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PERFECTOID SPACES: A SURVEY

PETER SCHOLZE

Abstract. This paper, written in relation to the Current Developments in Mathematics
2012 Conference, discusses the recent papers on perfectoid spaces. Apart from giving an
introduction to their content, it includes some open questions, as well as complements to
the results of the previous papers.
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1. Introduction

The original aim of the theory of perfectoid spaces was to prove Deligne’s weight-monodromy
conjecture over p-adic fields by reduction to the case of local fields of equal characteristic
p, where the result is known. In order to so, the theory of perfectoid spaces establishes a
general framework relating geometric questions over local fields of mixed characteristic with
geometric questions over local fields of equal characteristic. One application of this theory is
a general form of Faltings’s almost purity theorem. For the moment, the weight-monodromy
conjecture is not proved in full generality using these methods; however, we can reduce the
conjecture to a statement on approximating a ’fractal’ by algebraic varieties.

However, the theory of perfectoid spaces has proved to be useful in other situations, and
certainly many more will be found. On one hand, perfectoid spaces embody Faltings’s
almost purity theorem; as this is the crucial technical ingredient to Faltings’s approach to
p-adic Hodge theory, it is not surprising that one can prove new results in p-adic Hodge
theory. For example, it becomes possible to analyze general (proper smooth) rigid-analytic
varieties, instead of just algebraic varieties. That p-adic Hodge theory for rigid-analytic
varieties should be possible was already conjectured by Tate, [33], when he first conjectured
the existence of a Hodge-Tate decomposition, and of course it aligns well with the situation
over C.

In these first papers, the perfectoid spaces had more of an auxiliary role. However, it turns
out that many natural constructions, which so far could not be given any geometric meaning,
are perfectoid spaces in a natural way: For example, Shimura varieties with infinite level
at p, and Rapoport-Zink spaces (local analogues of Shimura varieties) with infinite level.
For Rapoport-Zink spaces, there has been a duality conjecture (proved by Faltings) which
says that certain ’dual’ pairs of Rapoport-Zink spaces are isomorphic at infinite level. Until
now, the formulation of such an isomorphism has been very ad hoc; however, it can now
be formulated as an isomorphism of perfectoid spaces. This has all expected consequences,
such as comparisons of étale cohomology.

In the case of Shimura varieties, interesting applications (related to torsion in the coho-
mology of locally symmetric varieties and Emerton’s completed cohomology groups) arise,
which are work in progress ([28]); some of this is sketched at the end of this survey.

This paper was written in relation to the talks of the author at the Current Developments
in Mathematics conference 2012 at Harvard. The author wants to thank the organizers
heartily for the invitation, and the opportunity to write this survey. The original intention
was to write a survey paper about perfectoid spaces and the weight-monodromy conjecture.
However, as this is exactly the content of [30], the author decided instead to give some
introduction to the general content of the three papers [30], [29] and [31], and mention some
open questions, as well as some complements on the results of these papers. These are new
results, but they are immediate applications of the theory built up there. Thus, some parts
of this paper do not have the nature of a survey, and assume familiarity with the content of
these papers.
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2. Perfectoid Spaces

2.1. Introduction. This introduction is essentially identical to a post of the author on
MathOverflow, [27].

Definition 2.1. A perfectoid field K is a complete non-archimedean field K of residue
characteristic p, equipped with a non-discrete valuation of rank 1, such that the Frobenius
map Φ : OK/p → OK/p is surjective, where OK ⊂ K is the subring of elements of norm
≤ 1.

Some authors, e.g. Gabber-Ramero in their book on almost ring theory, [16], call such
fields deeply ramified (although they do not require that they are complete).

Example 2.2. Standard examples of perfectoid fields are given by the completion of Qp(p
1/p∞),

Qp(µp∞), Qp, or F((t))(t1/p
∞

).

Given a perfectoid field K, one can form a second perfectoid field K[, always of charac-
teristic p, given as the fraction field of

OK[ = lim←−
Φ

OK/p ,

where the transition maps are given by Frobenius. Concretely, if K is the completion of
Qp(p

1/p∞), then K[ is given by the completion of Fp((t))(t1/p
∞

), where t is the element

(p, p1/p, p1/p2

, . . .) ∈ OK[ = lim←−OK/p .
In particular, we have a canonical identification

OK[/t = Fp[t1/p
∞

]/t ∼= Zp[p1/p∞ ]/p = OK/p .
In this situation, one has the following theorem, due to Fontaine-Wintenberger, [15], in

most examples.

Theorem 2.3. There is a canonical isomorphism of absolute Galois group Gal(K̄/K) ∼=
Gal(K̄[/K[).

At this point, it may be instructive to explain this theorem in the example where K is the
completion of Qp(p

1/p∞); in all examples to follow, we make this choice of K. It says that
there is a natural equivalence of categories between the category of finite extensions L of K
and the category of finite extensions M of K[. Let us give an example: Say M is the extension
of K[ given by adjoining a root of X2−7tX+ t5. Basically, the idea is that one replaces t by
p, so that one would like to define L as the field given by adjoining a root of X2− 7pX + p5.
However, this is obviously not well-defined: If p = 3, then X2 − 7tX + t5 = X2 − tX + t5,
but X2− 7pX + p5 6= X2− pX + p5, and one will not expect in general that the fields given
by adjoining roots of these different polynomials are the same.

However, there is the following way out: M can be defined as the splitting field of X2 −
7t1/p

n
X + t5/p

n
for all n ≥ 0 (using that K[ is perfect), and if we choose n very large, then

one can see that the fields Ln given as the splitting field of X2−7p1/pnX+p5/pn will stabilize
as n → ∞; this is the desired field L. Basically, the point is that the discriminant of the
polynomials considered becomes very small, and the difference between any two different
choices one might make when replacing t by p becomes comparably small.
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This argument can be made precise by using Faltings’s almost mathematics, as developed
systematically by Gabber-Ramero, [16]. Consider K ⊃ OK ⊃ m, where m is the maximal
ideal; in the example, it is the one generated by all p1/pn , and it satisfies m2 = m, because
the valuation on K is non-discrete. We have a sequence of localization functors:

OK −mod→ OK −mod/m− torsion→ OK −mod/p− power torsion .

The last category is equivalent to K-mod, and the composition of the two functors is like
taking the generic fibre of an object with an integral structure.

In this sense, the category in the middle can be seen as a slightly generic fibre, sitting
strictly between an integral structure and an object over the generic fibre. Moreover, an
object like OK/p is nonzero in this middle category, so one can talk about torsion objects,
neglecting only very small objects. The official name for this middle category is OaK-mod:
almost OK-modules.

This category is an abelian tensor category, and hence one can define in the usual way the
notion of an OaK-algebra (= almost OK-algebra), etc. . With some work, one also has notions
of almost finitely presented modules and (almost) étale maps. In the following, we will often
use the notion of an almost finitely presented étale map, which is the almost analogue of a
finite étale map: We will use the term almost finite étale map in the following.

Theorem 2.4 (Tate([33]), Gabber-Ramero([16])). If L/K is a finite extension, then OL/OK
is almost finite étale. Similarly, if M/K[ is finite, then OM/OK[ is almost finite étale.

As an example, assume p 6= 2 and L = K(p1/2). For convenience, we look at the situation
at a finite level, so let Kn = Qp(p

1/pn) and Ln = Kn(p1/2). Then OLn = OKn [X]/(X2−p1/pn).
To check whether this is étale, look at f(X) = X2 − p1/pn and look at the ideal generated
by f and its derivative f ′. This contains p1/pn , so in some sense OLn is etale over OKn up to
p1/pn-torsion. Now take the limit as n→∞ to see that OL is almost etale over OK .

In fact, in the case of equal characteristic, i.e. K[, the theorem is easy. Indeed, there
will be some big N such that Ω1

OM/OK[
is killed by tN (where t ∈ K[ is some element with

|t| < 1). But K[ is perfect, and thus also M ; it follows that the whole situation is invariant

under Frobenius. Thus, Ω1
OM/OK[

is killed by tN/p, and thus by tN/p
2
, ..., i.e. tN/p

k
for all k.

This is exactly saying that Ω1
OM/OK[

is almost zero. From here, one can deduce that OM is

almost finite étale over OK[ .
Now we can prove Theorem 2.3 above:

{finite étale covers of K} ∼= {almost finite étale covers of OK}
∼= {almost finite étale covers of OK/p}
= {almost finite étale covers of OK[/t}
∼= {almost finite étale covers of OK[}
∼= {finite étale covers of K[}

Here, we use that almost finite étale covers lift uniquely over nilpotents. Also, one can always
find some element t ∈ K[ as in the example such that OK/p = OK[/t.

Now we want to generalize the theory to the relative situation. Here, the basic claim is
the following.
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Claim 2.5. The affine line A1
K[ ’equals’ lim←−A1

K, where the transition maps are the p-th
power map.

As a first step towards understanding this, we check this on points. Here it says that
K[ = lim←−K. In particular, there should be map K[ → K by projection to the last coordinate,

which is usually denoted x 7→ x] and again this can be explained in an example:
Say x = t−1 + 5 + t3. Basically, we want to replace t by p, but this is not well-defined.

But we have just learned that this problem becomes less serious as we take p-power roots.
So we look at t−1/pn + 5 + t3/p

n
, replace t by p, get p−1/pn + 5 + p3/pn , and then we take the

pn-th power again, so that the expression has the chance of being independent of n. Now, it
is in fact not difficult to see that

lim
n→∞

(p−1/pn + 5 + p3/pn)p
n ∈ K

exists, and this defines x] ∈ K. Now the map K[ → lim←−K is given by

x 7→ (x], (x1/p)], (x1/p2

)], . . .) .

