
Math 396. Why the universe cannot be S4.

1. Motivation

Let E → M be a Cp vector bundle over a Cp manifold with corners M , 0 ≤ p ≤ ∞. We
have seen in the handout on metric tensor operations that, via a Cp partition of unity, E admits
a Riemannian metric (of class Cp, as always). It was a crucial step in the fibral non-degeneracy
of the construction that we worked throughout with a pseudo-Riemannian metric that is definite
(positive or negative definite) on fibers. If we had tried to built a pseudo-Riemannian metric (such
as a Lorentz metric) with some “mixed” signature, then there would have arisen an annoying point
in the proof, which is to check that the bilinear form on fibers made with a partition of unity doesn’t
have some accidental cancellations causing the bilinear form on some fiber to be degenerate. This
may seem like a minor glitch, but it is a genuine issue: if E has constant rank n and we write
n = n+ + n− with n+, n− > 0 then there are non-trivial obstructions to the existence of a pseudo-
Riemannian metric of signature (n+, n−) on E → M . What is the obstruction? It is a bundle
analogue of the “light cone” decomposition for indefinite quadratic spaces over R:

Theorem 1.1. If E admits a pseudo-Riemannian metric B with signature (n+, n−), then there
exist Cp subbundles E+, E− ⊆ E with respective ranks n+ and n− such that the pseudo-Riemannian
metric B has positive-definite restriction to the fibers of E+ and negative-definite restriction to the
fibers of E−. In particular, natural map of bundles E+ ⊕ E− → E is an isomorphism.

The proof of this theorem is given in the next two sections. The existence of a “splitting” of
E into a direct sum of two subbundles with positive rank is a serious restriction on E that need
not always be satisfied. To give an example, consider the case E = TM with M of class Cp+1

(so E is of class Cp, 0 ≤ p ≤ ∞). In this case, the theorem gives a non-trivial condition on M
that it admit a pseudo-Riemannian metric with an indefinite signature (n+, n−), namely that the
tangent bundle must be a direct sum of Cp subbundles with respective ranks n+ and n−. Why is
this a non-trivial condition? For example, I claim that this prevents a wide class of manifolds from
admitting a Lorentz metric:

Corollary 1.2. Assume M is of class Cp+1 with 0 ≤ p ≤ ∞. If all closed paths in M are
contractible to a point and M has no non-vanishing Cp vector fields, then TM does not admit any
Cp line bundle direct summand, and so M does not admit a Lorentz metric of class Cp.

By the hairy ball theorem and the discussion preceding Theorem 4.1 below, even-dimensional
spheres satisfy the hypotheses in this corollary. It follows that the spheres S2n do not admit a C∞

Lorentz metric, nor even one of class C0. In particular, since the General Theory of Relativity
asserts that the universe is a smooth Lorentzian 4-manifold, the universe cannot be S4 as a C∞

manifold. (It is crucial to the argument that the Lorentz metric really be given at all points.
Singularities in the metric – black holes and so forth – ruin the proof. So in a sense the title of this
handout is misleading.)

Proof. By Theorem 1.1, if M were to admit a Lorentz metric then TM would admit a line bundle
direct summand. Hence, we just have to show such line bundles do not exist. In Theorem 4.1
below, it will be proved that under the topological hypothesis in the corollary, all Cp line bundles
on M are trivial. Hence, if TM admits a Cp line bundle direct summand then it admits the trivial
line bundle M ×R as such a direct summand. But the trivial line bundle has a non-vanishing Cp

global section (the constant section 1, for example), and so when realized as a Cp-subbundle of
TM this becomes a Cp vector field that is non-vanishing on fibers. That is, we have a Cp vector
field that is nonzero in all tangent spaces. This contradicts the hypotheses on M . �
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2. Linear algebra

Before we take up the proof of Theorem 1.1, we consider the analogue in linear algebra in
order to find the right strategy. Let V be a finite-dimensional R-vector space endowed with a
non-degenerate quadratic form q with indefinite signature (n+, n−). Let B be the associated non-
degenerate symmetric bilinear form on V . In an old handout on quadratic spaces, we saw that
although there is a decomposition V = V+ ⊕ V− into B-perpendicular subspaces such that q
is positive-definite on V+ and negative-definite on V−, such a decomposition is not unique and
generally depends on choices of certain bases. Hence, it cannot be invoked on the level of vector
bundles without some way to make it “canonical”. But there is a way to do this: we first fix an
auxiliary inner product 〈·, ·〉 on V . (The bundle analogue is to fix an auxiliary Riemannian metric,
which we know can always be done, thanks to partitions of unity.) With this choice, we can write
B = 〈T (·), ·〉 for a unique self-adjoint T : V ' V , and then the spectral theorem provides an
orthogonal eigenspace decomposition V = ⊕λVλ over some nonzero eigenvalues.

