
Math 396. Derivative maps, parametric curves, and velocity vectors

Let (X ′,O ′) and (X,O) be two Cp premanifolds with corners, 1 ≤ p ≤ ∞, and let F : X ′ → X
be a Cp mapping. Let ξ′ ∈ X ′ be a point and let ξ = F (ξ′). In class we saw how to define a
linear mapping dF (ξ′) : Tξ′(X ′)→ Tξ(X); explicitly, if ~v′ ∈ Tξ′(X ′) is a tangent vector (so it is a
point-derivation ~v′ : O ′ξ′ → R) then we define

(dF (ξ′))(~v′) = ~v′ ◦ F ∗ : Oξ → R

with F ∗ : Oξ → O ′ξ′ the “pullback map” defined on germs via f 7→ f ◦F . More precisely, for a germ
[(W, f)]ξ at ξ′ we define F ∗([(W, f)]ξ) = [(F−1(W ), f ◦ F )]ξ′ ∈ O ′ξ′ , and one easily checks that this
latter definition is well-posed in the sense that it really does not depend on the representative pair
(W, f) for the chosen germ at ξ. (This may look complicated but it is not so: all we’re saying is
that for a function f near ξ, the germ of the composite f ◦ F at ξ′ only depends on the germ of f
on ξ, which is rather obvious if you unwind what it is saying.) Strictly speaking, the notation F ∗ is
a bit abusive since it also depends on the points ξ′ and ξ = F (ξ′), but the notation F ∗ξ′,ξ would be
too cumbersome. Context will make clear the intended points at which we are considering germs.

In class it was shown that ~v′ ◦F ∗ : Oξ → R is indeed a point-derivation at ξ (so it lies in Tξ(X)),
and that the resulting map of sets dF (ξ′) : Tξ′(X ′)→ Tξ(X) sending ~v′ to ~v′ ◦F ∗ is R-linear. Our
aim in this handout is to record proofs of some properties of this derivative mapping, essentially
saying that it is a generalization of the classical theory of derivative mappings associated to Cp

maps between opens in sectors in vector spaces. As an important application, we will define the
concept of velocity vectors to parameterized Cp curves. This is a notion of fundamental importance
in differential geometry, as we shall see later (and as should hardly be a surprise, in view of the
prominence of velocity vectors in all geometrical problems in physics).

1. Properties of derivative mappings

Let (U ′, ϕ′) and (U,ϕ) be respective Cp charts around ξ′ and ξ in X ′ and X, with ϕ′ : U ′ '
ϕ′(U ′) ⊆ Σ′ ⊆ Rn′ and ϕ : U ' ϕ(U) ⊆ Σ ⊆ Rn having respective component functions ϕ′ =
(x1, . . . , xn′) and ϕ = (y1, . . . , yn) on the source and target. Thus, Tξ′(X ′) has the ordered basis
{∂xj |ξ′} and Tξ(X) has the ordered basis {∂yi |ξ}. It is natural to ask for the matrix of the linear
map dF (ξ′) : Tξ′(X ′)→ Tξ(X) with respect to these ordered bases.

On the open set U ′ ∩ F−1(U) ⊆ U ′ around ξ′, let Fj = yj ◦ F ∈ O ′(U ′ ∩ F−1(U)). Note that
Fj ∈ O ′(U ′ ∩ F−1(U))) (i.e., it is a Cp function on this open set) precisely because F is a Cp

mapping! In particular, it makes sense to compute (∂Fi/∂xj)(ξ′) for all j. In the classical setup,
such evaluated partials of the component functions of the mapping (defined via the target linear
coordinates) with respect to the source linear coordinates are the entries in the matrix for the
classical derivative mapping. Happily, the same holds in general:

Theorem 1.1. The matrix of dF (ξ′) : Tξ′(X ′)→ Tξ(X) with respect to the ordered bases {∂xj |ξ′}
and {∂yi |ξ} is ((∂Fi/∂xj)(ξ′)). That is,

dF (ξ′) : ∂xj |ξ′ 7→
∑
i

∂Fi
∂xj

(ξ′)∂yi |ξ.

