MATH 396. THE TOPOLOGISTS’ SINE CURVE

We want to present the classic example of a space which is connected but not path-connected.

Define

S ={(z,y) € R*|y =sin(1/x)} U ({0} x [-1,1]) C R?,
so S is the union of the graph of y = sin(1/x) over z > 0, along with the interval [—1,1] in the
y-axis. Geometrically, the graph of y = sin(1/z) is a wiggly path that oscillates more and more
frequently (between the lines y = +1) as we get near the y-axis (more precisely, over the tiny
interval 1/(2n(n + 1)) <z < 1/(27n) the function sin(1/z) goes through an entire wave).

We'll write S; and Sy for these two parts of S (i.e., S, is the graph of y = sin(1/x) over > 0
and So = {0} x [—1,1]). It is clear that Sy is path-connected (and hence connected), as is the
graph of any continuous function (we use t — (t¢,sin(1/t)) to define a path from [a,b] to join up
(a,sin(1/a)) and (b,sin(1/b)) for any 0 < a < b, and then reparameterize the source variable to
make our domain [0, 1]). We will show that S is connected but is not path-connected. Intuitively,
a path from S, that tries to get onto the y-axis part of S cannot get there in finite time, due to
the crazy wiggling of S;.. Of course, we have to convert this idea into precise mathematics.

1. CONNECTEDNESS OF S

We begin with a lemma which shows how to recover S from S;. This will enable us to show
that S is connected.

Lemma 1.1. The closure of Sy in R? is equal to S.

The point of the lemma is that we’ll show the closure of a connected subset of a topological space
is always connected, so the connectedness of S; and this lemma then implies the connectedness of
S. The fact that S turns out to not be path-connected then shows that forming closure can destroy
the property of path connectedness for subsets of a topological space (even a metric space).

Proof. To show that S lies in the closure of S;, we have to express each p € S as a limit of a
sequence of points in Sy. If p € S; we use the constant sequence {p,p,...}. If p = (0,y) with
ly| < 1, we argue as follows. Certainly y = sin(6) for some 6 € [—m, 7], whence y = sin(f + 2nm)
for all positive integers n. Thus, for x,, = 1/(0 + 2nm) > 0 we have sin(1/z,) = y for all n. Since
zn, — 0 as n — oo, we have (x,,sin(1l/x,)) = (zn,y) — (0,y). Geometrically, this is the infinite
sequence of points where the horizontal line through y cuts the graph of sin(1/x).

Now that we have shown that the set S containing S, lies inside the closure of S, to show that
it is the closure of Sy we just have to show that S is closed (as the closure of S, in R? is the
unique minimal closed subset of R? which contains S, ). Let {(x,,y.)} be a sequence in S with
limit (x,y) € R% We must prove (x,y) € S. Since z = limz,, and y = limy,,, we know that z > 0
and |y| = lim |y,| < 1. If x = 0, then clearly (z,y) = (0,y) € S since |y| < 1. If > 0, then upon
dropping the first few terms of the sequence we can assume z,, > 0 for all n. Then (z,,y,) € S
must lie on Sy, so y, = sin(1/z,). Since the function ¢ — sin(1/t) on (0,00) is continuous, from
the condition x,, — = we conclude

y = limy,, = limsin(1/z,) = sin(1/x).
Thus, (z,y) € S+ C S once again. [ |
Thanks to the lemma, the connectedness of S is an immediate consequence of the following

general fact (applied to the topological space R? and the connected subset S, ):

Theorem 1.2. Let X be a topological space and Y a connected subset. Then the closure Y of Y
in X 1s connected.
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Proof. Without loss of generality, Y # (). Suppose that {U,V} is a separation of Y. That is, U
and V are disjoint opens of Y with union equal to Y. We want one of them to be empty. The
intersections U' = UNY and V' =V NY give a separation of Y (why?), so by connectedness of Y’
we have that one of U’ or V' is empty and the other is equal to Y. Without loss of generality, we
may suppose U' =Y and V' = 0.

Since U is closed in Y, it has the form U = Y N Z for some closed subset Z in X. But
Y =U' CU C Z, so by closedness of Z it follows that Y C Z. Then

U=YNZ=Y,

and by disjointness V must then be empty. Hence, Y indeed has no non-trivial separations, so it
is connected. u

2. § IS NOT PATH-CONNECTED

Now that we have proven S to be connected, we prove it is not path-connected. More specifically,
we will show that there is no continuous function f : [0,1] — S with f(0) € Sy and f(1) €
So = {0} x [~1,1]. Assuming such an f exists, we will deduce a contradiction. Thanks to path-
connectedness of Sy, we can extend our path to suppose f(1) = (0,1). Choose ¢ = 1/2 > 0. By
continuity, for some small 6 > 0 we have | f(t) — (0,1)] < 1/2 whenever 1 —¢ < ¢ < 1. If you
draw the picture, you’ll see that the graph of sin(1/z) keeps popping out of the disc around (0, 1)
of radius 1/2, and that will contradict the existence of a continuous path f.

To be precise, consider the image f([1 —J, 1]), which must be connected since f is continuous and
[1 —4,1] is connected. Let f(1 — &) = (x0,%0). Consider the composite of f : [1 —J,1] — R? and
projection to the x-axis. Both such maps are continuous, hence so is their composite, so the image
of the composite map is a connected subset of R which contains 0 (the z-coordinate of f(1)) and
xo (the z-coordinate of f(1 — 9)). But since connected subsets of R must be intervals, it follows
that the set of x-coordinates of points in f([1 — 4, 1]) includes the entire interval [0, zo]. Thus, for
all z; € (0, o] there exists ¢t € [1 — 4, 1] such that f(t) = (z1,sin(1/x1)).

In particular, if x1 = 1/(2nm—7/2) for large n then 0 < 1 < xg yet sin(1/z1) = sin(—n/2) = —1.
Thus, the point (1/(2nm — 7/2), —1) has the form f(¢) for some ¢t € [1 — 4, 1], and hence this point
lies within a distance of 1/2 from the point (0,1). But that’s a contradiction, since the distance
from (1/(2nm — w/2),—1) to (0,1) clearly at least 2 (as is the distance between any point on the
line y = 1 and any other point on the line y = —1).