In terms of an eigenbasis we get a “diagonalization” of B, and more specifically of q, with
coefficients of the quadratic form given by these eigenvalues taken with multiplicity equal to the
dimension of the corresponding eigenspaces. Taking V+ = ⊕λ>0Vλ and V− = ⊕λ<0Vλ, we obtain
a direct sum decomposition V = V+ ⊕ V− that is orthogonal for both 〈·, ·〉 and B, with q having
positive-definite restriction to V+ and negative-definite restriction to V−. In particular, dim V± =
n±. This is a method of construction of the desired decomposition of V that requires no choices
after we pick the auxiliary inner product. Hence, it seems promising that this approach might
work at the level of vector bundles. Of course, there is a technical complication: the self-adjoint T
will now be replaced with a bundle mapping that is fibrally self-adjoint with respect to the chosen
auxiliary Riemannian metric and so the fibral eigenvalues will “move” (since we have replaced a
single matrix with a “varying family” of matrices).

In the case that an eigenvalue in a fiber is a simple root of the characteristic polynomial on that
fiber, then on the nearby fibers there is a unique eigenvalue near this one, it is simple, and it has Cp

dependence in m (see Lemma 3.1). However, there is also the possibility of fibral eigenvalues with
higher multiplicity. In such cases, dimensions of the fibral eigenspaces can “jump” is discontinuous
ways, so individual fibral eigenspaces cannot generally fit together to make subbundles. But we
need much less, just that the direct sum of the eigenspaces for eigenvalues with a fixed sign fit
together to make subbundles. This is something that we will be able to construct as an application
of properties of Grassmann manifolds.

3. Proof of Theorem 1.1

We now prove Theorem 1.1, inspired by our observations in the case of linear algebra (i.e., a
1-point base space). We choose an auxiliary Cp Riemannian metric 〈·, ·〉 on E → M . This gives
an identification E ' E∨ that is the “inner product” mapping on fibers. This yields a bundle
isomorphism

E∨ ⊗ E∨ ' E ⊗ E∨ ' Hom(E,E),

where the final step is uniquely characterized by the condition that it induces the natural iso-
morphism E(m) ⊗ E(m)∨ ' Hom(E(m), E(m)) on fibers (and the smoothness of this final step
is readily checked by calculation in local trivializing frames and dual frames for E over M). We
may view B as a global section of E∨ ⊗E∨, so our composite bundle isomorphism carries it to an
element T ∈ (Hom(E,E))(M) = HomM (E,E).

On fibers, T |m ∈ Hom(E(m), E(m)) likewise corresponds (via 〈·, ·〉m) to the non-degenerate
symmetric bilinear form B(m) ∈ E(m)∨ ⊗ E(m)∨ with signature (n+, n−). That is, by chasing
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elementary tensors (on fibers) we see that B(m) = 〈·, T |m(·)〉m as bilinear forms on E(m), so T |m
is the self-adjoint automorphism of E(m) corresponding to B(m) in the sense of our preceding
motivational digression into linear algebra. In particular, E(m) has a canonical decomposition
E(m) = E(m)+ ⊕E(m)− where E(m)+ is the n+-dimensional span of the positive eigenspaces for
T |m and E(m)− is the n−-dimensional span of the negative eigenspaces for T |m. These are B(m)-
orthogonal, with B(m) having positive-definite restriction to E(m)+ and negative-definite restric-
tion to E(m)−. Our problem is now reduced to proving that the fibral subspaces {E(m)±}m∈M

in the E(m)’s with constant dimension n± fit together into the fibers of a Cp subbundle E± in E
with constant rank n±, as then the natural mapping E+ ⊕ E− → E is an isomorphism on fibers
and hence an isomorphism of Cp vector bundles (thereby solving our problem). Since E(m)− is
the 〈·, ·〉m-orthogonal complement of E(m)+ for each m ∈ M , if we can build a Cp subbundle E+