In order to prove that this is a bijection, just note that

OK[ = lim←−OK[/tp
n

= lim←−
Φ

OK[/t = lim←−
Φ

OK/p← lim←−
x 7→xp

OK .

Here, the last map is the obvious projection, and in fact is a bijection, which amounts to the
same verification as that the limit above exists. Afterwards, just invert t to get the desired
identification.

One sees immediately that the explicit description of the isomorphism involves p-adic
limits, so a formalization will necessarily need to use some framework of rigid geometry.
In the paper [19] of Kedlaya-Liu, where they are doing closely related things, they choose
to work with Berkovich spaces. The author favors the language of Huber’s adic spaces, as
this language is capable of expressing more (e.g., Berkovich only considers rank-1-valuations,
whereas Huber considers also the valuations of higher rank). In the language of adic spaces,
the spaces are actually locally ringed topological spaces (equipped with valuations) (and
affinoids are open, in contrast to Berkovich’s theory, making it easier to glue). There is an
analytification functor X 7→ Xad from schemes of finite type over K to adic spaces over
K (similar to the functor associating to a scheme of finite type over C a complex-analytic
space). Then we have the following theorem:

Theorem 2.6. There is a homeomorphism of underlying topological spaces |(A1
K[)

ad| ∼=
lim←−|(A

1
K)ad|.

At this point, the following question naturally arises: Both sides of this homeomorphism
are locally ringed topological spaces: So is it possible to compare the structure sheaves?
There is the obvious problem that on the left-hand side, we have characteristic p-rings,
whereas on the right-hand side, we have characteristic 0-rings. How can one pass from one
to the other side?

Definition 2.7. A perfectoid K-algebra is a complete Banach K-algebra R such that the set
of power-bounded elements R◦ ⊂ R is bounded and the Frobenius map Φ : R◦/p → R◦/p is
surjective.
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Similarly, one defines perfectoid K[-algebras S. The last condition is then equivalent to
requiring that S perfect, whence the name. Examples are K, any finite extension L of K,
and K〈T 1/p∞〉, which is OK〈T 1/p∞〉 ⊗OK K, where OK〈T 1/p∞〉 is the p-adic completion of
OK [T 1/p∞ ].

Recall that in classical rigid geometry, one considers rings like K〈T 〉, which is interpreted
as the ring of convergent power series on the closed annulus |T | ≤ 1. Now in the example of
the A1 above, we take p-power roots of the coordinate, so after completion the rings on the
inverse limit are in fact perfectoid.

In characteristic p, one can pass from usual affinoid algebras to perfectoid algebras by
taking the completed perfection; the difference between the two is small, at least as regards
topological information on associated spaces: Frobenius is a homeomorphism on topological
spaces, and even on étale topoi. This is also the reason that we did not take the inverse
limit lim←−A1

K[ above: It does not change the topological space. In order to compare structure
sheaves, one should however take this inverse limit.

Now we can state the tilting equivalence.

Theorem 2.8. The category of perfectoid K-algebras is canonically equivalent to the category
of perfectoid K[-algebras.

The functor is given by R 7→ R[ = (lim←−R
◦/p)[t−1]. Again, one also has R[ = lim←−R as

multiplicative monoids, where the transition maps are the p-th power map, giving also the
map R[ → R, f 7→ f ].

There are two different proofs for this. One is to write down the inverse functor, given by
S 7→ W (S◦)⊗W (O

K[
) K, using the map

Θ : W (OK[)→ K

known from p-adic Hodge theory. The other proof is similar to what we did above for finite
étale K-algebras: Perfectoid K-algebras are equivalent to almostOK-algebras A s.t. A is flat,
p-adically complete and Frobenius induces an isomorphism A/p1/p ∼= A/p; these are in turn
equivalent to almost OK/p-algebras A s.t. A is flat and Frobenius induces an isomorphism
A/p1/p ∼= A. From here, one can go to OK[/t, and reverse the steps to get to K[.

The first identification between perfectoid K-algebras and certain almost OK-algebras
is not difficult. The second identification between certain almost OK-algebras and certain
almost OK/p-algebras relies on the fact (already in the book by Gabber-Ramero) that the
cotangent complex LA/(OK/p) vanishes, and hence one gets unique deformations of objects

and morphisms. At least on differentials Ω1, this is easy to see: Every element x has the
form yp because Frobenius is surjective; but then dx = dyp = pyp−1dy = 0 because p = 0 in
A.

Finally, we summarize briefly the main theorems on the basic nature of perfectoid spaces.
An affinoid perfectoid space is associated to a perfectoid affinoid K-algebra, which is a pair
(R,R+) consisting of a perfectoid K-algebra R and an open and integrally closed subring
R+ ⊂ R◦. In most cases, one will just take R+ = R◦. Then also the categories of perfectoid
affinoid K-algebras and perfectoid affinoid K[-algebras are equivalent. Huber associates to
such pairs (R,R+) a topological space X = Spa(R,R+) consisting of continuous valuations
on R that are ≤ 1 on R+, with the topology generated by the rational subsets {x ∈ X |
∀i : |fi(x)| ≤ |g(x)|}, where f1, . . . , fn, g ∈ R generate the unit ideal. Moreover, he defines
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a structure presheaf OX on X, and the subpresheaf O+
X , consisting of functions which have

absolute value ≤ 1 everywhere.

Theorem 2.9. Let (R,R+) be a perfectoid affinoid K-algebra, with tilt (R[, R[+). Let X =
Spa(R,R+), with OX , O+

X , and X[ = Spa(R[, R[+), with OX[, O+
X[.

(i) There is a canonical homeomorphism X ∼= X[, given by mapping x to x[ defined via
|f(x[)| = |f ](x)|. Rational subsets are identified under this homeomorphism.

(ii) For any rational subset U ⊂ X, the pair (OX(U),O+
X(U)) is perfectoid affinoid with tilt

(OX[(U),O+
X[(U)).

(iii) The presheaves OX , O+
X and OX[, O+

X[ are sheaves.

(iv) For all i > 0, the cohomology group H i(X,OX) = 0. Moreover, the cohomology group
H i(X,O+

X) is almost zero, i.e. m-torsion. The same holds true for OX[ and O+
X[.

This allows one to define general perfectoid spaces by gluing affinoid perfectoid spaces.
Further, one can define étale morphisms of perfectoid spaces, and then étale topoi. This
leads to an improvement on Faltings’s almost purity theorem:

Theorem 2.10. Let R be a perfectoid K-algebra, and let S/R be finite etale. Then S is
perfectoid and S◦ is almost finite étale over R◦.

In particular, no sort of semistable reduction hypothesis is required anymore. Also, the
proof is much easier. In characteristic p, the result is easy, and is a consequence of repeated
application of Frobenius (roughly, S◦ is finite étale over R◦ up to tN -torsion for some N ; but

then it is finite étale up to tN/p
k
-torsion for all k, i.e. almost finite étale). Moreover, following

the ideas for the case of perfectoid fields, one has a fully faithful functor from finite étale R[-
algebras to finite étale R-algebras. It is enough to prove that this functor is an equivalence
of categories, as for finite étale R-algebras in the image, one can deduce the result from the
case in characteristic p, which is already known. In order to prove that the functor is an
equivalence of categories, one makes a localization argument on X = Spa(R,R+) (for any
R+ ⊂ R◦), to reduce to the case of perfectoid fields.

Tilting also identifies the étale topoi of a perfectoid space and its tilt, and as an application,
one gets the following theorem.

Theorem 2.11. There is an equivalence of étale topoi of adic spaces

(PnK[)
ad
ét
∼= lim←−(PnK)ad

ét .

Here the transition maps are the p-th power map on homogeneous coordinates.

In a sense, the theorem gives rise to a projection map

π : PnK[ → PnK
defined on étale topoi of adic spaces, which is given on coordinates by

π(x0 : . . . : xn) = (x]0 : . . . : x]n) .

It is also defined on the topological spaces underlying the adic spaces.
This discussion has the following consequence.

Theorem 2.12. Let k be a finite extension of Qp, and let X ⊂ Pnk be a smooth complete
intersection. Then the weight-monodromy conjecture holds true for X.
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In [30], this result is proved for complete intersections in more general toric varieties in
place of Pn.

Let us first recall the statement of the weight-monodromy conjecture. Let q be the car-
dinality of the residue field of k, and fix a geometric Frobenius Φ ∈ Gal(k̄/k), where k̄ is
a fixed geometric closure of k. The following are known about the étale cohomology group
V = H i(Xk̄, Q̄`), where ` 6= p is some prime, and i ≥ 0.

(i) There is a decomposition

V =
2i⊕
j=0

Vj ,

where all eigenvalues of Φ on Vj are Weil numbers of weight j, i.e. elements α ∈ Q̄ such that
|ι(α)| = qj/2, under all embeddings ι : Q̄→ C.

(ii) There is a nilpotent operator N : V → V given by the logarithm of the action of the
`-adic inertia subgroup, inducing maps

N : Vj → Vj−2 .

Part (i) is a consequence of the Rapoport-Zink spectral sequence, [23], in the case of
semistable reduction, and de Jong’s alterations, [7], in general, to reduce to this case. Part (ii)
is a consequence of Grothendieck’s quasi-unipotence theorem, which says that after a finite
extension of k, the action of the inertia subgroup becomes unipotent. The decomposition
in part (i) depends on the choice of Φ, but the (weight) filtration given by Film =

⊕
j≤m Vj

does not.
We note that if k has good reduction, then by base-change, the action of Gal(k̄/k) is

unramified, so N = 0, and by the Weil conjectures, V = Vi, i.e. all eigenvalues of the
Frobenius are Weil numbers of weight i. In general, several different weights can appear, but
this is supposed to be made good for by a nontrivial monodromy operator, connecting the
different weights:

Conjecture 2.13 (Weight-monodromy conjecture, [8]). For all j ≥ 0, the map

N j : Vi+j → Vi−j

is an isomorphism.

This is reminiscent of the Lefschetz decomposition. In fact, over C, there is an analogue
of this conjecture, by looking at a family of projective smooth complex varieties over the
punctured unit disc. In that case, there is a limiting Hodge structure, which is not in general
pure, and a monodromy operator (coming from a loop around the puncture). In that case,
the result is known by work of Schmid, [25], cf. also a paper of Steenbrink, [32] (who
introduced what is now called the Rapoport-Zink spectral sequence).

Deligne, [9], proved the analogue of Conjecture 2.13 for a finite extension of Fp((t)) in
place of k. Over p-adic fields, Conjecture 2.13 is known for i = 1 (this reduces to abelian
varieties, where one uses Néron models), and for i = 2 (this reduces to surfaces, where it is
proved in [23]). Apart from that, little is known.

Let us end this introduction by giving a short sketch of the proof of the weight-monodromy
conjecture for a smooth hypersurface X ⊂ Pn, which is already a new result; the proof in
the general case is identical. Let K be the completion of k(π1/p∞), where π is a uniformizer
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of k; this is a perfectoid field, and its tilt K[ is the completion of Fq((t))(t1/p
∞

).1 Both the
weights and the monodromy operator are defined by the action of Gal(K̄/K) ⊂ Gal(k̄/k).
We have the projection

π : PnK[ → PnK ,

and we can look at the preimage π−1(X). One has a Gal(K̄/K) ∼= Gal(K̄[/K[)-equivariant
injective map H i(X)→ H i(π−1(X)) on `-adic cohomology, and if π−1(X) were an algebraic
variety, then one could deduce the result from Deligne’s theorem in equal characteristic.
However, the map π is highly transcendental, and π−1(X) will not be given by equations.
In general, it will look like some sort of fractal, have infinite-dimensional cohomology, and
will have infinite degree in the sense that it will meet a line in infinitely many points. As an
easy example, let

X = {x0 + x1 + x2 = 0} ⊂ (P2
K)ad .

Then the homeomorphism

|(P2
K[)

ad| ∼= lim←−
ϕ

|(P2
K)ad|

means that π−1(X) is topologically the inverse limit of the subvarieties

Xn = {xp
n

0 + xp
n

1 + xp
n

2 = 0} ⊂ (P2
K)ad .

However, we have the following crucial approximation lemma.

Lemma 2.14. Let X̃ ⊂ (PnK)ad be a small open neighborhood of the hypersurface X. Then

there is a hypersurface Y ⊂ π−1(X̃).

The proof of this lemma is by an explicit approximation algorithm for the homogeneous
polynomial defining X, and is the reason that we have to restrict to complete intersections.
Using a result of Huber, one finds some X̃ such that H i(X) = H i(X̃), and hence gets a

Gal(K̄/K) ∼= Gal(K̄[/K[)-equivariant map H i(X) = H i(X̃) → H i(Y ). As before, one
checks (using ∪-products and a direct analysis in top degree) that it is injective and concludes.

2.2. Some open questions. Of course, the most urgent question would be to see whether
the proof of the weight-monodromy conjecture can be extended to more general situations.
The only problem is in proving an analogue of the last lemma; let me state this as a conjec-
ture.

Conjecture 2.15. Let X ⊂ PnK be a smooth closed subscheme. Let X̃ ⊂ (PnK)ad be a
small open neighborhood of X. Then there exists a closed subscheme Y ⊂ Pn

K[ such that

Y ad ⊂ π−1(X̃), and dimY = dimX.

If this conjecture is true, the weight-monodromy conjecture follows, using the same ar-
gument. We recall that π−1(Xad) ⊂ (Pn

K[)
ad can be regarded as a fractal. The question is

whether this fractal can be approximated (globally) by an algebraic variety. We note that
it can be approximated locally by an algebraic variety, as X is smooth (and thus locally a
complete intersection, so the argument in the case of global complete intersections works
locally).

1If k = Qp, then we are just back to our standard example.
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On the other hand, there are a couple of foundational questions on perfectoid spaces,
where a positive answer would simplify many arguments. The key problem is whether the
property of being perfectoid is local.

Conjecture 2.16. Let K be some perfectoid field, (A,A+) a complete affinoid K-algebra.
Assume that there is a cover of X = Spa(A,A+) by rational subsets Ui ⊂ X such that OX(Ui)
is a perfectoid K-algebra. Then A is a perfectoid K-algebra.

Corollary 2.17. Assume Conjecture 2.16. Let X be a perfectoid space over K, and assume
that U ⊂ X is affinoid, i.e. there is a complete affinoid K-algebra (A,A+) and a map

(A,A+)→ (H0(U,OX), H0(U,O+
X))

such that the induced map U → Spa(A,A+) is a homeomorphism, and the map of (pre)sheaves
OSpa(A,A+) → OU is an isomorphism locally on U .2 Then

(A,A+) ∼= (H0(U,OX), H0(U,O+
X))

is an affinoid perfectoid K-algebra.

Corollary 2.18. Assume Conjecture 2.16. Let X be an affinoid perfectoid space over K,
and let Y be an affinoid noetherian adic space over K, and f : X → Y a map of adic
spaces over K. Let V be another affinoid noetherian adic space over K, with an étale map
g : V → Y . Then U = V ×Y X → X is étale, and U is affinoid perfectoid.

Remark 2.19. As the proof shows, one can also compute the global sections of U in the
expected way.

Proof. Let X = Spa(A,A+), Y = Spa(B,B+), V = Spa(C,C+). Then let D = A⊗BC, with
the topology making the image of A0⊗B0 C0 a ring of definition, with ideal of definition the
image of I ⊗ J , where A0 ⊂ A, B0 ⊂ B, C0 ⊂ C are rings of definition, and I ⊂ A0, J ⊂ C0

are ideals of definition. Let D+ ⊂ D be the integral closure of the image of A+ ⊗B+ C+.
Then the completion of (D,D+) is an affinoid K-algebra, and it satisfies the hypothesis of
Conjecture 2.16. For this, use that if g : V → Y is a composition of rational subsets and
finite étale maps, then the completion of (D,D+) is a perfectoid affinoid K-algebra, with
Spa(D,D+) = U ⊂ X (as follows from the definition of the structure sheaf on rational
subsets, resp. [30], Theorem 7.9 (iii)). �

Let us also note some subtleties related to saying that ’an inverse limit of adic spaces is
perfectoid’. For this, we recall a definition from [31] in the case of interest here.

Definition 2.20. Let K be a perfectoid field, and let Xi, i ∈ I, be a cofiltered inverse system
of locally noetherian adic spaces over K, with qcqs transition maps. Let X be a perfectoid
space over K with a compatible system of maps X → Xi, i ∈ I. Write

X ∼ lim←−
i

Xi

if |X| ∼= lim←−i |Xi| is a homeomorphism, and there exists a cover of X by open perfectoid

affinoid U = Spa(R,R+) for which the map

lim−→
Spa(Ri,R

+
i )⊂Xi

Ri → R

2This is saying that U is an affinoid adic space in the sense of [31].
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has dense image, where the direct limit runs over all

Spa(Ri, R
+
i ) ⊂ Xi

over which Spa(R,R+)→ X factors.

Remark 2.21. In [31, Definition 2.4.1], this notion is introduced for general adic spaces (in
the sense of [31, Definition 2.1.5]). The elementary properties of the following proposition
also hold in that generality. It also follows from the arguments of the following proposition
that the given definition is equivalent to the one in [31] in this situation: Note that here
we require the open affinoid U = Spa(R,R+) to come from a perfectoid affinoid K-algebra
(R,R+), which would a priori lead to a stronger notion.

Let us say that a perfectoid affinoid open subset Spa(R,R+) ⊂ X is good if

lim−→
Spa(Ri,R

+
i )⊂Xi

Ri → R

has dense image, and

| Spa(R,R+)| ∼= lim←−
Spa(Ri,R

+
i )⊂Xi

| Spa(Ri, R
+
i )|

is a homeomorphism.

Proposition 2.22. (i) If X ∼ lim←−iXi, then there exists a cover of X by perfectoid affinoid

open U = Spa(R,R+) ⊂ X which are good.

(ii) If U = Spa(R,R+) ⊂ X is good, then any rational subset of U is good.

Proof. (i) Take any perfectoid affinoid U = Spa(R,R+) ⊂ X such that

lim−→
Spa(Ri,R

+
i )⊂Xi

Ri → R

has dense image. Clearly,

|U | ⊂ lim←−
Spa(Ri,R

+
i )⊂Xi

| Spa(Ri, R
+
i )|(⊂ |X|)

is open. Therefore, there is some qcqs open subset Ui ⊂ Spa(Ri, R
+
i ) for some i, such that

U is the preimage of Ui. We may cover Ui by rational subsets U ′i ⊂ Spa(Ri, R
+
i ); let U ′ ⊂ U

be the preimage, which is a rational subset of U . Then

|U ′| = lim←−
Spa(R′i,R

′+
i )⊂Xi

| Spa(R′i, R
′+
i )| ,

where now the inverse limit runs over all Spa(R′i, R
′+
i ) ⊂ Xi over which U ′ → Xi factors.

Moreover, the density statement is preserved (by the definition of the structure presheaf on
rational subsets), so U ′ is good.

(ii) A rational subset of U comes as the preimage of a rational subset of some Spa(Ri, R
+
i );

then use the argument from (i).
�
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Proposition 2.23 ([31, Proposition 2.4.5]). In the situation of Definition 2.20, the perfectoid
space X represents the functor

Y 7→ lim←−
i

Hom(Y,Xi)

on perfectoid spaces over K. In particular, it is unique up to unique isomorphism.

For the next proposition, one needs a slight variant of Conjecture 2.16.