Proof. As can hardly be a surprise, once we strip away the definitions this theorem will ultimately
reduce to the classical theorem on Jacobian matrices for derivative mappings (in the special case
when the second mapping takes values in R). By the definition of dF (ξ′), the proposed formula
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says

∂xj |ξ′ ◦ F ∗
?=
∑
i

∂Fi
∂xj

(ξ′)∂yi |ξ

in Tξ(X); that is, this is a proposed equality of point-derivations Oξ → R. To verify it, we simply
evaluate both sides on an arbitrary germ f ∈ Oξ. The value of the left side on f is

∂xj (F
∗(f))(ξ′) = (∂xj (f ◦ F ))(ξ′) = (∂j((f ◦ F ) ◦ ϕ′−1))(ϕ′(ξ′)) = (∂j(f ◦ F ◦ ϕ′−1))(ϕ′(ξ′))

and the value of the right side on f is∑
i

(∂xjFi)(ξ
′) · (∂yjf)(ξ) =

∑
i

(∂j(Fi ◦ ϕ′−1))(ϕ′(ξ′)) · (∂i(f ◦ ϕ′−1))(ϕ(ξ)).

Let H = ϕ ◦ F ◦ ϕ′−1 on the open set W ′ = ϕ′(U ′ ∩ ϕ−1(U)) in Σ′ ⊆ Rn′ , and let h = f ◦ ϕ−1

on the open set W = ϕ(U) in Σ ⊆ Rn. Hence, H : W ′ →W is a Cp mapping in the classical sense
(why?) between opens in sectors in Euclidean spaces and it carries the point w′ = ϕ′(ξ′) ∈ W ′ to
the point w = ϕ(F (ξ′)) = ϕ(ξ) ∈ W . Also, h is a Cp function on W in the classical sense (why?).
The component functions Hi of H are exactly the functions Fi ◦ ϕ′−1, so the proposed identity
becomes

∂j(h ◦H)(w) ?=
∑
i

(∂jHi)(w) · (∂ih)(H(w)) =
∑
i

(∂ih)(H(w)) · (∂jHi)(w).

The equality of the outer terms for all j is exactly the entrywise equality that encodes the classical
Chain Rule D(h ◦H)(w) = Dh(H(w)) ◦DH(w). �

In the setting of abstract Cp premanifolds with corners, the Chain Rule is:
Theorem 1.2. Let G : X ′′ → X ′ and F : X ′ → X be Cp mappings between Cp premanifolds
with corners, 1 ≤ p ≤ ∞. For any point ξ′′ ∈ X ′′ with G(ξ′′) = ξ′ ∈ X ′ and F (ξ′) = ξ ∈ X, the
composite linear mapping

(dF )(G(ξ′′)) ◦ dG(ξ′′) : Tξ′′(X ′′)→ Tξ′(X ′)→ Tξ(X)

is equal to d(F ◦G)(ξ′′).

Proof. We choose a tangent vector ~v′′ ∈ Tξ′′(X ′′), so we want to prove

(d(F ◦G)(ξ′′))(~v′′) = (dF (G(ξ′′)))((dG(ξ′′))(~v′′))

in Tξ(X). This is an equality of point derivations Oξ → R, and by the definitions of the derivative
mappings the left side is ~v′′ ◦ (F ◦G)∗ and the right side is (~v′′ ◦G∗) ◦ F ∗ = ~v′′ ◦ (G∗ ◦ F ∗). Hence,
it suffices to show that the composite of the mappings F ∗ : Oξ → O ′ξ′ and G∗ : O ′ξ′ → O ′′ξ′′ is equal
to (F ◦G)∗; that is, (F ◦G)∗ = G∗ ◦ F ∗ (note the order of F and G on the two sides!). These are
mappings from Oξ to R, so we evaluate on an arbitrary germ f ∈ Oξ:

(G∗ ◦ F ∗)(f) = G∗(F ∗(f)) = G∗(f ◦ F ) = (f ◦ F ) ◦G = f ◦ (F ◦G) = (F ◦G)∗(f).