gluing the E(m)+’s then we can define E− to be the orthogonal complement subbundle (E+)⊥ in E
with respect to 〈·, ·〉; this is the subbundle whose fibers are the orthogonal complements of E+(m)
in E(m) for all m ∈ M . (See the handout on operations with pseudo-Riemannian metrics for the
verification that formation of orthogonal complement on fibers behaves well at the level of vector
bundles.) Hence, we may now and do now focus our attention only on the problem of building a Cp

subbundle E+ in E with m-fiber E(m)+ for every m ∈ M . We are going to build E+ by creating
a Cp map to a suitable Grassmannian manifold.

By Lemma 2.1 in the handout on subbundles and quotient bundles, the Cp subbundle E+ is
uniquely determined by its fibers if it exists, and so in view of Theorem 2.5 in that handout the
problem is entirely one of proving that the union of these fibers is a closed Cp submanifold of E.
This problem is local over M , and so we may work locally over M . In particular, we can assume
that E → M is trivial with some rank n > 0. Choosing a trivializing frame {s1, . . . , sn} allows
us to describe the bundle mapping T : E ' E in terms of a matrix (aij) with aij ∈ Cp(M).
With such a trivialization fixed, for each m ∈ M we have a preferred quotient mapping Rn '
E(m) � E(m)/E(m)− ' E(m)+ with dimension n+, so we get a point in Gn+(Rn). Our problem
is exactly to prove that this set-theoretic mapping M → Gn+(Rn) is Cp (as then the pullback of
the universal subbundle of rank n−n+ = n− over the Grassmannian will provide the Cp subbundle
E− in M ×Rn ' E, and hence its orthogonal complement in E will be E+).

We want to reduce our problem to the special case n+ = 1. We will achieve this by using a suitable
exterior power construction. Since the aij ’s are continuous on M and we are allowed to work locally,
the lemma on continuity of roots (Lemma 4.2 in the handout on quadratic spaces) allows us to
assume that (in the sense of multiplicity) the n+ positive eigenvalues of the diagonalizable T |m’s
are concentrated near specific positive numbers, and likewise (in the sense of multiplicity) for the
n− negative eigenvalues of the T |m’s. By Lagrange interpolation, we can find a monic polynomial
P such that P carries these positive eigenvalues to very large positive numbers and carries the
negative eigenvalues to negative numbers very close to 0. By diagonalizability of the T |m’s, it
follows that upon replacing T with P (T ) we do not affect the subspaces E(m)+ or E(m)− in each
E(m) but we have arranged that the negative eigenvalues of the T |m’s are all very close to 0 and
the positive eigenvalues are very large. Hence, ∧n+(T ) has induced fiber maps with one (in the
sense of multiplicity!) very large positive eigenvalue near some large positive number λ0 and the
rest bounded away from it from above, say less than λ0/2.

Note that ∧n+(E) admits an induced Cp Riemannian metric for which ∧n+(T ) is fibrally self-
adjoint, and the fibral eigenline for the largest fibral eigenvalue is precisely the line ∧n+(E(m)+)
in ∧n+(E(m)). In particular, the quotient mapping E(m) � E(m)/E(m)− ' E(m)+ with n+-
dimensional target induces a 1-dimensional quotient mapping ∧n+(E(m)) � ∧n+(E(m)+). By
Theorem 4.1 in the old gluing handout, the “exterior power” mapping Gn+(Rn) → P(∧n+(Rn)) is a
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closed embedding of smooth manifolds. (The argument there only discusses topological aspects, but
the method of proof yields the stronger results concerning the differentiable structures, in view of the
standard charts for the C∞ manifold structures.) In particular, by mapping properties of embedded
submanifolds, our set-theoretic mapping M → Gn+(Rn) is Cp if and only if its composite with
the closed embedding of Gn+(Rn) into P(∧n+(Rn)) is Cp. But this composite is just an instance
of our general problem in the special case n+ = 1, namely for the bundle ∧n+(E) equipped with
its induced Riemannian metric and fibrally self-adjoint bundle endomorphism ∧n+(T ) − (λ0/2)id!
Thus, we now may and do assume n+ = 1.

