MATH 396. INTERIOR, CLOSURE, AND BOUNDARY

We wish to develop some basic geometric concepts in metric spaces which make precise certain
intuitive ideas centered on the themes of “interior” and “boundary” of a subset of a metric space.
One warning must be given. Although there are a number of results proven in this handout, none
of it is particularly deep. If you carefully study the proofs (which you should!), then you’ll see that
none of this requires going much beyond the basic definitions. We will certainly encounter some
serious ideas and non-trivial proofs in due course, but at this point the central aim is to acquire
some linguistic ability when discussing some basic geometric ideas in a metric space. Thus, the
main goal is to familiarize ourselves with some very convenient geometric terminology in terms of
which we can discuss more sophisticated ideas later on.

1. INTERIOR AND CLOSURE
Let X be a metric space and A C X a subset. We define the interior of A to be the set
int(A) = {a € A|some B, (a) C A, rg >0}
consisting of points for which A is a “neighborhood”. We define the closure of A to be the set
Z:{x€X|x:nlLIroloan, with a,, € A for all n}

consisting of limits of sequences in A.
In words, the interior consists of points in A for which all nearby points of X are also in A,
whereas the closure allows for “points on the edge of A”. Note that obviously

int(A) C AC A.

We will see shortly (after some examples) that int(A) is the largest open set inside of A — that is,
it is open and contains any open lying inside of A (so in fact A is open if and only if A = int(A))
— while A is the smallest closed set containing A; i.e., A is closed and lies inside of any closed set
containing A (so in fact A is closed if and only if A = A).

Beware that we have to prove that the closure is actually closed! Just because we call something
the “closure” does not mean the concept is automatically endowed with linguistically similarly-
sounding properties. The proof won’t be particularly deep, as we’ll see.

Ezample 1.1. Let’s work out the interior and closure of the “half-open” square
A={(z,y) eR*| — 1<z <1, -1<y<1}=[-1,1] x (-1,1)

inside of the metric space X = R? (the phrase “half-open” is purely intuitive; it has no precise
meaning, but the picture should make it clear why I use this terminolgy). Intuitively, this is a
square region whose horizontal edges are “left out”. The interior of A should be (—1,1) x (—1,1)
and the closure should be [-1,1] x [-1,1], as drawing a picture should convince you. Of course,
we want to see that such conclusions really do follow from our precise definitions.

First we check that int(A) is correctly described. If —1 <z < 1 and —1 <y < 1 then for

r=min(| —1—z[,[1 —zf,| -1 —-y[,[1—y]) >0

it is easy to check B, ((z,y)) C (—1,1) x (—1,1) (since a square box with side-length r contains the
disc of radius r with the same center). Thus, (—1,1) x (=1,1) C A is an open subset of X = R2.
To check it is the full interior of A, we just have to show that the “missing points” of the form
(£1,y) do not lie in the interior. But for any such point p = (£1,y) € A, for any positive small
r > 0 there is always a point in B, (p) with the same y-coordinate but with the z-coordinate either
slightly larger than 1 or slightly less than —1. Such a point is not in A. Thus, p & int(A).
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Now we check that A = [—1,1] x [~1,1]. Since convergence in R? forces convergence in coordi-
nates, to see

AC[-1,1] x [-1,1]

it suffices to check that [—1, 1] is closed in R (since certainly A C [—1,1] x [—1,1]). But this is clear
(either by using sequences or by explicitly showing its complement in R to be open). To see that A
fills up all of [—1, 1] x [—1, 1], we have to show that each point in [—1, 1] x [—1, 1] can be obtained
as a limit of a sequence in A. We just have to deal with points not in A = [—1,1] x (—1,1), since
points in A are limits of constant sequences. That is, we're faced with studying points of the form
(z,£1) with x € [—1, 1]. Such a point is a limit of a sequence (z, g,) with ¢, € (—1,1) having limit
+1.

Example 1.2. What happens if we work with the same set A but view it inside of the metric space
X = A (with the Euclidean metric)? In this case int(4) = A and A = A! Indeed, quite generally
for any metric space X we have int(X) = X and X = X. These are easy consequences of the
definitions (check!). Likewise, the empty subset () in any metric space has interior and closure
equal to the subset (.

The moral is that one has to always keep in mind what ambient metric space one is working
in when forming interiors and closures! One could imagine that perhaps our notation for interior
and closure should somehow incorporate a designation of the ambient metric space. But just as we
freely use the same symbols “+” and “0” to denote the addition and additive identity in any vector
space, even when working with several spaces at once, it would simply make life too cumbersome
(and the notation too cluttered) to always write things like inty (A) or (A)x. One just has to pay
careful attention to what is going on so as to keep track of the ambient metric space with respect
to which one is forming interiors and closures. The context will usually make it obvious what one
is using as the ambient metric space, though if considering several ambient spaces at once it is
sometimes helpful to use more precise notation such as intx (A).

Theorem 1.3. Let A be a subset of a metric space X. Then int(A) is open and is the largest open
set of X inside of A (i.e., it contains all others).

Proof. We first show int(A) is open. By its definition if = € int(A) then some B,(z) C A. But then
since B, (x) is itself an open set we see that any y € B,(x) has some Bs(y) C By(z) C A, which
forces y € int(A). That is, we have shown B, (z) C int(A), whence int(A) is open.

If U C A is an open set in X, then for each u € U there is some r > 0 such that B,(u) C U,
whence B, (u) C A, so u € int(A). This is true for all u € U, so U C int(A). [

Corollary 1.4. A subset A in a metric space X is open if and only if A = int(A).

Proof. By the theorem, int(A) is the unique largest open subset of X contained in A. But obviously
A is open if and only if such a unique maximal open subset of X lying in A is actually equal to A
(why?). This establishes the corollary. [

We next want to show that the closure of a subset A in X is related to closed subsets of X
containing A in a manner very similar to the way in which the interior of A is related to open
subsets of X which lie inside of A. This goes along with the general idea that openness and
closedness are “complementary” points of view (recall that a subset S in a metric space X is open
(resp. closed) if and only if its complement X — S is closed (resp. open)). It is actually more
convenient for us to first show that closures and interiors have a complementary relationship, and
to then use this to deduce our desired properties of closure from already-established properties of
interior.
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Theorem 1.5. Let A be a subset of a metric space X. Then X — A = int(X — A) and X —int(A) =
X - A

Before proving this theorem, we illustrate with an example. Consider X = R? with the usual
metric, and let A = [—1,1] x (=1,1) be the “half-open” square as considered above. In this case,
we have computed A = [~1,1] x [-1,1] and int(4) = (-1,1) x (—1,1). By drawing pictures of
X — A and of the complements of A and int(A), you should convince yourself intuitively that the
assertions in this theorem make sense in this case.

Now we prove Theorem 1.5.

Proof. We begin by proving X — A = int(X — A). If € X is not in A, there must exist some
B jon(7) not meeting A, for otherwise we’d have some x, € Bj/on(x) N A for all n, so clearly

x, — x, contrary to the fact that « € A is not a limit of a sequence of elements of A. This shows
X —ACint(X — A).
Conversely, if x is in the interior of X — A then some B, () lies in X — A and hence is disjoint from
A. Tt follows that no sequence in A can possibly converge to x because for ¢ = r > 0 we’d run into
problems (i.e., there’s nothing in A within a distance of less than e from z, since Be(z) C X — A).
Applying the general equality
X —A=int(X — A)
for arbitrary subsets A to X to the subset X — A in the role of A, we get
X — X — A=int(A4).
Taking complements of both sides within X yields
X —A=X—int(A4),
as desired. |

Corollary 1.6. Let A be a subset of a metric space X. Then A is closed and is contained inside
of any closed subset of X which contains A.

Proof. Since the complement of A is equal to int(X — A), which we know to be open, it follows
that A is closed. If Z is any closed set containing A, we want to prove that Z contains A (so A is
“minimal” among closed sets containing A). But this is clear for several reasons. On the one hand,
by definition every point = € A is the limit of a sequence of elements in A C Z, so by closedness
of Z such limit points x are also in Z. This shows A C Z. On the other hand, one can argue by
noting that passage to complement takes Z to an open set X — Z contained inside of X — A, so
by maximality this open X — Z must lie inside the interior of X — A, which we have seen is the
complement X — A of A. Passage back to complements then gives

A=X-X-A=X-int(X-A)CX—-(X-2)CZ,
as desired. |

Corollary 1.7. For subsets Ay, ..., Ay in a metric space X, the closure of Ay U---U Ay is equal
to UA;; that is, the formation of a finite union commutes with the formation of closure.

Proof. A closed set Z contains UA; if and only if it contains each A;, and so if and only if it contains
A; for every i. Since UA; is a finite union of closed sets, it is closed. We conclude that this closed
set is minimal among all closed sets containing UA;, so it is the closure of UA;. |



2. FURTHER ASPECTS OF INTERIOR AND CLOSURE

The “interior” and “closure” constructions have been seen to be well-behaved with respect to
the formation of complements within a metric space. However, these notions are not well-behaved
with respect to intersections within a metric space. Also, one cannot compute the closure of a set
just from knowing its interior. For example, a set can have empty interior and yet have closure
equal to the whole space: think about the subset Q in R.

Here is one mildly positive result.

Theorem 2.1. The formation of closures is local in the sense that if U is open in a metric space
X and A is an arbitrary subset of X, then the closure of ANU in X meets U in ANU (where A
denotes the closure of A in X). In particular, if Z is closed in X then UNZNU =2ZNU.

Also if U is the interior of a closed set Z in X, then int(U) = U.

After proving the theorem, we’ll present an interesting example of an open subset of a metric
space which is not equal to the interior of its closure (and hence, by the second part of the theorem,
cannot be expressed as the interior of any closed set at all). It is probably not immediately obvious
to you how to find such open sets, since typical open sets one writes down in R or R? tend to be
the interior of their closures.

Proof. Since ANU is a closed set in U that contains A N U, for the first part of the theorem we
need to prove that every point + € AN U is a limit of a sequence of points z, € AN U. Since
r € A we can write = limz,, with x,, € A. By hypothesis € U, so by the openness of U we
must have some B,(z) C U, and so since x,, — x by considering just sufficiently large n we have
xn € U. Thus, for large n the sequence {z,} lies in AN U and converges to x.

Now we assume that U is the interior of a closed set Z and we wish to prove U is the interior
of U. Since Z is a closed set containing U, it also contains the closure of U, and by openness of U
the open subset U inside of U must lie inside the interior of U. To summarize, we have

U CintU CintZ = U,

so equality is forced throughout. |

Let’s give a counterexample to the equality int(U) = U if one only requires U to be an open
subset of X (rather than even the interior of a closed set). The basic problem is that the closure
of U can be quite a lot bigger than U. In fact, we’ll find a rather “small” open subset U C R with
closure equal to R (whose interior is R, and hence larger than U).

Let S C Q denote the set of elements of the form ¢ = a/10™ with a € Z and n > 0 (i.e., finite
decimal expansions). We define n(q) > 0 to be the exponent of 10 in the denominator of ¢. In
words, the base 10 decimal expansion of ¢ € S is finite and (if ¢ € 10Z) begins on the right with
a non-zero digit in the 10~™@-slot. Define U to be the union of intervals By j1gn(@+2(q) for ¢ € S.
This union U is certainly open, as it is a union of open intervals. Try to draw a picture of where U
meets [0, 1]; it’s pretty tough, but after working out a bunch of intervals in U you’ll get a sense for
what U looks like: it’s very “sparse”, yet somehow all over the place since certainly S C U. The
problem is that “most” elements of S have pretty big denominators, and the tiny interval from U
surrounding a choice of ¢ € S is really tiny (depending on how big the denominator of ¢ is).

Since ¢ € S has a decimal expansion which terminates at the n(g)th digit past the decimal
point, all points in By /jgn()+2 (q) have a 10~™@~1th digit equal to either 0 or 9 (think about
.253 4+ .00000998), but not 2,...,8. In particular, if we consider real numbers whose fractional
parts consist entirely of digits from 2 to 8, such numbers cannot lie in U. Actually, a lot more
can’t lie in U (as your picture should convince you), but one needs measure theory to give a precise
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description of just how sparse U is. In any case, we have at least shown that U is a proper open
subset of R. But every real number is a limit of a sequence in S C U, so the closure of U is equal
to R.

Let us conclude with considerations related to the local nature of closedness.

Theorem 2.2. Let X be a metric space, and A C X a subset. Let {U;} be an open cover of X.
The set A is closed in X if and only if the subset ANU; is closed in U; for all i.

Proof. Replacing A with X — A, it is equivalent to say that A is open in X if and only if ANU; is
open in U; for all i. However, a subset of U; is open in U; if and only if it is open in X (as U; is
open in X), so it is equivalent to say that A is open in X if and only if AN U; if open in X for all
i. The implication = is clear, and the converse follows from the observation that A is the union of
the overlaps A N U;. [ ]

Note that it is crucial in the preceding theorem that the U;’s cover all of X, and not just A. For
example, if A = [0,1) in X = R and we take U = (—o0,1) and V = (1,00) then the open sets
U and V barely fail to cover X (UUV = X — {1}), and although U N A = A is closed in U and
VNA=0is closed in V, clearly A is not closed in X. Sometimes when we are trying to analyze
the geometry of a subset A inside of a metric space X, the best we can do is work locally near the
points of A rather than locally near arbitrary points of X. In such cases we clearly cannot hope to
prove that A is closed in X, and so the best we can hope to do is to verify the conditions in the
following definition:

Definition 2.3. A subset A in a metric space X is locally closed if for all a € A there exists an
open set U, C X containing a such that U, N A is closed in U,.

The point of this definition is that the union of the U,’s may fail to equal X, though it does
contain A. As an example, A = [0, 1) is locally closed in X = R: for every a € A distinct from 1
we can take U, = (0,1) and for a = 1 we can take U, = (—1,1). More interesting examples are
(=1,1) x {0} in R? (using U, = (—1,1) x R for all a) and any open subset U of a topological space
X (taking U, = U for all a € U).

The reason for interest in locally closed sets is that they naturally arise when trying to prove
closedness of A in X in situations where one is only able to study the situation locally near elements
of A. The point worth noting is that locally closed sets look closed if we replace the ambient set
with a suitable open around A:

Theorem 2.4. Let A be a subset of a metric space X. The subset A is locally closed in X if and
only if there exists an open set U C X containing A with A a closed subset of U; in other words,

A=CnNU for a closed subset C C X.

This theorem says that locally closed sets are precisely the overlap of an open set and a closed
set.

Proof. If A = CNU for closed C in X and open U in X then we verify the definition of local
closedness by taking U, = U for all a € A. Conversely, if A is locally closed in X then let
U = UgeaU, where U, C X is an open set containing a € A such that AN U, is closed in U,.
Clearly A is a subset of the metric space U and the U,’s contitute an open covering of U. Thus,
the local nature of closedness in metric spaces (applied to U) implies that A is closed in U. |

3. BOUNDARY

We now introduce a notion which sits somewhere between closure and interior: the boundary.
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Definition 3.1. Let A be a subset of a metric space X. We define the boundary 0A of A to be
A —int(A).

As with the concepts of interior and closure, the boundary depends on the ambient space (though
we suppress this in the notation, lest things become unwieldy).
Ezample 3.2. If A = [~1,1] x (=1,1) inside of X = R?, then A = A — int(A) consists of points
(z,y) on the edge of the unit square: it is equal to

(=11 x L) J(-1,1] x {-1,1}),

as you should check (from our earlier determination of the closure and interior of A).
Ezample 3.3. Consider the subset A = Q C R. We then have int(A4) = () because no non-empty
open interval can fail to contain irrationals (i.e., to be contained inside of A = Q), and A = R
since every real number is a limit of a sequence of rationals. Thus, in this case A = R. Of course,
if we switched points of view and regarded A = Q as a subset of the metric space X = Q, then
we’d have int(A) = A (since the interior of a metric space is always equal to the whole space) and
A=A, s00A=(

Just as it is geometrically reasonable that an open subset of a metric space is one which is equal
to its own interior, a closed subset ought to be exactly one which contains its boundary. This is
the first part of:

Theorem 3.4. Let A be a subset of a metric space X. Then A is closed if and only if it contains
0A, and in general
IA=ANX -A=09(X - A).
If one again considers our friend the half-open square A = [—1,1] x (—1,1) in R?, it is instructive

to recall our earlier determinations of the closures of A and X — A and to see that, sure enough,
their intersection is just what the boundary ought to be.

Proof. The boundary 0A is defined as A — int(A). Thus,
A=int(A)| JoAa c Al JoA,

so when 94 C A we get A C A and therefore (the reverse inclusion being obvious) that A = A, so
A is indeed closed. Conversely, if A is closed then since A C A by definition and A = A for closed
A we get 0A C A.

Once we establish that 94 = AN X — A, then since the right side is unaffected by replacing
A with X — A everywhere (because X — (X — A) = A), it follows that 0A = (X — A). As for
verifying that A is the intersection of the closures of A and X — A, we use the definition of 0A to
rewrite this as:

A—int(A) = AnX — 4.
Since A —int(A4) = AN (X — int(A)), it suffices to check that
X —int(4) = X — A.

But this was one of the “complementary” relationships we proved earlier between interiors and
closures. n

We conclude with a geometrically pleasing corollary.

Corollary 3.5. Let A be a subset of a metric space X. Then X can be expressed as a disjoint
union

X =int(A) [ JoA| Jint(X — A).



7

In other words, every point of X satisfies exactly one of the following properties: it is interior to
A, interior to X — A, or on the common boundary 0A = 0(X — A).

The disjointness in this corollary “justifies” the idea that 0A = (X — A) is sort of a “common
interface” between A and X — A. For ugly subsets A C X one can’t take this intuition too seriously.

Proof. Since X — int(A) = X — A by an earlier theorem, the assertion of the corollary is exactly
the statement
X —-—A=0AUint(X — A)
with A disjoint from int(X — A). But by definition of boundary for X — A we have a disjoint
union decomposition
X-—A=0(X —-A)Uint(X — A).

Thus, it suffices to show 0A = 9(X — A). But this latter equality was shown in the preceding
theorem. |