(Observe the similarity with the proof of the identity (T ◦ T ′)∨ = T ′∨ ◦ T∨ for composites of dual
linear mappings.) �

We give two interesting examples of derivative mappings, illustrating how the general theory
interacts with the classical one on opens in (sectors in) vector spaces when these are viewed as
manifolds (with corners).
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Example 1.3. Let V be a finite-dimensional vector space and let L : V → V be an R-linear map and
v0 ∈ V a fixed element. Let M : V → V be the map v 7→ L(v)+v0; this is “affine linear” (composite
of a linear map and a translation). Let X = V as a Cp manifold in the usual manner (1 ≤ p ≤ ∞),
and let ξ ∈ X be a point. As we saw in class, there is a natural linear isomorphism iξ : V ' Tξ(X)
that sends v ∈ V to the directional derivative operator Dv,ξ on germs of Cp functions on V at ξ.
There is likewise a natural linear isomorphism iM(ξ) : V ' TM(ξ)(X). But we also have a derivative
mapping dM(ξ) : Tξ(X)→ TM(ξ)(X), so it is natural to ask how to explicitly fill in a commutative
square

Tξ(X)
dM(ξ)// TM(ξ)(X)

V

iξ '

OO

??
// V

iM(ξ)'

OO

The mystery map has to be i−1
M(ξ) ◦dM(ξ)◦ iξ, and this is a linear map, so the problem is this: make

the linear map explicit. The mystery linear map cannot be M in general, since M is not linear (due
to the intervention of v0, which may not be zero). It is reasonable to guess that the map ought
to be L, and indeed it is. The intuitive meaning of this “absence” of v0 in the description is that,
roughly speaking, the linear isomorphism iξ : V ' Tξ(X) for ξ ∈ X = V is “translation-invariant”
in ξ. (The theory of connections on vector bundles later in the course will clarify the true meaning
of this fact.)

To verify the claim, we have to check dM(ξ) ◦ iξ = iM(ξ) ◦L since iM(ξ) is a linear isomorphism.
We pick v ∈ V , and we want to show that (dM(ξ))(iξ(v)) and iM(ξ)(Lv) in TM(ξ)(X) agree, which
is to say that as point derivations on OM(ξ) they agree. We just have to evaluate each on an
arbitrary germ f ∈ OM(ξ) and check that we get the same values. By definition,

((dM(ξ))(iξ(v)))(f) = (iξ(v))(f ◦M) = Dv,ξ(f ◦M) = (D(f ◦M)(ξ))(v)

and
(iM(ξ)(Lv))(f) = DLv,M(ξ)(f) = (Df(M(ξ)))(Lv) = ((Df(M(ξ))) ◦ L)(v),

so we want D(f ◦M)(ξ) = (Df(M(ξ)))◦L as linear maps from V to V . By the old Chain Rule, the
left side is (Df(M(ξ))) ◦DM(ξ), so we want DM(ξ) = L for all ξ ∈ V . Since M(x) = L(x) + v0

for all x ∈ V , by the definition of the classical derivative mapping we have

M(ξ + h) = L(ξ + h) + v0 = (L(ξ) + v0) + Lh = M(ξ) + Lh

with vanishing error term, so certainly DM(ξ) = L.
Example 1.4. We now push the preceding analysis a bit further by making the precise link between
our new theory of derivative mappings on tangent spaces and the old theory of derivative mappings
on ambient vector spaces for manifolds (with corners) that are open (in sectors) in vector spaces.
Let V and V ′ be finite-dimensional vector spaces and let Σ ⊆ V and Σ′ ⊆ V ′ be sectors. Let X ⊆ Σ
and X ′ ⊆ Σ′ be open subsets endowed with their natural Cp-structures. Let F : X ′ → X be a
Cp map, and let ξ′ ∈ X ′ be a point with image ξ = F (ξ′) ∈ X. We have the new abstract linear
map dF (ξ′) : Tξ′(X ′)→ Tξ(X) via the theory of premanifolds with corners and the old linear map
DF (ξ′) : V ′ → V via the theory of calculus on opens in sectors in vector spaces. If the old and
new theories are to be related to each other, these maps had better be “the same”. Since they are
maps between rather different-looking vector spaces (in the first case depending on ξ′ and ξ, and
in the second case not at all), to make sense of such “sameness” we have to first linearly identify
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the source vector spaces and target vector spaces. But we have already seen how to do this: the
“directional derivative” procedure from class provides us with natural linear isomorphisms

iξ′ : V ′ ' Tξ′(X ′), iξ : V ' Tξ(X),

and so the desired agreement of theories of derivative mappings is that the diagram

Tξ′(X ′)
dF (ξ′)// Tξ(X)

V ′

iξ′ '

OO

DF (ξ′)
// V

iξ'

OO

commutes.
To verify such commutativity, we pick v′ ∈ V ′ and chase it around the square. That is, we want

(dF (ξ′))(iξ′(v′)) = iξ((DF (ξ′))(v′))

in Tξ(X), which is an equality of point derivations at ξ. Thus, we pick an arbitrary germ f ∈ Oξ

and we want to show both sides have the same value on f . The left side has value

(iξ′(v′) ◦ F ∗)(f) = (iξ′(v′))(f ◦ F ) = Dv′,ξ′(f ◦ F ) = (D(f ◦ F )(ξ′))(v′)

and the right side has value

D(DF (ξ′))(v′),ξ(f) = (Df(ξ))((DF (ξ′))(v′)),

so it suffices to prove D(f ◦ F )(ξ′) : V ′ → R is equal to (Df(ξ)) ◦ (DF (ξ′)), and since ξ = F (ξ′)
this is just the old Chain Rule on opens in sectors in vector spaces.

2. Parametric curves and velocity vectors

Let X be a Cp premanifold with corners, 0 ≤ p ≤ ∞. A parameterized Cp curve at ξ ∈ X is
a Cp map c : I → X with I ⊆ R a nontrivial interval (not a point or the empty set), 0 ∈ I, and
c(0) ∈ ξ. Usually it is also required that 0 be on the interior of I when ξ 6∈ ∂X. We emphasize that
a parameterized curve is the data of the mapping c and it may not be injective or (even for p =∞)
have “smooth” image (e.g., c(t) = (t2, t3) has image equal to the locus y2 = x3 in the plane that has
a “cusp” at the origin). If we work with the interval Ĩ = (1/2)I and the mapping c̃(t) = c(2t) that
“moves twices as quickly” then we consider it to be a different parameterized curve even though
the image sets c(I), c̃(Ĩ) ⊆ X coincide.

It is not possible to assign a good notion of velocity vector at a point on a “curve” without the
data of a parameterization; think about the physical meaning of this statement (the path of motion
does not know how quickly the particle is moving, but the velocity vectors at each time sure do!).
This leads to use a very important definition:

Definition 2.1. Let J ⊆ R be a nontrivial interval and let c : J → X be a Cp mapping. For each
t0 ∈ J , the velocity vector to c at t0 is

c′(t0) def= dc(t0)(∂t|t0) ∈ Tc(t0)(X)

where ∂t|t0 ∈ Tt0(J) is the canonical basis vector (sending a Cp germ f at t0 to the old-fashioned
derivative f ′(t0) in the sense of calculus).
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Note that c′(t0) lies in Tc(t0)(X), which is the right place for it to be (think about it!), and if
c(t1) and c(t0) are equal to a common point ξ ∈ X for some t1 6= t0 then it could happen that
c′(t1) 6= c′(t0) in Tξ(X); that is, if the curve has self-intersection in X then as it passes through the
same point ξ several times it may do so with different velocity vectors at each time. The notion of
velocity vector is best illustrated with a few examples to convince us that it is the “right” definition.
Example 2.2. Let us first consider the most classical case with X an open set in a sector Σ in
V = Rn. In this case, the Cp mapping c : J → X is exactly a Cp mapping from J to V = Rn