Our situation is now that there is (in the sense of multiplicity) a unique positive eigenvalue
λ(m) for T |m on each fiber E(m), and we want to fit these to make a Cp line subbundle of E
(with orthogonal complement then giving the hyperplane subbundle whose fibers are the negative
eigenspaces). Since λ(m) is a simple root of the characteristic polynomial, the following lemma
(applied to M and the characteristic polynomial Λn + an−1(m)Λn−1 + · · · + a0(m) of the T |m’s,
with ai ∈ Cp(M)) ensures that λ(m) is a Cp function of m ∈ M :

Lemma 3.1. Let X be a Cp premanifold with corners, 0 ≤ p ≤ ∞, and let f(x, t) = tn +
an−1(x)tn−1 + · · · + a0(x) ∈ Cp(X)[t] be a monic polynomial with coefficients in Cp(X). Assume
for some x0 ∈ X that f(x0, t) ∈ R[t] has a simple root ρ0. There exists ε > 0 and an open
neighborhood U of x0 in X such that for all x ∈ U the polynomial f(x, t) ∈ R[t] has a unique root
ρ(x) in (ρ0 − ε, ρ0 + ε) with ρ(x) a simple root of f(x, t). Moreover, ρ : U → R is a Cp function.

Proof. In order to handle the case p = 0, for which there is no implicit function theorem available,
we first pass to a universal situation in the C∞ case. Let Y = Rn and let F be the “universal
monic degree-n polynomial” over Y : we define F (y, t) = tn + cn−1t

n−1 + · · · + c0 where y =
(c0, . . . , cn−1) ∈ Rn. The ai ∈ Cp(X) define a Cp mapping φ : X → Y carrying x0 to some y0 ∈ Y ,
and F (φ(x), t) = f(x, t) for all x ∈ X. In particular, (∂tF )(y0, t) = (∂tf)(x0, t) is nonzero at t = ρ0,
so F (y0, t) has a simple root at ρ0. Thus, if we can solve the problem in the C∞ setting for F
around y0 and the simple root ρ0, then composition with the Cp map φ : X → Y gives a solution
for f around x0 of the desired type. Hence, we may now focus on the “universal” F over Y in the
C∞ setting.

Consider the smooth function Y × R → R given by F . That is, we consider the function
h : Rn+1 → R defined by (c0, . . . , cn−1, t) 7→ tn + cn−1t

n−1 + · · · + c0. We are interested in the
equation h(c, t) = 0 as an implicit C∞ equation for t in the ci’s. The assumption that ρ0 is a simple
root for h(y0, t) with some y0 ∈ Y = Rn is exactly the condition under which the C∞ implicit
function theorem kicks in, and gives exactly the desired uniqueness of the solution to h(y, t) = 0
with t near ρ0 for y near y0, together with the smooth dependence of this solution on y. �

Let λ : M → R denote the Cp function extracting the unique positive eigenvalue of T |m, so

T − λidE : E → E

is a Cp bundle mapping whose fibral kernel is of constant dimension 1. By Theorem 2.6 from the
handout on subbundles and quotient bundles, there exists a Cp line subbundle of E whose m-fiber
is the kernel of T |m−λ(m)idE(m), and this is exactly the Cp subbundle E+ we have sought to build
in this special case.

4. A topological theorem

We now turn to the proof of the serious topological input in the proof of Corollary 1.2 above. Let
X be a Cp premanifold with corners, and assume that all closed paths in X (i.e., continuous maps
[0, 1] → X sending 0 and 1 to the same point) can be continuously contracted to a point. That is, for
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any closed path σ : [0, 1] → X we assume that there exists a continuous map Φ : [0, 1]× [0, 1] → X
with Φ(0, ·) = σ and Φ(1, ·) a constant map to a point x0 ∈ X (so the maps σz = Φ(z, ·) for
z ∈ [0, 1] are to be viewed as a “continuous deformation” of σ to the constant map to x0). For
example, any finite-dimensional vector space V can be continuously contracted to a point in finite
time, using [0, 1]× V → V defined by (t, v) 7→ (1− t)v, and the same recipe applies to continuous
contract all closed paths in V to the origin.

