
Math 396. Handout on compactness criteria

We have seen two ways to think about compactness in metric spaces: in terms of open covers and
in terms of sequential convergence. We wish to present two more ways to think about compactness.
The first of these will be called the “finite intersection property (FIP)” for closed sets, and turns
out to be a (useful!) linguistic reformulation of the open cover criterion. The second point of view
we discuss involves a refinement of the concept of boundedness, called “total boundedness”. This
will rescue the theorem on compactness of closed and bounded sets in Rn (which is false for more
general metric spaces) so that we have a version which is a valid compactness criterion for arbitrary
metric spaces.

1. FIP

Let X be a topological space.

Definition 1.1. We say that X satisfies the finite intersection property (or FIP) for closed sets if
any collection {Zi}i∈I of closed sets in X with all finite intersections

Zi1 ∩ · · · ∩ Zin 6= ∅,

the intersection ∩i∈IZi of all Zi’s is non-empty.

Example 1.2. We give two non-examples to indicate what can go wrong. Let X = R. If we take
Zn = [n,∞) for n ∈ N, then all intersections of finitely many Zi’s are visibly non-empty, but these
common overlaps “escape to infinity”: that is, ∩n∈NZn = ∅. So R doesn’t satisfy FIP for closed
sets. But the fact that R is “too big” is only half of the problem.

Consider X = (0, 2) and let Zn = (0, 1/n] for n ∈ N. Once again, each Zn is visibly closed in
X and any finite collection of these has non-empty intersection. But if we intersect all of them,
we again get ∅! Here the problem is that the intersection sort of moves off to the edge which isn’t
there (in X).

Note that both non-examples are not compact. Quite generally, we have:

Theorem 1.3. Let X be a topological space. Then X is compact if and only if X satisfies FIP for
closed sets.

Before we prove the theorem, we give an application.

Corollary 1.4. Choose a, b ∈ R with a ≤ b. Let C1, C2, . . . be a sequence of non-empty closed sets
in [a, b] with

C1 ⊇ C2 ⊇ . . .
Then ∩nCn 6= ∅.

A special case of this is the classical “bisection method” from calculus (with Ci+1 a closed
half-subinterval of Ci). Let’s prove the corollary, and then we’ll prove Theorem 1.3.

Proof. Since the sequence of closed sets is decreasing and all are non-empty, if Ci1 , . . . , Cir is any
finite collection of them then for i = max(i1, . . . , ir) we have

Ci = ∩rj=1Cij ,

so since Ci 6= ∅ all such finite intersections are non-empty. Since [a, b] is compact, and thus satisfies
FIP for closed sets (by Theorem 1.3), we’re done. �

Now we prove Theorem 1.3:
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Proof. This is an exercise in linguistics. For an arbitrary topological space X, to give a collection
{Ci}i∈I of closed sets in X is exactly the same thing as to give a collection {Ui}i∈I of open sets in
X, using the rules Ui = X − Ci and Ci = X − Ui. We’ll use this to translate the FIP condition
for closed sets into the open covering criterion for compactness (and vice-versa). Fix a choice of
corresponding {Ci}i∈I and {Ui}i∈I . We have

∩i∈ICi = X − ∪i∈IUi,

so ∩iCi = ∅ if and only if {Ui} covers X (i.e., is an open covering of X). Since

Ci1 ∩ · · · ∩ Cir = X − ∪rj=1Uij ,

it follows that all finite intersections among the Ci’s are non-empty if and only if no finite collection
among the Ui’s covers X. In other words, {Ui} is an open cover without a finite subcover if and
only if {Ci} is a counterexample to FIP for closed sets in X. Put another way, X satisfies the open
covering criterion for compactness if and only if X satisfies FIP for closed sets. �

We emphasize that although the proof really was essentially linguistic, Corollary 1.4 shows that
FIP is a useful way to think in certain cases (e.g., when doing bisection arguments).

2. Total boundedness and Lebesgue’s lemma

Let (X, ρ) be a metric space.
Definition 2.1. We say X is totally bounded if, for all ε > 0, X admits a covering by finitely many
open ε-balls.
Example 2.2. A totally bounded metric space is bounded, but the converse need not hold. This
was studied in Exercise 1, HW 1.

If X is compact as a metric space, then X is complete (as we saw in lecture) and totally bounded
(obvious). Remarkably, the converse is true: a complete and totally bounded metric space is
compact. Before we prove this, we note that in the case of Rn this recovers the classification of
compacts in Rn as those subsets which are closed and bounded relative to a norm metric:
Theorem 2.3. Let V be a finite-dimensional normed vector space over R, given the metric induced
by its norm (so V is complete). A subset Z ⊆ V is closed if and only if it is complete, and Z is
bounded if and only if it is totally bounded.

Proof. In lecture we saw that a subset of a complete metric space is closed if and only if it is
complete with respect to the induced metric. That settles the first part. It is obvious that a
totally bounded set is bounded (this is true in any metric space whatsoever). Conversely, if Z is
bounded then we wish to prove that Z is totally bounded (as a metric space in its own right). As a
preliminary step, we wish to show that for any metric space X and any subset Z, boundedness and
total boundedness of the metric space Z can be reformulated in terms of open balls of X (rather
than of Z).

It is clear from the definitions that the metric space Z is bounded if and only if it is contained
inside of some large open ball in X. As for total boundedness, if Z is covered by finitely many
open ε-balls of X for each ε > 0, then we claim that Z is totally bounded as a metric space (the
converse is obvious, since each open ball in Z is obtained by intersecting Z with an open ball of X
with the same radius and center). The only delicate point is that a covering of Z by finitely many
open ε-balls of X might have all centers outside of Z. Hence, we have to fiddle a bit with radii and
re-centering.
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Suppose Z is covered by Bε(xi,ε) for 1 ≤ i ≤ nε and xi,ε ∈ X. We can assume each such ball
actually meets Z by simply dropping from consideration those that don’t (this doesn’t affect the
property of the collection of such balls covering Z). The triangle inequality then ensures

Bε(xi,ε) ⊆ B2ε(zi,ε)

for any zi,ε ∈ Z ∩Bε(xi,ε) 6= ∅ (use that ρ(xi,ε, zi,ε) < ε for any such zi,ε). Thus, the finitely many
open balls B2ε(zi,ε) ∩ Z of Z actually cover Z. That is, the metric space Z is covered by finitely
many 2ε-balls for all ε > 0, which yields total boundedness.

Thinking in terms of our ambient metric space V , we need to show that a subset Z of V is totally
bounded as a metric space if it is bounded as a metric space. Assuming Z to be bounded, in order
to show that Z is totally bounded, it suffices (in view of what we have just argued) to prove that
Z is covered by finitely many ε-balls of V (with ε > 0 arbitrary). Note that this statement holds
for Z if it holds for a larger set within V . Since the bounded Z in V must be contained inside
of some Br(0), and hence inside of Br(0), it suffices to prove that Br(0) is totally bounded. It is
an easy exercise to check that total boundedness is unaffected by passage to an equivalent norm
(and likewise for boundedness), so we may assume V = Rn with the box norm. Then Br(0) is the
standard cube of side-length 2r centered at the origin, and this is trivially covered by finitely many
open cubes of “radius” ε for each ε > 0 (just think about a big grid of open boxes with faces parallel
to coordinate hyperplanes, each one slightly thickened-up: you should be able to convert this into
a rigorous argument by explicitly defining the cubes as suitable products of open intervals). �

Now we prove the equivalence of compactness and the conjunction of completeness and total
boundedness.
Theorem 2.4. Let X be a metric space. Then X is compact if and only if X is complete and
totally bounded.

Proof. We have already noted that the “⇒” implication is clear. The interesting part is the converse.
Suppose that X is both complete and totally bounded. We wish to prove that X is compact. In
order to do this, we need a new idea: the Lebesgue covering number. This is a number arising in
the following important definition.

Definition 2.5. Let {Ui}i∈I be an open covering of a metric space X. A Lebesgue number for this
covering is a δ > 0 such that for all x ∈ X we have Bδ(x) ⊆ Ui(x) for some i(x) ∈ I.

A Lebesgue covering number is a certain “uniformity” across the covering. The mere fact that
{Ui}i∈I covers X ensures that for all x ∈ X there is some i(x) ∈ I and some δ(x) > 0 such that
Bδ(x)(x) ⊆ Ui(x). The magical property of a Lebesgue number δ is that it can be taken as δ(x) for
all x ∈ X. This is somewhat similar in spirit to the idea of uniform continuity. The importance of
Lebesgue numbers for our purposes is:

Lemma 2.6. (Lebesgue’s covering lemma) If X is complete and totally bounded, every open cov-
ering admits a Lebesgue number.

We stress that the proof is by contradiction, and is thereby non-constructive.

Proof. Suppose otherwise, so for all n ∈ N there is some zn ∈ X with B1/n(zn) not contained in any
Ui. Let x1,m, . . . , xkm,m ∈ X be a finite set for which the finitely many open balls B1/m(xj,m) cover
the totally bounded X. Since there are only finitely many balls B1(xj,1) and these cover X, and
we have points zn for infinitely many n, by the pigeonhole principle there must be an infinite set of
n’s for which the corresponding points zn lie in a common one of these balls (for if zn ∈ B1(xj,m)
for only n in some finite set of positive integers Sm, we encounter a contradiction to the covering
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property when we look at zn for n not in any of the finitely many finite sets Sm). That is, for some
ball B1(xj1,1) there is an infinite subsequence C1 = {zn1 , zn2 , . . . } of {z1, z2, . . . } entirely contained
in B1(xj1,1).

Arguing in the same way with the covering by finitely many balls B1/2(xj,1/2) and the infinite
sequence C1 in X (as opposed to the infinite sequence {zn} in X which we used above), there is
some B1/2(xj2,2) which meets C1 in an infinite subsequence C2. We can continue this process ad
infinitum, getting a decreasing chain of infinite subsequences C1, C2, . . . and open balls B1/n(xjn,n)
meeting each Cn in an infinite subsequence Cn+1.

We claim that the sequence of centers {xjr,r}r∈N is a Cauchy sequence. Indeed, if we pick ε > 0
then for n ≥ m > 1/ε we have

ρ(xjn,n, xjm,m) ≤ ρ(xjn,n, z) + ρ(z, xjm,m) ≤ 1/n+ 1/m < 2ε

for any z ∈ Cn (since Cn is a subsequence of Cm, as n ≥ m). Note that if we visualize the xn,m’s
as arranged in a large grid, then {xjr,r} is sort of a zig-zag “digonal”-like path through the grid.
This style of argument is the old “diagonal trick” that is so very useful device when dealing with
infinite collections of (finite or infinite) sequences.

Since X is complete, the sequence {xjn,n} has a limit x ∈ X. The Ui’s cover X, so some Bε(x)
lies inside of some Ui0 . But xjk,k → x, so for large k we have xjk,k ∈ Bε/4(x). Taking k > 4/ε, we
have

B1/k(xjk,k) ⊆ Bε/4(xjk,k) ⊆ Bε/2(x),
the last inclusion by the triangle inequality (since ρ(xjk,k, x) < ε/4 and ε/4 + ε/4 = ε/2). Fix such
a k0. Recall that for each n, the open ball B1/n(xjn,n) contains zm for infinitely many m. Thus,
for infinitely many m we have

zm ∈ B1/k0
(xjk0

,k0) ⊆ Bε/2(x).

Choose such m0 with m0 > 2/ε. Hence,

B1/m0
(zm0) ⊆ Bε/2(zm0) ⊆ Bε(x) ⊆ Ui0 .

Aha, but recall that the zm’s had the property that (for all m) the open ball B1/m(zm) is never
contained in a single Ui. Contradiction! It follows that the original hypothesis of non-existence of
a Lebesgue number is false, and hence a Lebesgue number must exist. �

Using Lebesgue covering numbers, it is now a simple matter to complete the proof of Theorem
2.4. For X complete and totally bounded, and {Ui} an open cover, we wish to find a finite subcover.
By Lebesgue’s covering lemma, there exists some δ such that Bδ(x) ⊆ Ui(x) for all x ∈ X. But since
X is totally bounded, there exists a finite covering of X by open δ-balls, say Bδ(x1), . . . , Bδ(xn).
Then Ui(x1), . . . , Ui(xn) has union containing all Bδ(xj)’s, so the Ui(xj)’s cover X. That gives us the
desired finite subcover. �

Now that Theorem 2.4 has been proven, we should note that Lebesgue’s covering lemma is
usually not stated in the way we have given it. Instead, one always formulates it as a theorem
about compact metric spaces (rather than complete and totally bounded ones). Just keep in mind
the order of the logic: we really prove the covering lemma as a result about complete and totally
bounded spaces, and then deduced from this that the class of complete and totally bounded metric
spaces coincides with the class of compact metric spaces.


