
Math 396. The topologists’ sine curve

We want to present the classic example of a space which is connected but not path-connected.
Define

S = {(x, y) ∈ R2 | y = sin(1/x)} ∪ ({0} × [−1, 1]) ⊆ R2,

so S is the union of the graph of y = sin(1/x) over x > 0, along with the interval [−1, 1] in the
y-axis. Geometrically, the graph of y = sin(1/x) is a wiggly path that oscillates more and more
frequently (between the lines y = ±1) as we get near the y-axis (more precisely, over the tiny
interval 1/(2π(n+ 1)) ≤ x ≤ 1/(2πn) the function sin(1/x) goes through an entire wave).

We’ll write S+ and S0 for these two parts of S (i.e., S+ is the graph of y = sin(1/x) over x > 0
and S0 = {0} × [−1, 1]). It is clear that S+ is path-connected (and hence connected), as is the
graph of any continuous function (we use t 7→ (t, sin(1/t)) to define a path from [a, b] to join up
(a, sin(1/a)) and (b, sin(1/b)) for any 0 < a ≤ b, and then reparameterize the source variable to
make our domain [0, 1]). We will show that S is connected but is not path-connected. Intuitively,
a path from S+ that tries to get onto the y-axis part of S cannot get there in finite time, due to
the crazy wiggling of S+. Of course, we have to convert this idea into precise mathematics.

1. Connectedness of S

We begin with a lemma which shows how to recover S from S+. This will enable us to show
that S is connected.
Lemma 1.1. The closure of S+ in R2 is equal to S.

The point of the lemma is that we’ll show the closure of a connected subset of a topological space
is always connected, so the connectedness of S+ and this lemma then implies the connectedness of
S. The fact that S turns out to not be path-connected then shows that forming closure can destroy
the property of path connectedness for subsets of a topological space (even a metric space).

Proof. To show that S lies in the closure of S+, we have to express each p ∈ S as a limit of a
sequence of points in S+. If p ∈ S+ we use the constant sequence {p, p, . . . }. If p = (0, y) with
|y| ≤ 1, we argue as follows. Certainly y = sin(θ) for some θ ∈ [−π, π], whence y = sin(θ + 2nπ)
for all positive integers n. Thus, for xn = 1/(θ + 2nπ) > 0 we have sin(1/xn) = y for all n. Since
xn → 0 as n → ∞, we have (xn, sin(1/xn)) = (xn, y) → (0, y). Geometrically, this is the infinite
sequence of points where the horizontal line through y cuts the graph of sin(1/x).

Now that we have shown that the set S containing S+ lies inside the closure of S+, to show that
it is the closure of S+ we just have to show that S is closed (as the closure of S+ in R2 is the
unique minimal closed subset of R2 which contains S+). Let {(xn, yn)} be a sequence in S with
limit (x, y) ∈ R2. We must prove (x, y) ∈ S. Since x = limxn and y = lim yn, we know that x ≥ 0
and |y| = lim |yn| ≤ 1. If x = 0, then clearly (x, y) = (0, y) ∈ S since |y| ≤ 1. If x > 0, then upon
dropping the first few terms of the sequence we can assume xn > 0 for all n. Then (xn, yn) ∈ S
must lie on S+, so yn = sin(1/xn). Since the function t 7→ sin(1/t) on (0,∞) is continuous, from
the condition xn → x we conclude

y = lim yn = lim sin(1/xn) = sin(1/x).

Thus, (x, y) ∈ S+ ⊆ S once again. �

Thanks to the lemma, the connectedness of S is an immediate consequence of the following
general fact (applied to the topological space R2 and the connected subset S+):
Theorem 1.2. Let X be a topological space and Y a connected subset. Then the closure Y of Y
in X is connected.
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Proof. Without loss of generality, Y 6= ∅. Suppose that {U, V } is a separation of Y . That is, U
and V are disjoint opens of Y with union equal to Y . We want one of them to be empty. The
intersections U ′ = U ∩ Y and V ′ = V ∩ Y give a separation of Y (why?), so by connectedness of Y
we have that one of U ′ or V ′ is empty and the other is equal to Y . Without loss of generality, we
may suppose U ′ = Y and V ′ = ∅.

Since U is closed in Y , it has the form U = Y ∩ Z for some closed subset Z in X. But
Y = U ′ ⊆ U ⊆ Z, so by closedness of Z it follows that Y ⊆ Z. Then

U = Y ∩ Z = Y ,

and by disjointness V must then be empty. Hence, Y indeed has no non-trivial separations, so it
is connected. �

2. S is not path-connected

Now that we have proven S to be connected, we prove it is not path-connected. More specifically,
we will show that there is no continuous function f : [0, 1] → S with f(0) ∈ S+ and f(1) ∈
S0 = {0} × [−1, 1]. Assuming such an f exists, we will deduce a contradiction. Thanks to path-
connectedness of S0, we can extend our path to suppose f(1) = (0, 1). Choose ε = 1/2 > 0. By
continuity, for some small δ > 0 we have ||f(t) − (0, 1)|| < 1/2 whenever 1 − δ ≤ t ≤ 1. If you
draw the picture, you’ll see that the graph of sin(1/x) keeps popping out of the disc around (0, 1)
of radius 1/2, and that will contradict the existence of a continuous path f .

To be precise, consider the image f([1−δ, 1]), which must be connected since f is continuous and
[1 − δ, 1] is connected. Let f(1 − δ) = (x0, y0). Consider the composite of f : [1 − δ, 1] → R2 and
projection to the x-axis. Both such maps are continuous, hence so is their composite, so the image
of the composite map is a connected subset of R which contains 0 (the x-coordinate of f(1)) and
x0 (the x-coordinate of f(1 − δ)). But since connected subsets of R must be intervals, it follows
that the set of x-coordinates of points in f([1− δ, 1]) includes the entire interval [0, x0]. Thus, for
all x1 ∈ (0, x0] there exists t ∈ [1− δ, 1] such that f(t) = (x1, sin(1/x1)).

In particular, if x1 = 1/(2nπ−π/2) for large n then 0 < x1 < x0 yet sin(1/x1) = sin(−π/2) = −1.
Thus, the point (1/(2nπ − π/2),−1) has the form f(t) for some t ∈ [1− δ, 1], and hence this point
lies within a distance of 1/2 from the point (0, 1). But that’s a contradiction, since the distance
from (1/(2nπ − π/2),−1) to (0, 1) clearly at least 2 (as is the distance between any point on the
line y = 1 and any other point on the line y = −1).