Somewhat more interesting (but not a surprise) is that all closed paths in Sm can be continuously
contracted to a point if m ≥ 2 (visualize the case m = 2). The easy case of the proof is when the
image of the path σ : [0, 1] → Sm omits some point ξ, for then since Sm − {ξ} is homeomorphic to
Rm−1 and so we win by using the result for closed paths in vector spaces. The problem is therefore
to continuously deform the closed path so that its image is not the entire sphere; beware of space-
filling curves. But a continuous map σ : [0, 1] → Sm is uniformly continuous (using whatever metric
you like on Sm), so it is not difficult to find a piecewise smooth closed path that is uniformly close
to σ (using “straight lines” in some coordinate charts). By considering flow along secants linking
two parametric paths with the same time interval, one then gets a continuous deformation from σ
to a piecewise smooth path. Piecewise smooth paths cannot be surjective since their images are a
finite union of images of smooth paths and the image of a smooth map from an interval into an
m-dimensional manifold has image with measure zero when m > 1.

Theorem 4.1. Let X be a Cp premanifold with corners, 0 ≤ p ≤ ∞, and assume that all closed
paths in X are continuously contractible to a point. Every Cp line bundle L → X is trivial.

Our proof will use one ingredient for which we shall refer the reader to topology books to save
space; the result we require from those books is not at all deep, and the proof could have been
included, but it is a slightly involved argument and so we will just refer to standard texts at the
suitable time.

Remark 4.2. The proof of Theorem 4.1 may look like a series of miraculous tricks. In fact, the
methods we use are special cases of general principles in algebraic topology (though seeing them
used only in our special situation may tend to mask some of the underlying structure). What
actually happened is that I translated a 2-line proof using sheaf cohomology into more elementary
language, and that is how I cooked up the argument below.

To prove Theorem 4.1, we may and do assume X is connected. Let {Ui} be an open cover such
that L|Ui is trivial for all i. Choose a trivializing section si ∈ L(Ui), so this is a nowhere-vanishing
section. Hence, si|Ui∩Uj and sj |Ui∩Uj are nowhere-vanishing sections of the line bundle L|Ui∩Uj ,
whence si|Ui∩Uj = fijsj |Ui∩Uj for some non-vanishing smooth function fij on Ui ∩ Uj . Observe
that we have the cocycle relation fijfjk = fik on Ui ∩ Uj ∩ Uk since on this triple overlap we have
si = fijsj = fijfjksk. The proof will consist of two parts: an algebraic part that tracks signs for the
values of the non-vanishing functions fij , and a geometric part that uses connectivity considerations
and the contractibility hypothesis on closed paths in X (!) to infer some properties of these signs.

We must exercise some caution, since Ui∩Uj may be disconnected even if the Ui’s are connected.
Thus, fij may not have constant sign on Ui ∩ Uj . Let εij : Ui ∩ Uj → {±1} be the locally constant
function (constant on connected components of Ui ∩ Uj) that encodes the sign of fij (i.e., for
x ∈ Ui∩Uj , εij(x) = ±1 according as fij(x) ∈ R−{0} is positive or negative). The cocycle relation
on the fij ’s implies the same for their signs given by the εij ’s: on Ui ∩Uj ∩Uk, we have an equality
of locally constant functions εik = εijεjk. Note that εii : Ui → {±1} is the constant function 1, and
εijεji = 1.
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The crucial part of the proof, and the only place where the contractibility assumption is used,
is the fact that the locally constant functions εij : Ui ∩Uj → {±1} that satisfy the cocycle relation
on triple overlaps have a special form:

Lemma 4.3. There exist locally constant functions εi : Ui → {±1} such that εij = εiε
−1
j on Ui∩Uj

for all i, j.

Let us grant the lemma (which contains a beautiful geometric construction in its proof), and see
why it implies the main result. Then we will prove the lemma.

Consider the trivializing section s′i = ε−1
i si ∈ L(Ui) for L|Ui . On the overlaps Ui ∩ Uj we have

s′i|Ui∩Uj = ε−1
ij ε−1

j si|Ui∩Uj = ε−1
ij fijs

′
j |Ui∩Uj .

But the εij ’s were rigged to have the same pointwise sign as the fij ’s at each point of the double
overlaps Ui ∩ Uj , so the multiplier functions f ′ij = ε−1

ij fij on Ui ∩ Uj that express the transition
formula s′i|Ui∩Uj = f ′ijs

′
j |Ui∩Uj are everywhere positive on Ui ∩ Uj . In other words, we have built a

collection of local trivializing sections that define consistent orientations on the fiber lines over the
double overlaps. Hence, L → X is orientable. We may therefore choose an orientation, and upon
picking a Cp Riemannian metric on L we get a unique section in L(X) that is fiberwise positive
(in the orientation sense) with length 1 in each fiber, and this is a nowhere-vanishing element of
L(X). Hence, we have trivialized the line bundle L over X.

5. Proof of Lemma 4.3

The idea is to create a space whose connectivity properties encode information concerning the
“signs” εij that satisfy the cocycle condition. This is a special case of a general technique in
topology.

For each i, let Ũi = Ui × {±1}; this is a disjoint union of two copies of Ui labelled by ±1.
Let π1 : Ũi → Ui be the projection. We wish to glue Ũi and Ũj over Ui ∩ Uj via the following
isomorphism:

φij : π−1
i (Ui ∩ Uj) = (Ui ∩ Uj)× {±1} ' (Ui ∩ Uj)× {±1} = π−1

j (Ui ∩ Uj)

where the middle isomorphism is
(u, e) 7→ (u, εij(u)e).

Here is where the cocycle relation works its magic: since εijεjk = εik on Ui ∩ Uj ∩ Uk, we deduce
the “gluing equation” φij ◦ φjk = φik as maps from π−1

i (Ui ∩ Uj ∩ Uk) to π−1
k (Ui ∩ Uj ∩ Uk). (In

particular, φii is the identity on π−1
i (Ui) = Ũi and φij and inverse to φji.)

We may now glue the Ũi’s as follows. Let Y =
∐

Ũi be the disjoint union of these spaces,
and impose the following equivalence relation: y ∼ y′ if and only if y ∈ Ũi and y′ ∈ Ũj for some
i and j with y′ = φij(y). The above “gluing equation” for the φ’s is exactly the assertion that
∼ is transitive, and the reflexivity and identity properties are merely the properties that φij and
inverse to φji and that φii is the identity for all i. Thus, X̃ = Y/ ∼ makes sense, and each natural
map hi : Ũi → X̃ is an injective map whose image meets the image of Ũj in exactly the subsets
π−1

i (Ui ∩ Uj) and π−1
j (Ui ∩ Uj), with the composite bijection

π−1
i (Ui ∩ Uj) ' hi(Ũi) ∩ hj(Ũj) ' π−1

j (Ui ∩ Uj)

given by exactly φij .
Put in more explicit terms, in the set X̃ we may say that Ũi and Ũj meet along the respective

subsets π−1
i (Ui ∩ Uj) and π−1

j (Ui ∩ Uj) via the identification φij . In view of the simple formula for
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φij , it is very easy to check the gluing conditions for topologies, so X̃ admits a unique topology
that makes each subset Ũi open and induces on it the topology it has as Ui × {±1}. Moreover, we
can run through the same argument with the differentiable structure, so X̃ has a unique structure
of Cp premanifold with corners, recovering the evident structure of this type on each open subset
Ũi = Ui × {±1}. The maps πi : Ũi → Ui ⊆ X “agree on overlaps in X̃” in this manner, and so
they glue to define a set-theoretic map π : X̃ → X whose restriction over Ui ⊆ X is identified with
πi : Ũi = Ui × {±1} → Ui, so π is a local isomorphism.

To summarize, π : X̃ → X is a “gluing” of the maps πi : Ũi → Ui, with the distinction that
whereas each Ũi = Ui × {±1} is trivially disconnected (even if Ui is connected), it is less evident if
X̃ is connected or not. The map π is an example of a degree-2 covering map: it is surjective with
fibers of size 2, and (this is the key) over some opens that cover the target (such as the Ui’s) it
restricts to a “split covering” that is given by a product of the open target and a finite set of size
2 (in this case, π−1(Ui) ' Ũi = Ui × {±1} over Ui).

In fact, we claim that the Cp premanifold with corners X̃ must be disconnected. Let us first see
why this suffices to complete the proof of the lemma. Consider a non-trivial separation X̃ = U

∐
V

with nonempty open and closed sets U and V in X̃. The map π : X̃ → X is both open and closed
(as over each Ui ⊆ X the restriction πi : Ũi = Ui × {±1} → Ui is clearly open and closed), so
connectivity of X forces the non-empty U and V to each surject onto X (as each has non-empty
open and closed image). But U and V are disjoint and π : X̃ → X has all fibers of size exactly 2, so
the surjective map U → X must be bijective. Since π is a local Cp isomorphism, so is its bijective
restriction to the open subset U in X̃, whence the restriction of π to U is a Cp-isomorphism onto
X. Consider the inverse g : X ' U ⊆ X̃. On each Ui, this is a Cp section gi : Ui → Ui×{±1} to the
map πi, and so this section must be ui 7→ (ui, εi(ui)) for a locally constant function εi : Ui → {±1}.
Since gi|Ui∩Uj = g|Ui∩Uj = gj |Ui∩Uj , it follows from the role of the εij ’s in the definition of the gluing
data φij used to construct X̃ that these εi’s satisfy the required identities with respect to the εij ’s
on the double overlaps Ui ∩ Uj .

It remains to prove that X̃ is disconnected. We assume otherwise, so it is path-connected.
Choose x0 ∈ X, so π−1(x0) = {x, x′} for distinct points x, x′ ∈ X̃. Let σ̃ : [0, 1] → X̃ be a
continuous path with σ̃(0) = x and σ̃(1) = x′. Consider the continuous path σ = π ◦ σ̃ : [0, 1] → X
given by projecting σ̃ into X. Since π(x) = x0 = π(x′), σ is a closed path in X. Hence, it can
be continuously contracted to a constant path in X. We seek to deduce a contradiction from this
property. We first make a definition that isolates an important property of π:

Definition 5.1. A continuous map of non-empty topological spaces f : Y ′ → Y is a covering map
if Y has a covering by non-empty opens Ui such that there are homeomorphisms f−1(Ui) ' Ui×Si

over Ui for a discrete non-empty set Si. That is, f−1(Ui) is a disjoint (non-empty) union of open
and closed subsets on which the restriction of f is a homeomorphism onto Ui. If all fibers f−1(y)
has size n, we call f a degree-n covering map.

Example 5.2. The map π is a degree-2 covering map. An important example of a degree-n covering
map is the nth-power map C× → C× given by z 7→ zn. This latter example works because for
each of the n distinct nth roots w1, . . . , wn of each nonzero z0 ∈ C, each z near z0 admits a unique
nth root near each wj , and these local nth-roots are continuous functions that “split” f−1(D) for
a small disc D around z0.

The desired contradiction follows from:
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Theorem 5.3. Let f : Y ′ → Y be a covering map of topological spaces, and let σ′ : [0, 1] → Y ′

be a continuous map such that σ = f ◦ σ′ : [0, 1] → Y is a closed path. If σ can be continuously
contracted to a point in Y then σ′ must be a closed path: σ′(0) = σ′(1).

Proof. Let Φ : [0, 1] × [0, 1] → Y be the continuous map that encodes how to shrink σ to a point.
That is, Φ(0, t) = σ(t) for all t, Φ(1, t) ∈ Y is a fixed point independent of t, and Φ(z, 0) = Φ(z, 1)
for all z. We write σz : [0, 1] → Y to denote Φ(z, ·) for z ∈ [0, 1], so each σz is a closed path
(σz(0) = σz(1)) and we visualize {σz}z∈[0,1] as a 1-parameter family of paths in Y that describe
how σ is continuously deformed to a point in Y . We are given a continuous lifting σ′0 = σ′ of σ0 = σ
to Y ′ through f .

The hardest step in the proof is this: there exists a (unique) continuous Φ′ : [0, 1] × [0, 1] → Y ′

lifting Φ (in that f ◦ Φ′ = Φ) with Φ′(0, ·) = σ′. This follows from the important homotopy lifting
lemma from topology, which we discuss after the proof. Using Φ′, we get a continuous 1-parameter
family of paths {σ′z}z∈[0,1] lifting {σz}. This is proved in Theorem 5.4 below. Using Φ′, or rather
than paths σ′z, consider the two continuous “paths of endpoints” c0 : z 7→ σ′z(0) = Φ′(z, 0) and
c1 : z 7→ σ′z(1) = Φ′(z, 1) in Y ′. For each z we have

f(c0(z)) = f(σ′z(0)) = σz(0) = σz(1) = f(σ′z(1)) = f(c1(z)),

so c0 and c1 lift the same path in Y . Moreover, the initial endpoints c0(0) and c1(0) are given
by c0(0) = Φ′(0, 0) = σ′(0) and c1(0) = Φ′(0, 1) = σ′(1) since Φ′(0, ·) = σ′, so these are the
points we want to prove are equal. To prove such equality, we first explain why the final endpoints
c0(1) = σ′1(0) and c1(1) = σ′1(1) of c0 and c1 are equal. Note that f ◦ σ′1 = σ1 is a constant map
(!) with image equal to some point y ∈ Y , so σ′1([0, 1]) is contained in the fiber f−1(y) that is a
discrete space. But σ′1([0, 1]) is connected, so as a non-empty subset of a discrete space it must
consist of a single point. That is, σ′1(t) is independent of t. In particular, c0(1) = c1(1).

The two paths c0, c1 : [0, 1] ⇒ Y ′ project to the same path c = f ◦ c0 = f ◦ c1 in Y and satisfy
c0(1) = c1(1). From this we shall now show that c0 = c1, so in particular c0(0) = c1(0), as desired.
Let J ⊆ [0, 1] be the subset of points z ∈ [0, 1] such that c0|[z,1] = c1|[z,1], so 1 ∈ J . Thus, J is
a subinterval of [0, 1] containing 1. Consider z ≥ inf(J). Let U ⊆ Y be an open set around c(z)
over which f−1(U) is “split”: a disjoint union of copies of U , say f−1(U) ' U × S over U for a
discrete set S. By continuity of c : [0, 1] → Y , for for ε > 0 we have c(I) ⊆ U for the interval
I = (z − ε, z + ε) ∩ [0, 1], so c0 and c1 carry I into f−1(U) ' U × S. The images c0(I) and c1(I)
are connected, and so lie in U × {s0} and U × {s1} for some unique s0, s1 ∈ S. But c0(z) = c1(z)
if z ∈ J (e.g., if z = 1) and c0(z′) = c1(z′) for z′ ∈ (z, z + ε) ∩ [0, 1] ⊆ J if z < 1. Either way,
c0(I) meets c0(I), so s0 = s1. Hence, c0|I and c0|I are continuous maps from I into U × {s0} such
that their composites with f coincide. But f restricts to the “identity” from U × {s0} onto U , so
c0|I = c1|I . In view of the definition of I and the hypotheses on z, this forces (z− ε, z]∩ [0, 1] ⊆ J .
Hence, we conclude that J cannot have a positive infimum and that it contains its infimum. Thus,
J = [0, 1], so c0(0) = c1(0) as desired. �

It remains to explain how to construct Φ′ : [0, 1] × [0, 1] → Y ′ as used above. We first explain
why a continuous lifting Φ′ of Φ satisfying Φ′(0, 0) = σ′(0) must satisfy Φ′(0, ·) = σ′, so we may
therefore ignore σ′ (aside from the specification of Φ′(0, 0) ∈ f−1(Φ(0, 0))) in the construction of Φ′.
The continuous paths Φ′(0, ·) and σ′ in Y ′ project to the same path Φ(0, ·) = σ in Y and coincide at
t = 0, and we wish to get equality on [0, 1]. This proceeds by exactly the same “interval” argument
that we just used above to prove c0 = c1 given that c0(1) = c1(1) and f ◦ c0 = f ◦ c1; the only
difference is that instead of working across [0, 1] from right to left (using an infimum), we go from
left to right (using a supremum). Hence, it remains to prove:
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Theorem 5.4. Let f : Y ′ → Y be a covering map of topological spaces, and Φ : [0, 1]× [0, 1] → Y
a continuous map. Choose y′0 ∈ Y ′ lying over y0 = Φ(0, 0). There exists a unique continuous map
Φ′ : [0, 1]× [0, 1] → Y ′ satisfying Φ′(0, 0) = y′0 and f ◦ Φ′ = Φ.

This is the important homotopy lifting lemma from topology, and a proof can be found in any rea-
sonable introductory topology book. For example, see Lemmas 4.1 and 4.2 in section 8.4 of Munkres’
Topology for one version of the proof. (Munkres lifts the map across small squares in [0, 1]× [0, 1]
using the existence of local sections to the covering map, and he uses compact/connectedness to
work his way from the lower left corner across the entire domain. Another approach is to first
proving the lifting lemma for [0, 1], then continuously lift across the bottom edge followed by con-
tinuous lifts along all vertical directions, and then giving a direct proof that the resulting map is
really continuous on the square.)