whose image is set-theoretically contained in X, and so c is described by an ordered n-tuple of
Cp functions c(t) = (c1(t), . . . , cn(t)) with ci = xi ◦ c : J → R a Cp function for each 1 ≤ i ≤ n
(here, x1, . . . , xn are the standard coordinate functions on Rn, considered as Cp functions on X
via restriction). By Theorem 1.1 applied to F = c and the standard coordinate t on J and the
standard coordinates x1, . . . , xn on X, for each t0 ∈ J we compute

c′(t0) = dc(t0)(∂t|t0) =
∑
j

∂cj
∂t

(t0) · ∂

∂xj
|c(t0) =

∑
j

c′j(t0)∂xj |c(t0) ∈ Tc(t0)(X).

For any ξ ∈ X the canonical isomorphism

Rn = V ' Tξ(Σ) = Tξ(X)

carries the jth standard basis vector ej to ∂xj |ξ (why?), so for ξ = c(t0) it carries ej to ∂xj |c(t0).
Hence, the natural linear isomorphism Tc(t0)(X) ' V = Rn carries c′(t0) to

∑
j c
′
j(t0)ej =

(c′1(t0), . . . , c′n(t0)) ∈ Rn. This thereby recovers the “classical” ad hoc method for computing
the velocity vector to a parameteric curve in (a sector in) Euclidean space via componentwise dif-
ferentiation, and it helps us to see the fundamental advantage brought in through the manifold
perspective: we see that the velocity vector c′(t0) really belongs to the vector space Tc(t0)(X) that
depends on c(t0). This is the modern translation of the classical idea that the velocity vector
to a parameterized curve at a point should be “based at” the point. The natural isomorphisms
iξ : V ' Tξ(X) for ξ = c(t) with varying t provide the dictionary that relates the modern definitions
with the classical calculations of all velocity vectors as ordered n-tuples in a common Euclidean
space V = Rn.
Example 2.3. Let c : R = J → X = R2 be the map c(t) = (cos t, sin t). This is a smooth curve
(considering X = R2 as a smooth manifold in the usual manner), and at any t0 the velocity vector
is

c′(t0) = c′1(t0)∂x|c(t0) + c′2(t0)∂y|c(t0) = − sin(t0)∂x|c(t0) + cos(t0)∂y|c(t0).

Since c(t0) = (cos(t0), sin(t0)) we see that this is ∂θ|c(t0) as it “should” be (a “unit vector” point in
the “θ-direction”)!

In this example, whenever c(t0) and c(t1) are equal to a common point ξ = (a, b) on the circle
x2 + y2 = 1 in R2, we have c′(t0) = c′(t1) in Tξ(R2) since each is equal to the tangent vector
−b∂x|ξ + a∂y|ξ at ξ that is determined by the standard coordinates of ξ. That is, as c retraces
itself it always does so with the same velocity vector. However, this is just a quirk of the special
parameterization; if we use c(t) = (cos(t3), sin(t3)) then we trace out the same path in the same
cyclic pattern but at wildly varying speeds (and when c(t0) = c(t1) with t0 6= t1 we always have
c′(t0) 6= c′(t1) in the common tangent space where these velocity vectors live).
Example 2.4. Consider the smooth parameterized curve c : R = I → X = R2 given by c(t) =
(t2, t3). This is called a “smooth” parameterized curve because the mapping c is C∞, thought note
that the image is “bad”: it is the locus y2 = x3 that has a cuspidal singularity at (0, 0) (and in
terminology to be defined later, it is not a smooth submanifold of R2 near the point (0, 0)). The
velocity vector at any t is c′(t) = 2t∂x|c(t) + 3t2∂y|c(t). Note that this is always nonzero except for
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at precisely the time t = 0 which is exactly the time when c(t) is equal to the point (0, 0) that looks
problematic on the image of c. It will later be made clear why this is not a coincidence.
Example 2.5. Finally, consider the parameterized smooth curve c : R → R2 defined by c(t) =
(t2, t(t2− 1)). This curve lives in the right half-plane x ≥ 0 and is symmetric about the x-axis. For
t→ −1− it approaches the point c(−1) = (1, 0) from the lower right, after which it loops around to
the origin (at t = 0) to then return to the point c(1) = (1, 0) now aiming in the trajectory pointing
to the upper right. Explicitly, the velocity vector at any time t is c′(t) = 2t∂x|c(t) + (3t2 − 1)∂y|c(t)
and a direct calculation shows that c′(t) 6= 0 for all t. Note in particular that for t = ±1 we get
different velocity vectors at the common point c(1) = c(−1) = (1, 0):

c′(−1) = −2∂x|(1,0) + 2∂y|(1,0), c
′(1) = 2∂x|(1,0) + 2∂y|(1,0)

in T(1,0)(R2). These have the same vertical components but have opposite horizontal components.
Velocity vectors are very well-behaved with respect to Cp mappings:

Lemma 2.6. Let F : X ′ → X be a Cp mapping between Cp premanifolds with corners, 1 ≤ p ≤ ∞,
and let c : J → X ′ be a parameterized Cp curve, so F◦c : J → X is a parameterized Cp curve as well.
Choose t0 ∈ J and let ξ′ = c(t0), ξ = F (ξ′) = (F ◦c)(t0). The linear map dF (ξ′) : Tξ′(X ′)→ Tξ(X)
carries the velocity vector c′(t0) to the velocity vector (F ◦ c)′(t0).

Proof. This is just the manifold version of the Chain Rule:

(dF (ξ))((dc(t0))(∂t|t0)) = (dF (c(t0)) ◦ dc(t0))(∂t|t0) = (d(F ◦ c)(t0))(∂t|t0) = (F ◦ c)′(t0).

�

Having seen a variety of phenomena that are exhibited by velocity vectors to curves, we conclude
by linking up our “abstract” notion of tangent vectors with the more geometrically appealing notion
of velocity vector to a curve. By definition, if c : I → X is a parameterized Cp curve at ξ ∈ X with
X a Cp premanifold with corners (1 ≤ p ≤ ∞) then the velocity vector c′(0) ∈ Tc(0)(X) = Tξ(X)
lies in the tangent space to X at ξ. We claim that this construction gives all tangent vectors at ξ
(i.e., every tangent vector at ξ is the velocity vector to some Cp curve at ξ), at least if ξ is not a
point with index > 1 (so this is no restriction if X is a Cp premanifold, or more generally if it is a
Cp premanifold with boundary). The idea is to use straight lines in coordinates:
Theorem 2.7. If ξ ∈ X has index ≤ 1 then every ~v ∈ Tξ(X) is the velocity vector c′(0) for some
Cp curve c : I → X at ξ. If ξ 6∈ ∂X, we can take 0 to be an interior point in I.

Points with index > 1 present obstacles, as is most easily seen by considering the point ξ = (0, 0)
in X = [0, 1]× [0, 1] and the tangent vector ~v = −∂x|ξ+∂y|ξ that points along the line x+y = 0 that
meets X only at ξ. (Briefly put, lines that only touch a sector at a boundary point and nowhere
else cannot be captured via Cp curves in the sector for p ≥ 1; this difficulty never happens at points
of index ≤ 1.)

Proof. The problem is local around ξ in X, and by Lemma 2.6 applied to Cp isomorphisms we see
that the problem is unaffected by passing to a Cp-isomorphic pair (X ′, ξ′). Hence, by shrinking X
around ξ and picking a local Cp-chart at ξ we may suppose X = [0, ε)r × (−ε, ε)n−r in Rn with
ξ = 0 and r ≤ 1. The vectors ∂j |0 in Tξ(X) form an ordered basis. In the case r = 0, for any
v =

∑
aj∂j |0 we choose the curve c(t) = (a1t, . . . , ant) with |t| very small so that c has image inside

of X. Clearly c′(0) = v. In the case r = 1 with a1 ≥ 0 we take small t ≥ 0 and use the same
mapping c. If r = 1 and a1 < 0 then we use t ≤ 0 with |t| small. �


