “outward” normal vector to Sn at x with
length 2. (The outwardness corresponds to the fact that f increases as we move outward from the
sphere: the gradient points in the direction of maximal local increase in f .)
Example 3.8. Triviality of the normal bundle to a hypersurface i : H ↪→ Rn+1 is equivalent to the
existence of a nowhere-vanishing Cp−1 normal vector field. Indeed, we have seen in Example 3.4
that NH/Rn+1 is isomorphic to the orthogonal bundle (TH)⊥ in i∗(T (Rn+1)), and since triviality
of a line bundle is equivalent to the existence of a nowhere-vanishing global section it follows that
triviality of the normal bundle is equivalent to the existence of a nowhere-vanishing global section
of (TH)⊥ → H. But such a section is precisely the data of a Cp−1-varying non-vanishing normal
field along H in Rn+1. A short calculation shows that formation of the length of the vectors in the
non-vanishing normal field is a positive Cp−1 function on H, so dividing by this gives a Cp−1 unit
normal field along H. Note that the specification of a unit normal field gives a globally consistent
sense of “direction” away from the hypersurface, and in particular suggests a notion of 2-sidedness
(motion in the direction of the unit normal field or in the opposite direction).

But there are surfaces in R3 such as the Möbius strip that seem to be one-sided, and so should
not admit Cp−1 (or even continuous) unit normal fields. That is, we expect that surfaces such
as the Möbius strip will give examples of embedded smooth surfaces in R3 for which the normal
bundle should be non-trivial (even topologically). In particular, we arrive at the rather interesting
conclusion that in no open subset of R3 containing a Möbius strip can the surface be given as the
zero locus of a single smooth equation without critical points along the surface! Indeed, if such a
function exists then its gradient along the hypersurface would (after division by its length) provide
a continuous (even Cp−1) unit normal field, contrary to geometric intuition for this surface. This
is very interesting: unlike linear algebra (where hyperplanes are always the zero locus of a single
nonzero linear functional), when working with submanifolds of a manifold it is generally false that
a hypersurface can be globally expressed as a the zero locus of a single (reasonable) function on the
ambient manifold. We therefore see that the study of submanifolds through defining equations is
not possible for global geometry.
Example 3.9. Let U ⊆ Rn be an open set and let f1, . . . , fr : U → R be smooth functions such that
fj has no critical points along the level set Hj = f−1

j (cj) for some cj ∈ fj(U). Assume moreover
that the Hj ’s are pairwise transverse submanifolds, so their intersection Z = ∩Hj is a submanifold
of constant codimension r. By the method as above, but now using our earlier work on transverse
intersections of submanifolds, the non-vanishing gradients (∇fj)(z) gives a basis for the orthogonal
space Tz(Z)⊥ in Tz(Rn) = Rn for all z ∈ Z. Hence, since NZ/Rn is isomorphic to the orthogonal
bundle (TZ)⊥ (Example 3.4), we conclude that it is a trivial bundle: the gradients of the fj ’s at
points of Z give a trivializing frame. But the Klein bottle K is “non-orientable”, much like the
Möbius strip, and so since K has a closed embedding into R4 it will follow from our later study of
orientation on manifolds that this surface in R4 has non-trivial normal bundle. Hence, the smooth
compact surface K in R4 cannot be expressed as a transverse intersection of critical-point-free level
sets for a pair of smooth functions on an open domain in R4!

We now prove two general results concerning normal bundles, as preparation for the proof of
Theorem 3.1.

Lemma 3.10. If j : Z ↪→ Y and i : Y ↪→ X are two embeddings of Cp manifolds, 1 ≤ p ≤ ∞,
so i ◦ j : Z ↪→ X is as well, NZ/Y on Z is naturally realized as a Cp−1 subbundle of NZ/X , with
quotient j∗(NY/X).

On fibers over z ∈ Z this just says that Tz(X)/Tz(Z) contains Tz(Y )/Tz(Z) with quotient
Tz(X)/Tz(Y ). If we have a Cp−1-varying family of inner products on the tangent spaces, so
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quotients can be identified with orthogonal complements, then the lemma says that directions
perpendicular to Z in X at z break up into two types: those perpendicular to the directions along
the larger submanifold Y at z, and those that lie along the directions of Y at z but perpendicular
to Z at z.

Proof. By definition, NZ/Y = j∗(TY )/TZ and NZ/X = (i ◦ j)∗(TX)/TZ ' j∗(i∗(TX))/TZ. Since
i is an embedding, di : TY → TX over i induces a subbundle TY ↪→ i∗(TX) over Y (that on
fibers over y ∈ Y is just the inclusion di(y) : Ty(Y ) ↪→ Ti(y)(X)). Applying j, we realize j∗(TY )
as a subbundle of j∗(i∗(TX)) over Z. (On fibers over z ∈ Z, this is just the inclusion di(j(z))
of Tj(z)(Y ) into Ti(j(z))(X).) By checking on fibers over each z ∈ Z, we see that the subbundle
inclusion j∗(TY ) → j∗(i∗(TX)) = (i ◦ j)∗(TX) restricts to the identity on the subbundle TZ in
each. (This amounts to the Chain Rule identity d(i ◦ j)(z) = di(j(z)) ◦dj(z) for all z ∈ Z.) Hence,
there is an induced map on quotient bundles

NZ/Y = j∗(TY )/TZ → (i ◦ j)∗(TX)/TZ = NZ/X

that is an injection on fibers and so is a subbundle.
It remains to identify the quotient NZ/X/NZ/Y with j∗(NY/X) as vector bundles over Z. By

definition, NY/X = i∗(TX)/TY . Applying j∗ to the bundle surjection i∗(TX) → NY/X over Y
yields a bundle surjection (i ◦ j)∗(TX) = j∗(i∗(TX))� j∗(NY/X) that kills the subbundle j∗(TY ).
The induced bundle mapping

(i ◦ j)∗(TX)/j∗(TY )→ j∗(NY/X)

is an isomorphism on fibers, and so is an isomorphism. (This argument really shows the more general
fact that formation of pullback of bundles commutes with formation of quotients by subbundles.)
Hence, it is equivalent to construct an isomorphism of bundles over Z,

(j∗(TY )/TZ)/((i ◦ j)∗(TX)/TZ) ' j∗(TY )/(i ◦ j)∗(TX).

Rather more generally, if E ⊆ E′ ⊆ E′′ is a pair of subbundles over Z, so E′/E is a subbundle
of E′′/E, then we claim that the quotient bundle of E′′/E modulo E′/E is identified with E′′/E′.
To see this, consider the bundle surjection E′′ → E′′/E′. This kills E′, and so it kills E. Hence,
it uniquely factors through a bundle mapping E′′/E → E′′/E′ that is a fiberwise surjection. This
new map kills E′/E ⊆ E′′/E, so it induces a mapping of bundles (E′′/E)/(E′/E) → E′′/E′ that
is an isomorphism on fibers and hence an isomorphism. �

Here is the key step where normal bundles work their magic:
Theorem 3.11. Let E be a C∞ vector bundle over a C∞ manifold X. Using the zero section
0 : X → E to realize X as a closed C∞ submanifold of E, NX/E → X is naturally isomorphic to
E as C∞ vector bundles on X.

The reader is urged to skip the proof (past the first or fourth paragraph) on an initial reading.

Proof. One approach is to build natural isomorphisms T0(x)(E)/Tx(X) ' E(x) for any x ∈ X,
and to show that these vary nicely in x in the sense that they glue to define a bundle isomorphism
NX/E = 0∗(TE)/TX ' E over X. Intuitively, if we pick a local trivialization E|U = U ×Rn then
we get an isomorphism T0(x)(E) = T(x,0)(U ×Rn) = Tx(U) ⊕ T0(Rn) = Tx(X) ⊕Rn, so we get
an isomorphism T0(x)(E)/Tx(X) ' Rn = E(x). This short calculation is the reason we beleive
the lemma to be true, and it has natural geometric appeal: after locally trivializing E over X, the
“directions away from the zero-section in E” modulo those along the base directions are seen to
be the “vertical” directions, which is to say along the fibers of E → X. Unfortunately, this vague
statement is local over X (as well as vague), and the whole point of vector bundles is to work
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globally: we need a bundle isomorphism NX/E ' E over all of X, not unrelated isomorphisms over
small opens in X. Keep in mind that locally over the base, any two vector bundles of the same
rank are isomorphic (as both become trivial)! The real problem is to show that there is the “same
global twisting”, so we can build a global bundle isomorphism.

There were many implicit choices in the construction of the above isomorphisms on fibers, and
so why are they independent of the choices? Moreover, once this point is settled then why do such
fibral isomorphisms arise from a global bundle isomorphism (i.e., over the entire base space)? It is
better to have intrinsic global definitions and to use local considerations only to verify properties
(such as being an isomorphism). We therefore opt for an intrinsic and elegant global method
that illustrates a variety of techniques we have at our disposal for working with vector bundles.
The reader is invited to try to fill in the well-definedness and other details on the fibral approach
suggested above. (At the very least, the need to do some work in the proof shows that the use of
Theorem 3.11 in the proof of Theorem 3.1 constitutes genuine input.) It should also be noted that
one could alternatively approach the problem of building the bundle isomorphism NX/E ' E by
using transition matrices. However, this is ugly because the true meaning of the global isomorphism
can only be appreciated when it is built without the interference of matrices.

We wish to build a bundle isomorphism 0∗(TE)/TX ' E over X, so let us try to build a bundle
mapping 0∗(TE) → E and check that on x-fibers it is surjective with kernel Tx(X), so then the
kernel subbundle contains (and hence equals) TX. This will give the result. How should we build a
bundle mapping 0∗(TE)→ E over X? Since the universal property of pullback involves mappings
to a pullback (rather than from a pullback), we are led to consider the dual problem: try to build
a natural map of bundles E∨ → 0∗(TE)∨ = 0∗(T ∗E) over X (here we have used that pullback and
dual commute); we could then dualize this map and hope for the best. That is, we first seek to
build a natural map of bundles E∨ → T ∗E over 0 : X → E.

Inspired by our work with O-modules, for open U ⊆ X can we build natural maps fU : E∨(U)→
(T ∗E)(E|U ) respecting shrinking in U? If so, then since 0−1(E|U ) = U we see that “pullback along
the 0-section” gives a map (T ∗E)(E|U )→ (0∗(T ∗E))(U), and hence composing this with fU would
give maps E∨(U) → (0∗(T ∗E))(U) compatibly with shrinking in U . Provided these latter maps
are O(U)-linear, it follows from the equivalence between bundles and O-modules (surprise!) that
such maps arise from a uniquely determined bundle map E∨ → 0∗(T ∗E) over X. The dual map
0∗(TE)→ E over X is then a viable candidate for our main goal.

The above considerations thereby lead us to ask the question: for open U ⊆ X is there a natural
map fU : E∨(U) → Ω1

E(E|U )? Recall that E∨(U) = HomU (E|U , U × R). Hence, given a C∞

bundle mapping h : E|U → U × R over U we seek to build a C∞ differential 1-form over the
open submanifold E|U in E (i.e., an element in Ω1

E(E|U )). Ah, but by viewing h as a smooth map
between smooth manifolds (ignoring that it respects bundle structures), we may compose with the
smooth projection pU : U ×R → R to obtain a composite mapping pU ◦ h : E|U → R that is a
smooth function. As with any smooth function on the manifold E|U , we may form the differential
d(pU ◦ h) that is a smooth 1-form over E|U ! Hence, fU : h 7→ d(pU ◦ h) is a mapping of sets
E∨(U)→ Ω1

E(E|U ) = (T ∗E)(E|U ). This construction clearly respects shrinking on U and respects
addition on both sides (since addition on the dual-bundle section h is expressed in terms of the
mapping h : E|U → U ×R via addition in R). We claim that these mappings fU are the answer
to our prayers. (The reader who has reached this point is urged to skip the rest on a first reading
and to see how Theorem 3.11 is used in the proof of Theorem 3.1.)

The associated mappings E∨(U) → (0∗(T ∗E))(U) are given by h 7→ 0∗(d(pU ◦ h)) and respect
shrinking in U . Are these O(U)-linear? The compatibility with addition has been explained, and
so we have to choose s ∈ O(U) and prove 0∗(d(pU ◦ (s · h))) = s · 0∗(d(pU ◦ h)). Passing to fibers at
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any u ∈ U , we want d(pU ◦ (s ·h))(0(u)) = s(u)d(pU ◦h)(0(u)) in T0(u)(E)∨, with 0(u) the origin in
E(u) ⊆ E. Here, h : E|U → U ×R is a mapping bundles over U but it is viewed as a mapping of
manifolds. By the definition of pU : U ×R→ R and the module structure on sections of bundles,
pU ◦ (s · h) = (s ◦ πU ) · (pU ◦ h) as smooth functions on E|U , with πU : E|U → U the structure map.
Thus, by the Leibnitz Rule

d(pU ◦(s ·h))(0(u)) = d((s◦πU ) ·(pU ◦h))(0(u)) = s(u)d(pU ◦h)(0(u))+(pU ◦h)(0(u))d(s◦πU )(0(u))

since (s ◦ πU )(0(u)) = s(u) (as πU (0(u)) = u). But h : E|U → U ×R is a bundle mapping over U ,
so the function pU ◦ h : E|U → R carries the zero-section of E|U to the origin in R and hence it
vanishes at all points 0(u) ∈ E|U . This gives the required identity.

We have now built a bundle mapping E∨ → 0∗(T ∗E) = 0∗((TE)∨) = 0∗(TE)∨ over X, so
dualizing (and using double duality) gives a C∞ bundle mapping θE : 0∗(TE) → E over X. It
remains to show that this is a bundle surjection with kernel subbundle equal to TX (as then we
get an induced isomorphism NX/E ' E as C∞ bundles over X). But the formation of our mapping
over X clearly respects shrinking over X, and our remaining problems are of local nature over
X, so it suffices to work locally over X. Thus, we may assume that E is a trivial smooth vector
bundle. Rather than work with an isomorphism E ' X ×Rn, it is more convenient to work with
an equality E = X ×Rn. Hence, we have to investigate how the formation of θE interacts with
isomorphisms among bundles E over X.

If ϕ : E′ → E is a bundle mapping over X (such as an isomorphism), then it is easy to check
from the construction of θE and θE′ that the diagram of bundle mappings

0′∗(TE′)
θE′ //

dϕ

��

E′

ϕ

��
0∗(TE)

θE

// E

over X that is commutative (the left column is the map induced along zero-sections by the bundle
mapping dϕ : TE′ → TE over ϕ). In particular, if ϕ is an isomorphism then the columns are
isomorphisms and so in such cases θE is an isomorphism if and only if θE′ is an isomorphism. That
is, the isomorphism problem for θE only depends on E up to bundle isomorphism over X. We are
therefore reduced to the case E = X ×Rn. Since we can work locally on X, we may also assume
X admits global coordinates {x1, . . . , xm}.

Let π1 : E → X and π2 : E → Rn be the projections, so ξE : TE ' π∗1(TX) ⊕ π∗2(T (Rn)) as
bundles over E. The composites of 0 : X → E with π1 and π2 are respectively the identity on X
and the map X → Rn that is the constant map to the origin. Hence, pulling back the mapping
ξE along 0 gives an isomorphism 0∗(ξE) : 0∗(TE) ' TX ⊕ (X × T0(Rn)) as bundles over X. This
decomposition recovers the subbundle inclusion TX ↪→ 0∗(TE) that is used in the definition of
NX/E , so it suffices to prove that the composite bundle mapping,

TX ⊕ (X × T0(Rn)) ' 0∗(TE) θE→ E = X ×Rn,

kills TX and restricts to the canonical isomorphism X × T0(Rn) ' X ×Rn on the other factor.
Consider the constant sections xi of X×(Rn)∨ = E∨ that are the bundle mappings pi : E = X×

Rn → X×R given by the standard projections on Rn; these are a global frame for X×(Rn)∨ = E∨

as a bundle over X. Since pX ◦ pi : E = X ×Rn → R is the smooth function given by projection
to the ith factor of Rn, its total differential as a fiberwise functional on tangent spaces

T0(x)(E) = T(x,0)(X ×Rn) = Tx(X)⊕ T0(Rn)
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vanishes under restriction to a functional on Tx(X) (giving the desired killing of TX) and restricts
to the functional on T0(Rn) that is exactly the tangent mapping at origins for the ith standard
projection Rn → R. That is, 0∗(d(pX ◦pi)) as a global section of 0∗(T ∗E) = T ∗X⊕ (X×T0(Rn)∨)
vanishes along the first factor and is constant section dxi(0) along the second factor. This says

exactly that the dual mapping TX ⊕ (X ×T0(Rn)) ' 0∗(TE) θE→ E = X ×Rn carries TX into the
zero-section and carries the constant sections ∂xi |0 along the second factor to the constant sections
ei ∈ (X ×Rn)(X) on the standard basis of Rn. That is, θE has kernel bundle TX and is a bundle
surjection onto E. �

Proof. (of Theorem 3.1): The manifold E has constant dimension n+ r. Recall Whitney’s embed-
ding theorem: any smooth manifold of dimension d admits a smooth embedding into R2d+1. By
Whitney’s embedding theorem applied to the manifold E, there is a smooth embedding E ↪→ RN

for N = 2 dimE + 1 = 2(n + r) + 1. Choose such an embedding. By Theorem 3.11, E ' NX/E

over X. But X is a submanifold of E which in turn is a submanifold of RN , so by Lemma 3.10
the normal bundle NX/E over X is a subbundle of NX/RN . If i : X → RN is the smooth compos-
ite embedding (the zero-section of E followed by the chosen embedding of E into RN as smooth
manifolds), then by definition NX/RN is a quotient bundle of i∗(T (RN )). But the rank-N bundle
T(RN )→ RN is trivial, so its rank-N pullback i∗(T (RN ))→ X over X is trivial. That is, we have
exhibited E ' NX/E as a subbundle of a quotient NX/RN of a trivial bundle X ×RN .

Rather generally, I claim that any C∞ quotient bundle of X ×RN is also C∞-isomorphic to a
C∞ subbundle of X ×RN . Indeed, if E′ is such a quotient and E′′ is the kernel subbundle of the
quotient mapping X ×RN � E′ then (using Lemma 3.5 with V = RN having the standard inner
product) consider the orthogonal subbundle (E′′)⊥ in X ×RN using the standard inner product
on RN ; fiberwise (E′′)⊥(x) ⊆ RN is the orthogonal complement to E′′(x) ⊆ RN . The composite
C∞ bundle mapping E′′ → X ×RN → E′ over X is an isomorphism on fibers over X, and so it is
an isomorphism of C∞ bundles over X. This settles the claim.

We conclude that NX/RN has a structure of C∞-subbundle of X ×RN , so E is C∞-isomorphic
to a C∞ subbundle of a C∞ subbundle of X ×RN , whence the C∞ vector bundle E → X has a
structure (in fact, many such!) of a rank-r C∞ subbundle of X ×RN . By the universal property
of G = GN−r(RN ) equipped with its universal subbundle W of rank r inside of G×RN , it follows
that there is a unique smooth map f : X → G such that f∗(W ) = E inside of X × RN . (If
we change how we embed E into RN via Whitney’s theorem, then the structure on E of rank-r
subbundle of X ×RN would change and so the map f would change. That is, f is not intrinsic to
E → X.) In particular, E is C∞ isomorphic to a pullback f∗W of the universal subbundle W over
the Grassmannian G, as desired. �

Corollary 3.12. In the setup of Theorem 3.1, there exist global sections s1, . . . , s2n+2r+1 ∈ E(X)
such that {si(x)} spans E(x) for all x ∈ X. That is, there exists a C∞ vector bundle surjection
X ×R2n+2r+1 � E over X.

Proof. Let N = 2n + 2r + 1. Applying the proof of Theorem 3.1 to the dual bundle E∨, we
see that E∨ admits a structure of subbundle of X × RN . Hence, by dualizing and using the
double duality isomorphism E ' E∨∨, the bundle E admits a structure of quotient bundle of
(X ×RN )∨ ' X × (RN )∨ ' X ×RN . �


