MATH 396. THE TOPOLOGISTS' SINE CURVE

We want to present the classic example of a space which is connected but not path-connected. Define

$$S = \{(x, y) \in \mathbf{R}^2 \mid y = \sin(1/x)\} \cup (\{0\} \times [-1, 1]) \subseteq \mathbf{R}^2,$$

so S is the union of the graph of $y = \sin(1/x)$ over x > 0, along with the interval [-1, 1] in the y-axis. Geometrically, the graph of $y = \sin(1/x)$ is a wiggly path that oscillates more and more frequently (between the lines $y = \pm 1$) as we get near the y-axis (more precisely, over the tiny interval $1/(2\pi(n+1)) \le x \le 1/(2\pi n)$ the function $\sin(1/x)$ goes through an entire wave).

We'll write S_+ and S_0 for these two parts of S (i.e., S_+ is the graph of $y = \sin(1/x)$ over x > 0 and $S_0 = \{0\} \times [-1, 1]$). It is clear that S_+ is path-connected (and hence connected), as is the graph of any continuous function (we use $t \mapsto (t, \sin(1/t))$ to define a path from [a, b] to join up $(a, \sin(1/a))$ and $(b, \sin(1/b))$ for any $0 < a \le b$, and then reparameterize the source variable to make our domain [0, 1]). We will show that S is connected but is not path-connected. Intuitively, a path from S_+ that tries to get onto the y-axis part of S cannot get there in finite time, due to the crazy wiggling of S_+ . Of course, we have to convert this idea into precise mathematics.

1. Connectedness of S

We begin with a lemma which shows how to recover S from S_+ . This will enable us to show that S is connected.

Lemma 1.1. The closure of S_+ in \mathbb{R}^2 is equal to S.

The point of the lemma is that we'll show the closure of a connected subset of a topological space is always connected, so the connectedness of S_+ and this lemma then implies the connectedness of S_- . The fact that S_- turns out to not be path-connected then shows that forming closure can destroy the property of path connectedness for subsets of a topological space (even a metric space).

Proof. To show that S lies in the closure of S_+ , we have to express each $p \in S$ as a limit of a sequence of points in S_+ . If $p \in S_+$ we use the constant sequence $\{p, p, \ldots\}$. If p = (0, y) with $|y| \le 1$, we argue as follows. Certainly $y = \sin(\theta)$ for some $\theta \in [-\pi, \pi]$, whence $y = \sin(\theta + 2n\pi)$ for all positive integers n. Thus, for $x_n = 1/(\theta + 2n\pi) > 0$ we have $\sin(1/x_n) = y$ for all n. Since $x_n \to 0$ as $n \to \infty$, we have $(x_n, \sin(1/x_n)) = (x_n, y) \to (0, y)$. Geometrically, this is the infinite sequence of points where the horizontal line through y cuts the graph of $\sin(1/x)$.

Now that we have shown that the set S containing S_+ lies inside the closure of S_+ , to show that it is the closure of S_+ we just have to show that S is closed (as the closure of S_+ in \mathbf{R}^2 is the unique minimal closed subset of \mathbf{R}^2 which contains S_+). Let $\{(x_n, y_n)\}$ be a sequence in S with limit $(x, y) \in \mathbf{R}^2$. We must prove $(x, y) \in S$. Since $x = \lim x_n$ and $y = \lim y_n$, we know that $x \ge 0$ and $|y| = \lim |y_n| \le 1$. If x = 0, then clearly $(x, y) = (0, y) \in S$ since $|y| \le 1$. If x > 0, then upon dropping the first few terms of the sequence we can assume $x_n > 0$ for all n. Then $(x_n, y_n) \in S$ must lie on S_+ , so $y_n = \sin(1/x_n)$. Since the function $t \mapsto \sin(1/t)$ on $(0, \infty)$ is continuous, from the condition $x_n \to x$ we conclude

$$y = \lim y_n = \lim \sin(1/x_n) = \sin(1/x).$$

Thus, $(x, y) \in S_+ \subseteq S$ once again.

Thanks to the lemma, the connectedness of S is an immediate consequence of the following general fact (applied to the topological space \mathbb{R}^2 and the connected subset S_+):

Theorem 1.2. Let X be a topological space and Y a connected subset. Then the closure \overline{Y} of Y in X is connected.

Proof. Without loss of generality, $Y \neq \emptyset$. Suppose that $\{U,V\}$ is a separation of \overline{Y} . That is, U and V are disjoint opens of \overline{Y} with union equal to \overline{Y} . We want one of them to be empty. The intersections $U' = U \cap Y$ and $V' = V \cap Y$ give a separation of Y (why?), so by connectedness of Y we have that one of U' or V' is empty and the other is equal to Y. Without loss of generality, we may suppose U' = Y and $V' = \emptyset$.

Since U is closed in \overline{Y} , it has the form $U = \overline{Y} \cap Z$ for some closed subset Z in X. But $Y = U' \subseteq U \subseteq Z$, so by closedness of Z it follows that $\overline{Y} \subseteq Z$. Then

$$U = \overline{Y} \cap Z = \overline{Y},$$

and by disjointness V must then be empty. Hence, \overline{Y} indeed has no non-trivial separations, so it is connected.

2. S is not path-connected

Now that we have proven S to be connected, we prove it is not path-connected. More specifically, we will show that there is no continuous function $f:[0,1]\to S$ with $f(0)\in S_+$ and $f(1)\in S_0=\{0\}\times[-1,1]$. Assuming such an f exists, we will deduce a contradiction. Thanks to path-connectedness of S_0 , we can extend our path to suppose f(1)=(0,1). Choose $\varepsilon=1/2>0$. By continuity, for some small $\delta>0$ we have ||f(t)-(0,1)||<1/2 whenever $1-\delta\leq t\leq 1$. If you draw the picture, you'll see that the graph of $\sin(1/x)$ keeps popping out of the disc around (0,1) of radius 1/2, and that will contradict the existence of a continuous path f.

To be precise, consider the image $f([1-\delta,1])$, which must be connected since f is continuous and $[1-\delta,1]$ is connected. Let $f(1-\delta)=(x_0,y_0)$. Consider the composite of $f:[1-\delta,1]\to \mathbf{R}^2$ and projection to the x-axis. Both such maps are continuous, hence so is their composite, so the image of the composite map is a connected subset of \mathbf{R} which contains 0 (the x-coordinate of f(1)) and x_0 (the x-coordinate of $f(1-\delta)$). But since connected subsets of \mathbf{R} must be intervals, it follows that the set of x-coordinates of points in $f([1-\delta,1])$ includes the entire interval $[0,x_0]$. Thus, for all $x_1 \in (0,x_0]$ there exists $t \in [1-\delta,1]$ such that $f(t)=(x_1,\sin(1/x_1))$.

In particular, if $x_1 = 1/(2n\pi - \pi/2)$ for large n then $0 < x_1 < x_0$ yet $\sin(1/x_1) = \sin(-\pi/2) = -1$. Thus, the point $(1/(2n\pi - \pi/2), -1)$ has the form f(t) for some $t \in [1 - \delta, 1]$, and hence this point lies within a distance of 1/2 from the point (0, 1). But that's a contradiction, since the distance from $(1/(2n\pi - \pi/2), -1)$ to (0, 1) clearly at least 2 (as is the distance between any point on the line y = 1 and any other point on the line y = -1).