Conjecture 2.24. Let K be some perfectoid field, and (A,A+) a complete affinoid K-algebra
for which A+ has the p-adic topology. Assume that there is a covering of X = Spa(A,A+) by

rational subsets Ui ⊂ X for which ÔX(Ui) is a perfectoid K-algebra, where the completion
is taken with respect to the topology giving O+

X(Ui) the p-adic topology. Then (A,A+) is a
perfectoid affinoid K-algebra.

Remark 2.25. It is not clear whether the natural topology on O+
X(Ui) is the p-adic topology,

even if A+ has the p-adic topology. If (A,A+) is perfectoid, this is true.

Proposition 2.26. Assume Conjecture 2.24. Assume that all Xi = Spa(Ri, R
+
i ) are affinoid,

and that X ∼ lim←−iXi. Then X is good, i.e. X = Spa(R,R+) is affinoid perfectoid and
lim−→i

Ri → R has dense image.

Proof. As before: One knows the result after localizing to rational subsets, so Conjecture
2.24 gives the result (using the completion of the direct limit of the (Ri, R

+
i ), with the p-adic

topology on lim−→R+
i , as (A,A+)). Note that we have to enforce artificially the p-adic topology

on A+, and we have to do the same on rational subsets, which is the reason that we need
Conjecture 2.24 in place of Conjecture 2.16. �
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3. p-adic Hodge theory

3.1. Introduction. This introduction is essentially identical to the introduction to [29].
In the paper [29], we started to investigate to what extent p-adic comparison theorems

stay true for rigid-analytic varieties. Up to now, such comparison isomorphisms were mostly
studied for schemes over p-adic fields, but we show there that the whole theory extends
naturally to rigid-analytic varieties over p-adic fields. This is of course in analogy with
classical Hodge theory, which most naturally is formulated in terms of complex-analytic
spaces.

Several difficulties have to be overcome to make this work. The first is that finiteness of
p-adic étale cohomology is not known for rigid-analytic varieties over p-adic fields. In fact,
it is false if one does not make a restriction to the proper case. However, we prove that for
proper smooth rigid-analytic varieties, finiteness of p-adic étale cohomology holds.

Theorem 3.1. Let C be a complete algebraically closed extension of Qp, let X/C be a proper
smooth rigid-analytic variety, and let L be an Fp-local system on Xét. Then H i(Xét,L) is a
finite-dimensional Fp-vector space for all i ≥ 0, which vanishes for i > 2 dimX.

The properness assumption is crucial here; the smoothness assumption is in fact unnec-
essary, and an artefact of the proof – using resolution of singularities, one can deduce the
result for general proper rigid-analytic varieties, see Theorem 3.17 below. We note that in
the smooth case, it would be interesting to prove Poincaré duality.

Let us first explain our proof of this theorem. We build upon Faltings’s theory of almost
étale extensions, amplified by the theory of perfectoid spaces. One important difficulty in
p-adic Hodge theory as compared to classical Hodge theory is that the local structure of rigid-
analytic varieties is very complicated; small open subsets still have a large étale fundamental
group. We introduce the pro-étale site Xproét whose open subsets are roughly of the form
V → U → X, where U → X is some étale morphism, and V → U is an inverse limit of finite
étale maps. Then the local structure of X in the pro-étale topology is simpler, namely, it
is locally perfectoid. This amounts to extracting lots of p-power roots of units in the tower
V → U . We note that the idea to extract many p-power roots is common to all known proofs
of comparison theorems in p-adic Hodge theory.

The following result gives further justification to the definition of pro-étale site.

Theorem 3.2. Let X be a connected affinoid rigid-analytic variety over C. Then X is a
K(π, 1) for p-torsion coefficients, i.e. for all p-torsion local systems L on X, the natural
map

H i
cont(π1(X, x),Lx)→ H i(Xét,L)

is an isomorphism. Here, x ∈ X(C) is a base point, and π1(X, x) denotes the profinite étale
fundamental group.

We note that we assume only that X is affinoid; no smallness or nonsingularity hypothesis
is necessary for this result. This theorem implies that X is ’locally contractible’ in the
pro-étale site, at least for p-torsion local systems.

Now, on affinoid perfectoid subsets U , one knows that H i(Uét,O+
X/p) is almost zero for

i > 0, where O+
X ⊂ OX is the subsheaf of functions of absolute value ≤ 1 everywhere.

This should be seen as the basic finiteness result, and is related to Faltings’s almost purity
theorem. Starting from this and a suitable cover of X by affinoid perfectoid subsets in Xproét,
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one can deduce that H i(Xét,O+
X/p) is almost finitely generated over OK . At this point, one

uses that X is proper, and in fact the proof of this finiteness result is inspired by the proof
of finiteness of coherent cohomology of proper rigid-analytic varieties, as given by Kiehl,
[20]. Then one deduces finiteness results for the Fp-cohomology by using a variant of the
Artin-Schreier sequence

0→ Fp → O+
X/p→ O

+
X/p→ 0 .

In fact, the proof shows at the same time the following result, which is closely related to §3,
Theorem 8, of [10].

Theorem 3.3. In the situation of Theorem 3.1, there is an almost isomorphism of OC-
modules for all i ≥ 0,

H i(Xét,L)⊗OC/p→ H i(Xét,L⊗O+
X/p) .

More generally, assume that f : X → Y is a proper smooth morphism of rigid-analytic
varieties over C, and L is an Fp-local system on Xét. Then there is an almost isomorphism
for all i ≥ 0,

(Rifét∗L)⊗O+
Y /p→ Rifét∗(L⊗O+

X/p) .

Remark 3.4. The relative case was already considered in an appendix to [10]: Under the
assumption that X, Y and f are algebraic and have suitable integral models, this is §6,
Theorem 6, of [10]. In our approach, it is a direct corollary of the absolute version.

In a sense, this can be regarded as a primitive version of a comparison theorem. It has the
very interesting (and apparently paradoxical) feature that on the right-hand side, one has
a ’coherent cohomology group modulo p’, but the cohomology is computed on the generic
fibre. That this group behaves well relies on the fact that perfectoid spaces have a canonical
’almost integral’ structure. Moreover, it implies the following strange property of

H i(Xét,O+
X) :

After inverting p, these groups are usual coherent cohomology H i(Xét,OX) = H i(Xan,OX),
but after modding out p, one gets étale cohomology. Thus, these integral cohomology groups
build a bridge between étale and coherent cohomology.

Although it should be possible to deduce (log-)crystalline comparison theorems from here,
we did only the de Rham case. For this, we introduced sheaves on Xproét, which we call
period sheaves, as their values on pro-étale covers of X give period rings. Among them is
the sheaf B+

dR, which is the relative version of Fontaine’s ring B+
dR. Any lisse Zp-sheaf L on

Xét gives rise to a B+
dR-local system on Xproét, and it is a formal consequence of Theorem 3.3

that

(1) H i
ét(X,L)⊗Zp B

+
dR
∼= H i(Xproét,M) .

We want to compare this to de Rham cohomology. For this, we first relate filtered modules
with integrable connection to B+

dR-local systems.

Theorem 3.5. Let X be a smooth rigid-analytic variety over k, where k is a complete
discretely valued nonarchimedean extension of Qp with perfect residue field. Then there is a
fully faithful functor from the category of filtered OX-modules with an integrable connection
satisfying Griffiths transversality, to the category of B+

dR-local systems.
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The proof makes use of the period rings introduced in Brinon’s book [5], and relies on some
of the computations of Galois cohomology groups done there. We say that a lisse Zp-sheaf L
is de Rham if the associated B+

dR-local system M lies in the essential image of this functor.
We get the following comparison result.

Theorem 3.6. Let k be a discretely valued complete nonarchimedean extension of Qp with
perfect residue field κ, and algebraic closure k̄, and let X be a proper smooth rigid-analytic
variety over k. For any lisse Zp-sheaf L on Xét with associated B+

dR-local system M, we have
a Gal(k̄/k)-equivariant isomorphism

H i
ét(Xk̄,L)⊗Zp B

+
dR
∼= H i(Xk̄,proét,M) .

If L is de Rham, with associated filtered module with integrable connection (E ,∇,Fil•), then
the Hodge-de Rham spectral sequence

H i−j,j
Hodge(X, E)⇒ H i

dR(X, E)

degenerates. Moreover, H i
ét(Xk̄,L) is a de Rham representation of Gal(k̄/k) with associ-

ated filtered k-vector space H i
dR(X, E). In particular, there is also a Gal(k̄/k)-equivariant

isomorphism

H i
ét(Xk̄,L)⊗Zp

ˆ̄k ∼=
⊕
j

H i−j,j
Hodge(X, E)⊗k ˆ̄k(−j) .

Remark 3.7. We define the Hodge cohomology as the hypercohomology of the associated
gradeds of the de Rham complex of E , with the filtration induced from Fil•.

In particular, we get the following corollary, which answers a question of Tate, [33], Remark
on p.180.

Corollary 3.8. For any proper smooth rigid-analytic variety X over k, the Hodge-de Rham
spectral sequence

H i(X,Ωj
X)⇒ H i+j

dR (X)

degenerates, there is a Hodge-Tate decomposition

H i
ét(Xk̄,Qp)⊗Qp

ˆ̄k ∼=
i⊕

j=0

H i−j(X,Ωj
X)⊗k ˆ̄k(−j) ,

and the p-adic étale cohomology H i
ét(Xk̄,Qp) is de Rham, with associated filtered k-vector

space H i
dR(X).

Interestingly, no ’Kähler’ assumption is necessary for this result in the p-adic case as
compared to classical Hodge theory. In particular, one gets degeneration for all proper
smooth varieties over fields of characteristic 0 without using Chow’s lemma.

Examples of non-algebraic proper smooth rigid-analytic varieties can be constructed by
starting from a proper smooth variety in characteristic p, and taking a formal, non-algebraizable,
lift to characteristic 0. This can be done for example for abelian varieties or K3 surfaces.
More generally, there is the theory of abeloid varieties, which are ’non-algebraic abelian
rigid-analytic varieties’, roughly, cf. [22].
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There are also some non-Kähler compact complex manifolds over C which have p-adic
analogues: Fortunately, only those for which Hodge-de Rham degeneration holds. An exam-
ple is the Hopf surface. Over a p-adic field, this can be defined as follows. Fix an element
q ∈ k with |q| < 1, and let

X = (A2 \ {(0, 0)})/qZ ,
where q acts by diagonal multiplication. It is easy to see that X is proper and smooth. It
has H0(X,Ω1

X) = 0, H1(X,OX) = k (so Hodge symmetry fails!), and H1
ét(X,Z`) = Z` for

any prime number ` (including ` = p). In particular, the weight-monodromy conjecture fails
badly for this non-algebraic variety. However, one may formulate the following conjecture
on independence of `:

Conjecture 3.9. Let X be a proper smooth rigid-analytic variety over a finite extension k
of Qp. Then the Weil-Deligne representation associated to H i

ét(Xk̄,Q`) is independent of `
(including ` = p).

For ` 6= p, we take the usual recipee, and for ` = p, we use Fontaine’s recipee, using that
H i

ét(Xk̄,Q`) is de Rham (and thus potentially semistable).
Theorem 3.6 also has the following consequence, which was conjectured by Schneider, cf.

[26], p.633.

Corollary 3.10. Let k be a finite extension of Qp, let X = Ωn
k be Drinfeld’s upper half-

space, which is the complement of all k-rational hyperplanes in Pn−1
k , and let Γ ⊂ PGLn(k)

be a discrete cocompact subgroup acting without fixed points on Ωn
k . One gets the quotient

XΓ = X/Γ, which is a proper smooth rigid-analytic variety over k. Let M be a representation
of Γ on a finite-dimensional k-vector space, such that M admits a Γ-invariant Ok-lattice. It
gives rise to a local system MΓ of k-vector spaces on XΓ. Then the twisted Hodge-de Rham
spectral sequence

H i(XΓ,Ω
j
XΓ
⊗MΓ)⇒ H i+j

dR (XΓ,OXΓ
⊗MΓ)

degenerates.

The proof of Theorem 3.6 follows the ideas of Andreatta and Iovita, [1], in the crystalline
case. One uses a version of the Poincaré lemma, which says here that one has an exact
sequence of sheaves over Xproét,

0→ B+
dR → OB

+
dR

∇→ OB+
dR ⊗OX Ω1

X
∇→ . . . ,

where we use slightly nonstandard notation. In [5] and [1], B+
dR would be called B∇+

dR , and
OB+

dR would be called B+
dR. This choice of notation is used because many sources do not

consider sheaves like OB+
dR, and agree with our notation in writing B+

dR for the sheaf that is
sometimes called B∇+

dR .
Given this Poincaré lemma, it only remains to calculate the cohomology of OB+

dR, which
turns out to be given by coherent cohomology through some explicit calculation. This finishes
the proof of Theorem 3.6. We note that this proof is direct: All desired isomorphisms are
proved by a direct argument, and not by producing a map between two cohomology theories
and then proving that it has to be an isomorphism by abstract arguments. In fact, such
arguments would not be available for us, as results like Poincaré duality are not known for
the p-adic étale cohomology of rigid-analytic varieties over p-adic fields. It also turns out that
our methods are flexible enough to handle the relative case, and our results imply directly
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the corresponding results for proper smooth algebraic varieties, by suitable GAGA results.
This gives for example the following result. We should note that this is the first general
relative de Rham comparison result, even in the algebraic case.

Theorem 3.11. Let k be a discretely valued complete nonarchimedean extension of Qp with
perfect residue field κ, and let f : X → Y be a proper smooth morphism of smooth rigid-
analytic varieties over k. Let L be a lisse Zp-sheaf on Xét which is de Rham, with associated
filtered module with integrable connection (E ,∇,Fil•). Assume that RifétL is a lisse Zp-sheaf
on Yét; this holds true, for example, if the situation comes as the analytification of algebraic
objects.

Then RifétL is de Rham, with associated filtered module with integrable connection given
by RifdR∗(E ,∇,Fil•).

We note that we make use of the full strength of the theory of perfectoid spaces. Apart
from this, our argument is rather elementary and self-contained, making use of little more
than basic rigid-analytic geometry, which we reformulate in terms of adic spaces, and basic
almost mathematics. In particular, we work entirely on the generic fibre. This eliminates
in particular any assumptions on the reduction type of our variety, and we do not need any
version of de Jong’s alterations, neither do we need log structures. The introduction of the
pro-étale site makes all constructions functorial, and it also eliminates the need to talk about
formal projective or formal inductive systems of sheaves, as was done e.g. in [10], [1]: All
period sheaves are honest sheaves on the pro-étale site.

3.2. A comparison result for constructible coefficients. The methods of [29] have some
consequences that were not included there. First, we explain how to deduce a comparison
result in the style of Theorem 3.3 with constructible coefficients.

Let C be a complete algebraically closed extension of Qp, with a fixed open valuation
subring C+ ⊂ C (e.g. C+ = OC), and let f : X → Y be a proper map of schemes of finite
type over C, with associated adic spaces f ad : Xad → Y ad over Spa(C,C+). Let L be a
constructible Fp-sheaf on X, with pullback Lad to Xad. Recall the following result of Huber,
[17], Theorem 3.7.2.

Theorem 3.12. For all i ≥ 0, (Rifét∗L)ad
∼=−→ Rif ad

ét∗Lad.

In this section, we prove the following constructible version of Theorem 3.3.

Theorem 3.13. For all i ≥ 0, the map (Rif ad
ét∗Lad)⊗O+

Y ad/p→ Rif ad
ét∗(Lad⊗O+

Xad/p) is an
almost isomorphism.

We remark that if Y = SpecC (i.e., in the absolute context), this says that

H i(Xét,L)⊗ C+/p ∼= H i(Xad
ét ,Lad)⊗ C+/p→ H i(Xad

ét ,Lad ⊗O+
Xad/p)

is an almost isomorphism. We need a simple lemma.

Lemma 3.14. Let X be a locally noetherian adic space over Spa(Qp,Zp), with closed sub-
space i : Z ↪→ X.

(i) The map i∗O+
X/p→ O

+
Z/p is an isomorphism (on Zan, and on Zét).

(ii) For any Fp-sheaf F on Zét,

i∗F ⊗O+
X/p

∼=−→ i∗(F ⊗O+
Z/p) .
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Proof. (i) Let f ∈ O+
Z/p be a section; take a lift f ∈ O+

Z ; by approximation, we may assume
that f is the image of some g ∈ OX . The locus |g| ≤ 1 in X is open; thus, we may assume
g ∈ O+

X . This shows that i∗O+
X/p→ O

+
Z/p is surjective. Moreover, if g ∈ O+

X that becomes
divisible by p on Z, look at the open locus |g| ≤ |p| in X: Again, it contains Z, which shows
that g becomes 0 in i∗O+

X/p.

(ii) We check fibres at all geometric points. At fibres outside Z, both are zero. At fibres in
Z, it follows from (i), noting that we may ignore i∗ then, and that taking fibres commutes
with tensor products.

�

We recall from Theorem 3.3 that Theorem 3.13 is true when X is smooth and L is trivial
(or just locally constant). From here, we get another base case.

Lemma 3.15. Assume that X is smooth, and let D =
⋃
aDa ⊂ X, a ∈ I, be a simple

normal crossings divisor with smooth irreducible components Da ⊂ X. Let U = X \D, with
open embedding j : U → X. Then Theorem 3.13 holds true for L = j!Fp and Y = SpecC
(i.e., in the absolute context).

Proof. For J ⊂ I, let DJ =
⋂
a∈J Da, and set D∅ = X. Then all DJ are proper and smooth.

We have the closed embeddings iJ : DJ → X, and a long exact sequence

0→ j!Fp → Fp →
⊕
a

ia∗Fp → . . .→
⊕
|J |=k

iJ∗Fp → . . .→ iI∗Fp → 0

of sheaves on Xét. By pullback, we get a similar exact sequence on Xad
ét . Now, we tensor

with O+
Xad/p and get a similar long exact sequence

0→ j!Fp ⊗O+
Xad/p→ O+

Xad/p→
⊕
a

ia∗Fp ⊗O+
Xad/p→ . . . .

But iJ∗Fp ⊗O+
Xad/p = iJ∗O+

Dad
J
/p. Thus, the lemma follows upon applying the result for all

DJ , with trivial coefficients. �

Lemma 3.16. Let Y = SpecC, and X proper over Y . Let j : U ↪→ X be a smooth dense
open subscheme. Then Theorem 3.13 holds true for L = j!Fp.

Proof. Take a resolution of singularities f : X̃ → X, which is an isomorphism above U ,
and such that the boundary D = X̃ \ U ⊂ X̃ is a divisor with simple normal crossings.
Let j̃ : U ↪→ X̃ denote the lifted embedding. The result follows from the previous lemma,
together with the simple observation

j!Fp ⊗O+
Xad/p ∼= Rf ad

ét∗(j̃!Fp ⊗O+

X̃ad/p) .

This may be checked on fibres at points. Over U , it is clear, and outside U , everything
vanishes. (Use Proposition 2.6.1 of [17] to compute the fibre of the pushforward as the
cohomology of the fibre.) �

Proof. (of Theorem 3.13.) As in [29], proof of Corollary 5.11, the relative version reduces
immediately to the absolute version, so we may assume that Y = SpecC, Y ad = Spa(C,C+).
(This reduction step is the reason that we allow general open valuation rings C+ ⊂ C from
the start.)
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We argue by induction on dimX. So assume the statement is known in dimension < n,
let X be of dimension n, and let L be some constructible Fp-sheaf on X. We may assume
that X is reduced. Then there is a smooth dense open subscheme j : U ↪→ X such that j∗L
is locally constant; let i : Z ↪→ X be the closed complement, so that dimZ < n. We have a
short exact sequence

0→ j!j
∗L→ L→ i∗i

∗L→ 0 ,

which gives rise to a short exact sequence

0→ j!j
∗Lad ⊗O+

Xad/p→ Lad ⊗O+
Xad/p→ (i∗i

∗Lad)⊗O+
Xad/p→ 0 .

But (i∗i
∗Lad) ⊗ O+

Xad/p = i∗(i
∗Lad ⊗ O+

Zad/p), so the isomorphism for the right-hand term
follows by induction from the assertion for Z and i∗L. Thus, we may assume that there is
a smooth dense open subscheme j : U ↪→ X and a locally constant sheaf F on U such that
L = j!F .

The case that F is trivial has been handled in Lemma 3.15. In particular, this handles
the case n = 0 of relative dimension 0.

In the general case, let V → U be a finite étale Galois cover over which F becomes trivial,
and let Y → X be the normalization of X in V . Let Yk be the k-fold fibre product of Y over
X, with open subset Vk ⊂ Yk, which is the k-fold fibre product of V over U . Let jk : Vk → Yk
be the open embedding, and fk : Yk → X, gk : Vk → U the projections. We have a resolution
of j!F on Xét:

0→ j!F → f1∗j1!g
∗
1F → f2∗j2!g

∗
2F → . . . .

This induces a similar resolution on Xad
ét . Similarly, we have a resolution of (j!F ⊗O+

Xad/p)
a

on Xad
ét :

0→ ((j!F )ad⊗O+
Xad/p)

a → f ad
1∗ ((j1!g

∗
1F )ad⊗O+

Y ad
1
/p)a → f ad

2∗ ((j2!g
∗
2F )ad⊗O+

Y ad
2
/p)a → . . . :

To see this, we may check on fibres. Away from U , everything is 0. At a geometric point
x̄→ U with values in (L,L+), and fibre Ykx̄ ⊂ Yk, the sequence identifies with

0→ Fx̄ ⊗ L+a/p→ H0(Y1x̄, Fx̄)⊗ L+a/p→ H0(Y2x̄, Fx̄)⊗ L+a/p→ . . .

(by the result in relative dimension 0). The exactness of this sequence is just the exactness
of

0→ j!F → f1∗j1!g
∗
1F → f2∗j2!g

∗
2F → . . .

at x̄, tensored with L+a/p.
Finally, we get the result by applying it for all jk!g

∗
kF on Yk, noting that g∗kF is trivial. �

At this point, let us also remark that by using resolution of singularities for rigid-analytic
varieties3, one gets Theorem 3.1 for non-smooth spaces by the same argument as above.

Theorem 3.17. Let C be an algebraically closed complete extension of Qp, and let X/C be
a proper rigid-analytic variety. Then H i(Xét,Fp) is a finite-dimensional Fp-vector space for
all i ≥ 0, which vanishes for i > 2 dimX. Moreover, there is an almost isomorphism

H i(Xét,Fp)⊗Fp OC/p→ H i(Xét,O+
X/p)

3See the paper by Bierstone-Milman [2], situation (0.1) (2), where they state that it works for (good)
Berkovich spaces. But proper rigid-analytic varieties, proper adic spaces and proper Berkovich spaces are
canonically equivalent, and proper Berkovich spaces are good by [34], so one may use their result.
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for all i ≥ 0.

Proof. We use the same arguments as above. We claim more generally that if U = X \ Z
is the complement of a Zariski closed subset Z in a proper rigid-analytic variety X, then
H i(Xét, j!Fp) is a finite-dimensional Fp-vector space, which vanishes for i > 2 dimX, and
with a similar almost isomorphism. By induction on dimX, the result is known for Z, and
the result for X is equivalent to the result for U . Given X, we may thus assume that U is
smooth. By resolution of singularities, we may then assume that X is smooth, and Z ⊂ X
is a divisor with normal crossings (cf. proof of Lemma 3.16). In that case, one argues as in
the proof of Lemma 3.15. �

3.3. The Hodge-Tate spectral sequence. Let C be an algebraically closed complete
extension of Qp, and let X/C be a proper smooth rigid-analytic variety. There is a general
Hodge-Tate spectral sequence. It is instructive to compare it to the Hodge-de Rham spectral
sequence:

Theorem 3.18. There is a Hodge-de Rham spectral sequence

Eij
1 = Hj(X,Ωi

X)⇒ H i+j
dR (X) .

Remark 3.19. If X is a scheme, or X is defined over a discretely valued subfield K ⊂ C with
perfect residue field, then this sequence degenerates (by the Lefschetz principle, resp. our
result stated above). We conjecture that it degenerates in general; however, our methods are
not sufficient to prove this. Assuming that it degenerates, one gets a decreasing Hodge-de
Rham filtration Fil•H i

dR(X), with

FilqH i
dR(X)/Filq+1H i

dR(X) = H i−q(X,Ωq
X) .

Theorem 3.20. There is a Hodge-Tate spectral sequence

Eij
2 = H i(X,Ωj

X)(−j)⇒ H i+j
ét (X,Qp)⊗Qp C .

Remark 3.21. Again, if X is a scheme, or X is defined over a discretely valued subfield
K ⊂ C with perfect residue field (more generally, if C(−j)Gal(K̄/K) = 0 for j 6= 0), then
this spectral sequence degenerates. For schemes, this follows by a dimension count (noting
that by the Lefschetz principle, étale and de Rham cohomology have the same dimension);
in the other case, it follows because the differentials are Gal(K̄/K)-equivariant. Note that
in the case of schemes, one could also use a spreading-out argument to reduce to the case of
a discretely valued subfield K ⊂ C with perfect residue field; the same argument could be
applied in the Hodge-de Rham case. This gives a purely p-adic proof of these results.

In case the Hodge-Tate spectral sequence degenerates, one gets a decreasing Hodge-Tate
filtration Fil•(H i

ét(X,Qp)⊗Qp C), with

Filq(H i
ét(X,Qp)⊗Qp C)/Filq+1(H i

ét(X,Qp)⊗Qp C) = Hq(X,Ωi−q
X )(q − i) .

Remark 3.22. The Hodge-Tate spectral sequence does not have a direct analogue over the
complex numbers C. Note that in the p-adic case, H i

ét(X,Qp) ⊗Qp C is not canonically
isomorphic to H i

dR(X); thus the two spectral sequences do not converge to the same coho-
mology groups. Over C, the Hodge-de Rham filtration is canonically split; in the p-adic case,
however, both the Hodge-de Rham and the Hodge-Tate filtration are not canonically split.
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Proof. (of Theorem 3.20.) We use our results from [29]. First, Theorem 3.3 says that

H i(Xét,Fp)⊗Fp OC/p→ H i(Xét,O+
X/p)

is an almost isomorphism. By induction on n, we find that

H i(Xét,Z/pnZ)⊗Z/pnZ OC/pn → H i(Xét,O+
X/p

n)

is an almost isomorphism. Passing to the inverse limit over n (cf. [29, Lemma 3.18]), we get
that

H i(Xproét, Ẑp)⊗Zp OC → H i(Xproét, Ô+
X)

is an almost isomorphism; also, H i(Xproét, Ẑp) = H i
ét(X,Zp), with the usual definition of the

right-hand side. Inverting p, we get an isomorphism

H i
ét(X,Qp)⊗Qp C

∼= H i(Xproét, ÔX) .

It remains to compute the right-hand side. For this, we use the projection ν : Xproét → Xét,
and the spectral sequence

Eij
2 = H i(Xét, R

jν∗ÔX)⇒ H i+j(Xproét, ÔX) = H i+j
ét (X,Qp)⊗Qp C ;

this reduces us to the next proposition. �

Proposition 3.23. Let X/C be a smooth adic space. Let ν : Xproét → Xét be the projection.

Then OXét

∼=−→ ν∗ÔX , and there is a natural isomorphism Ω1
Xét

(−1)
∼=−→ R1ν∗ÔX ; it induces

isomorphisms (via taking the exterior power, and cup products)

Ωj
Xét

(−j)
∼=−→ Rjν∗ÔX

for all j ≥ 0.

Proof. First, we prove that E = R1ν∗ÔX is a locally free OXét
-module of rank dimX, such

that
j∧
E ∼= Rjν∗ÔX

for all j ≥ 0. This can be checked locally, so we can assume that there is an étale map
X → Tn that factors as a composite of rational embeddings and finite étale maps, where

Tn = Spa(C〈T±1
1 , . . . , T±1

n 〉,OC〈T±1
1 , . . . , T±1

n 〉)
is the n-dimensional torus. We have the natural pro-finite étale cover

T̃n = Spa(C〈T±1/p∞

1 , . . . , T±1/p∞

n ,OC〈T±1/p∞

1 , . . . , T 1/p∞

n 〉) .

By pullback, it induces a pro-finite étale cover X̃ → X, and one has

H i(Xproét, ÔX) = H i
cont(Znp ,OX̃(X̃)) .

Thus, the statement follows from [29, Lemma 4.5, Lemma 5.5]: First, Lemma 4.5 shows that

OX̃(X̃) = OX(X)⊗̂C〈T±1
1 ,...,T±1

n 〉C〈T
±1/p∞

1 , . . . , T±1/p∞

n 〉 ,

and then Lemma 5.5 computes this group.

In particular, we find that OXét

∼=−→ ν∗ÔX . It remains to prove that E ∼= Ω1
Xét

(−1). For
this, we prove the following lemma. �
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Lemma 3.24. Consider the exact sequence

0→ Ẑp(1)→ lim←−
×p
O×X → O

×
X → 0

on Xproét, where Ẑp(1) = lim←−µpn. It induces a boundary map

O×Xét
= ν∗O×X → R1ν∗Ẑp(1) .

There is a unique OXét
-linear map Ω1

Xét
→ E = R1ν∗ÔX(1) such that the diagram

O×Xét

d log

��

// R1ν∗Ẑp(1)

��

Ω1
Xét

// R1ν∗ÔX(1)

commutes. This map is an isomorphism.

Proof. The assertion is local, so we can again assume that X → Tn is a composition of finite
étale maps and rational subsets; in particular, X = Spa(R,R◦) is affinoid. Let T1, . . . , Tn be
the coordinates on Tn; then d log(Ti) ∈ Ω1

Xét
are an OXét

-basis. Their images are prescribed
uniquely by the requirement of the lemma, thus the map is unique if it exists. Moreover, the
local computation shows that this map is an isomorphism.

It remains to prove existence. For this, we have to check that the diagram

R× = H0(Xproét,O×X)

d log

��

// H1(Xproét, Ẑp(1))

��

Ω1
R/C = H0(Xproét,Ω

1
X) // H1(Xproét, ÔX(1))

commutes, where the lower map is defined to be the one pinned down by the d log(Ti). First,

by the local computation, H1(Xproét, ÔX(1)) is a finite free R-module. In particular, it carries

a natural topology. We claim that via both maps, the image of R◦× in H1(Xproét, ÔX(1))
is bounded (the commutativity of the diagram implies a posteriori the fact that the image
of R× is bounded). For the map over the upper right corner, this follows by observing that

it factors over H1(Xproét, Ô+
X(1)). For the map over the lower left corner, observe that on

R◦×, d log factors over Ω1
R◦/OC , where the latter is an R◦-module of finite type (as R◦ is

topologically finitely generated by [3]).
Now write C = lim−→Ai as the filtered direct limit of Qp-algebras Ai of finite type. By

resolution of singularities, we may assume that all Ai are smooth. We may thus find formally

smooth Qp-algebras Bi topologically of finite type with C = l̂im−→Bi. We may also assume
that there are étale maps Yi = Spa(Bi, B

◦
i )→ Tni for some ni. For i large enough, X comes

as base extension from Xi → Yi (use that finite étale covers and rational subsets on an
inverse limits of adic spaces come from a finite level). Let Xi = Spa(Ri, R

◦
i ), where now Ri is

topologically of finite type over Qp. Moreover, given any f ∈ R× and m ≥ 1, one can find an

i and some fi ∈ R×i such that f
fi
∈ 1 + pmR◦. By the boundedness statement on the image
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of R◦×, and because elements of 1 + pmR◦ are pm−2-th powers of elements of 1 + p2R◦ ⊂ R◦×

(say m ≥ 2), it suffices to prove the statement for f = fi.
Now we recall Faltings’s extension from [29, Corollary 6.14]; this is an exact sequence

0→ ÔXi(1)→ Fi → ÔXi ⊗OXi Ω1
Xi
→ 0

of ÔXi-modules on (Xi)proét. Moreover, there is an exact commutative diagram

0 // Ẑp(1) //

��

lim←−×pO
×
Xi

��

// O×Xi
d log

��

// 0

0 // ÔXi(1) // Fi // ÔXi ⊗OXi Ω1
Xi

// 0

on (Xi)proét. Here, an element of lim←−×pO
×
Xi

gives an element U ∈ Ô[×Xi , and an element

V ∈ O×Xi ; then log(V/[U ]) ∈ OB+
dR,Xi

lies in the kernel of Θ, and defines an element of Fi;
this gives the middle vertical map. Commutativity is a direct check; note that d[U ] = 0.
Applying g∗i (where gi : Xproét → (Xi)proét) to the diagram and tensoring the lower sequence

with ÔX over g∗i ÔXi gives an exact commutative diagram

0 // g∗i Ẑp(1) //

��

g∗i lim←−×pO
×
Xi

��

// g∗iO×Xi

��

// 0

0 // ÔX(1) // F ′i // ÔX ⊗OX (Ω1
X)′ // 0

on Xproét, where F ′i is some sheaf of ÔX-modules, and (Ω1
X)′ = g∗i Ω

1
Xi
⊗g∗iOXi OX is a free

OX-module with a projection (Ω1
X)′ → Ω1

X . The kernel comes from Ω1
Yi

, and is generated

by the image of O×Yi via d log (using that Yi is étale over Tni). Now look at the associated
commutative diagram of boundary maps:

H0(Xproét, g
∗
iO×Xi) //

��

H1(Xproét, g
∗
i Ẑp(1))

��

H0(Xproét, ÔX ⊗OX (Ω1
X)′) // H1(Xproét, ÔX(1))

Note also that

H0(Xproét, g
∗
iO×Xi) //

��

H1(Xproét, g
∗
i Ẑp(1))

��

R× // H1(Xproét, Ẑp(1))

commutes, as one can relate the two exact sequences defining the boundary maps. Using
the two diagrams together, one finds that the map

H0(Xproét, ÔX ⊗OX (Ω1
X)′)→ H1(Xproét, ÔX(1))
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defined by the ÔX-linear extension F ′i is ÔX-linear, and maps d log(Ti) to the correct ele-
ments. Moreover, it factors over

Ω1
R/C = H0(Xproét, ÔX ⊗OX Ω1

X) :

For this, we have to check that it kills all d log(h), where h is one of the coordinates of
Tni , pulled back to Yi. But then h gives an element of C, and it has in C a sequence of
p-power roots; it follows that h lifts to H0(Xproét, g

∗
i lim←−×pO

×
Xi

), so that it vanishes under

the boundary map.
It follows that

H0(Xproét, ÔX ⊗OX (Ω1
X)′)→ H1(Xproét, ÔX(1))

is the composite of the projection

H0(Xproét, ÔX ⊗OX (Ω1
X)′)→ Ω1

R/C = H0(Xproét, ÔX ⊗OX Ω1
X)

with the map
Ω1
R/C → H1(Xproét, ÔX(1))

pinned down by the d log(Ti). Now, use the commutativity of the diagrams for fi ∈
H0(Xproét, g

∗
iO×Xi) to conclude. �
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4. A p-adic analogue of Riemann’s classification of complex abelian
varieties

In this section, we explain a result on p-divisible groups over OC , where C is an alge-
braically closed complete extension of Qp, proved in joint work with J. Weinstein, [31].
Although in [31], perfectoid spaces are used at several points, the material of this section is
independent of the theory of perfectoid spaces, except for Subsection 4.2, which is however
not needed to state and prove the main result discussed below. Thus, the reader may prefer
to skip Subsection 4.2, except for reading the statement of Fargues’s theorem 4.13.

4.1. Riemann’s theorem. Let us first recall the classical theory over the complex numbers
C.

Definition 4.1. A complex torus is a connected compact complex Lie group T .

Lemma 4.2. A complex torus T is commutative.

Proof. Let OT,0 be the local ring at 0, with maximal ideal m. The adjoint action

T → GL(OT,0/mn)

is trivial, as T is compact and connected, and the right-hand side is affine. �

Let t be the Lie algebra of T ; it is a finite-dimensional C-vector space, t ∼= Cg. The
exponential map

exp : t→ T

makes t the universal covering of T , and if we let Λ = ker(exp) ⊂ t, then T = t/Λ. Thus,
Λ ⊂ t is a discrete cocompact subgroup, i.e. a lattice Λ ∼= Z2g. Thus, we arrive at the
classification of complex tori.

Proposition 4.3. The category of complex tori is equivalent to the category of pairs (t,Λ),
where t is a finite-dimensional C-vector space, and Λ ⊂ t is a lattice.

One can reformulate this classification in terms of Hodge structures.

Definition 4.4. (i) A Z-Hodge structure of weight −1 is a finite free Z-module Λ together

with a C-subvectorspace V ⊂ Λ⊗Z C, such that V ⊕ V̄
∼=−→ Λ⊗Z C.

(ii) A polarization on a Z-Hodge structure (Λ, V ) of weight −1 is an alternating form

ψ : Λ⊗ Λ→ 2πiZ

such that ψ(x,Cy) is a symmetric positive definite form on Λ ⊗Z R, where C is Weil’s
operator on Λ⊗Z C ∼= V ⊕ V̄ , acting as i on V , and as −i on V̄ .

We note that it follows that complex tori are equivalent to Z-Hodge structures of weight
−1, via mapping (t,Λ) to (Λ, V ), with V = ker(Λ⊗ C→ t).

Definition 4.5. A complex abelian variety is a projective complex torus.

Theorem 4.6 (Riemann). The category of complex abelian varieties is equivalent to the
category of polarizable Z-Hodge structures of weight −1.
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Let us call this theorem, stating an abstract equivalence between some geometric objects
(abelian varieties) with some Hodge-theoretic data, the ’Hodge-theoretic perspective’. In
this case over C, we have seen that this equivalence has a very direct geometric meaning,
which we call ’the geometric perspective’: All complex tori of dimension g have the same
universal cover Cg, and thus are of the form Cg/Λ for a lattice Λ ⊂ Cg. When can one form
the quotient Cg/Λ? Always as a complex manifold, sometimes (as determined by Riemann)
as an algebraic variety.

4.2. The Hodge-Tate sequence for abelian varieties and p-divisible groups. Let C
be an algebraically closed complete extension of Qp. Let X/C be a proper smooth scheme.
We recall the following results.

Theorem 4.7. There is a Hodge-de Rham spectral sequence

Eij
1 = Hj(X,Ωi

X)⇒ H i+j
dR (X) .

It degenerates at E1. One gets a decreasing Hodge-de Rham filtration Fil•H i
dR(X), with

FilqH i
dR(X)/Filq+1 H i

dR(X) = H i−q(X,Ωq
X) .

Theorem 4.8. There is a Hodge-Tate spectral sequence

Eij
2 = H i(X,Ωj

X)(−j)⇒ H i+j
ét (X,Qp)⊗Qp C .

It degenerates at E2. One gets a decreasing Hodge-Tate filtration Fil•(H i
ét(X,Qp) ⊗Qp C),

with

Filq(H i
ét(X,Qp)⊗Qp C)/Filq+1(H i

ét(X,Qp)⊗Qp C) = Hq(X,Ωi−q
X )(q − i) .

Example 4.9. Let A/C be an abelian variety, with universal vector extension EA→ A, and
p-adic Tate module Λ. Recall that LieEA is dual to H1

dR(A), and Λ is dual to H1
ét(A,Zp).

One has two short exact sequences (where A∗ is the dual abelian variety)

0→ (LieA∗)∗ → LieEA→ LieA→ 0 ,

0→ (LieA)(1)→ Λ⊗Zp C → (LieA∗)∗ → 0 .

One has the following compatibility of the Hodge-Tate sequence with duality.

Proposition 4.10. Let A/C be an abelian variety, and let A∗/C be the dual abelian variety.
Identify H0(A,Ω1

A) = (LieA)∗, H1(A,OA) = LieA∗, and similarly for A∗. The two sequences

0→ LieA∗ → H1
ét(A,Zp)⊗Zp C → (LieA)∗(−1)→ 0 ,

0→ LieA→ H1
ét(A

∗,Zp)⊗Zp C → (LieA∗)∗(−1)→ 0

are dual to each other under the Weil pairing

H1
ét(A,Zp)⊗Zp H

1
ét(A

∗,Zp)→ Zp(−1) .

Proof. Let P be the Poincaré bundle on A × A∗. Unraveling definitions, the proposition
follows from the following compatibility for the first Chern class c1(P) on A × A∗: cdR

1 (P)
encodes the duality between H1(A,OA) and H0(A∗,Ω1

A∗), whereas cét
1 (P) encodes the Weil

pairing. �
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Lemma 4.11. Let X/C be a proper smooth scheme, and L a line bundle on X; regard L as
an element of H1(X,O×X). Define

cdR
1 (L) ∈ H1(X,Ω1

X)

as the image of L ∈ H1(X,O×X) under d log : O×X → Ω1
X . Define

cét
1 (L) ∈ H2(Xproét, Ẑp(1)) = H2

ét(X,Zp)(1)

as the image of L ∈ H1(X,O×X) = H1(Xproét,O×X) under the boundary map associated to the
short exact sequence

0→ Ẑp(1)→ lim←−
×p
O×X → O

×
X → 0

on Xproét. Then cét
1 (L) ⊗ 1 ∈ H2

ét(X,Zp) ⊗Zp C(1) lies in Fil1(H2
ét(X,Zp) ⊗Zp C)(1), and

maps to

cdR
1 (L) ∈ H1(X,Ω1

X) = gr1(H2
ét(X,Zp)⊗Zp C)(1) .

Remark 4.12. The statement is true more generally for X/C a proper smooth rigid-analytic
variety for which the Hodge-Tate spectral sequence degenerates.

Proof. One has a map O×X → Ẑp(1)[1] → ÔX(1)[1] in the derived category of sheaves on
Xproét. The associated map of Leray spectral sequences shows that cét

1 (L) lies in

Fil1(H2
ét(X,Zp)⊗Zp C)(1) = Fil1(H2(Xproét, ÔX(1))) ;

note that Rν∗O×X = O×Xét
by [29, Corollary 3.17 (i)]. The final statement follows from the

commutative diagram

O×Xét

d log

��

// R1ν∗Ẑp(1)

��

Ω1
Xét

∼=
// R1ν∗ÔX(1)

upon applying H1(Xét,−). �

Now assume that A has good reduction, i.e. we have an abelian variety A/OC , where
OC ⊂ C is the ring of integers. Then we can describe everything in terms of the p-divisible
group G = A[p∞]. Indeed, we have the universal vector extension EG→ G, and the p-adic
Tate module Λ of G. One has the short exact sequence of finite free OC-modules

0→ (LieG∗)∗ → LieEG→ LieG→ 0 ,

where G∗ denotes the Serre dual p-divisible group.

Theorem 4.13 (Fargues, [14, Ch.2,App.C]). There is a complex of finite free OC-modules

0→ (LieG)(1)
α∗
G∗ (1)
−→ Λ⊗Zp OC

αG−→ (LieG∗)∗ → 0 .

Its cohomology groups are killed by p1/(p−1).
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Remark 4.14. Fargues uses the following direct definition of αG. Take any λ ∈ Λ. Thus,

λ ∈ lim←−
n

G[pn](C) = lim←−
n

G[pn](OC) = HomOC (Qp/Zp, G) .

Thus, by duality, one gets a map G∗ → µp∞ , which on Lie algebras gives map LieG∗ →
Lieµp∞ ∼= OC ; i.e. we get an element of (LieG∗)∗.

Proposition 4.15. Let A/OC be an abelian variety, G = A[p∞], with Tate module Λ. The
two Hodge-Tate sequences (the first from Theorem 3.20, the second from Fargues’s theorem)

0→ LieA∗ ⊗OC C → H1
ét(AC ,Zp)⊗Zp C → (LieA)∗ ⊗OC C(−1)→ 0 ,

0→ LieG⊗OC C(1)→ Λ⊗Zp C → (LieG∗)∗ ⊗OC C → 0

are dual to each other.

Proof. By definition, the second exact sequence is compatible with duality G 7→ G∗. By
Proposition 4.10, the first exact sequence is compatible with dualityA 7→ A∗; asA∗[p∞] = G∗,
we are reduced to checking that

H1
ét(AC ,Zp)⊗Zp C(1)→ (LieA)∗ ⊗OC C

agrees with
Λ∗ ⊗Zp C(1)→ (LieG)∗ ⊗OC C .

Recall that the first map is defined as the composite

H1
ét(AC ,Zp)⊗Zp C(1) ∼= H1(AC,proét, ÔA)(1)

→ H0(AC,ét, R
1ν∗ÔA)(1) ∼= H0(AC,ét,Ω

1
A) = (LieA)∗ ⊗OC C .

Consider G as a formal scheme over SpfOC , and let Gη be its generic fibre. Then Gη ⊂ AC is
a rigid-analytic open subset. Fix an element λ ∈ Λ∗(1); it corresponds to a map Qp/Zp → G∗

of p-divisible groups over OC , thus to a morphism G → G′ = µp∞ over OC . One generic
fibres, it induces a morphism Gη → G′η. Note that the latter is just an open unit ball. We
get a commutative diagram

H1(AC,proét, Ẑp)(1) //

��

H1(AC,proét, ÔA)(1) //

��

H0(AC,ét, R
1ν∗ÔA)(1)

∼=
//

��

H0(AC,ét,Ω
1
A)

� _

��

H1(Gη,proét, Ẑp)(1) // H1(Gη,proét, ÔGη)(1) // H0(Gη,ét, R
1ν∗ÔGη)(1)

∼=
// H0(Gη,ét,Ω

1
Gη

)

H1(G′η,proét, ÔG′η)(1)

OO

// H0(G′η,ét, R
1ν∗ÔG′η)(1)

OO

∼=
// H0(G′η,ét,Ω

1
G′η

)

OO

H1(G′η,proét, Ẑp)(1)

cc

OO

H0(G′η,proét,O×G′η)
oo

=
// H0(G′η,O×G′η)

d log

OO

Identify G′ = µp∞ = Spf Zp[[T ]] in the usual way; now look at what happens to the element
1 + T as an element of the lower-right group. Under d log, it maps to the standard basis
element of LieG′ ⊗OC C, thus the image in

H0(Gη,ét,Ω
1
Gη) = (LieG)∗ ⊗OC H0(Gη,ét,OGη,ét

)
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is given by αG∗(λ)⊗ 1.
On the other hand, mapping 1 + T around the lower-left hand corner, we use Kummer

theory first. Note that the H1(−, Ẑp)(1)-groups on the left classify Zp(1)-covers. Extracting
a sequence of p-power roots of 1 + T amounts exactly to the tower corresponding to mul-
tiplication by p-powers on G′η. On the other hand, λ ∈ Λ∗(1) = H1(AC,proét, Ẑp)(1) gives a
similar tower over AC ; the two towers become equal after restriction to Gη. Now the result
follows from the commutativity of the diagram, and the injectivity of the vertical upper right
map. �

4.3. A p-adic analogue: The Hodge-theoretic perspective. The preceding discussion
gives a functor from p-divisible groups over OC to pairs (Λ,W ), where Λ is a finite free
Zp-module, and W ⊂ Λ⊗Zp C is a C-subvectorspace.

Theorem 4.16 ([31, Theorem 5.2.1]). This functor is an equivalence of categories.

Let us make a series of remarks.

Remark 4.17. (i) In an unpublished manuscript, Fargues ([12]) had previously proved fully
faithfulness, and more.

(ii) This is the first instance of a classification of p-divisible groups in terms of linear algebra
(instead of σ-linear algebra, as usual in Dieudonné theory).

(iii) Let κ be the residue field of OC . Then, by reduction to the special fibre, one has a
functor from p-divisible groups over OC to p-divisible groups over κ. Recall that the latter
are classified by Dieudonné modules (M,F, V ), where M is a finite free W (κ)-module, F :
M →M is a σ-linear map, and V : M →M is a σ−1-linear map, such that FV = V F = p.
Here, σ : W (κ)→ W (κ) is the lift of Frobenius on κ.

Using these equivalences of categories, one gets a functor (Λ,W ) 7→ (M,F, V ), which
the author does not know how to describe. Describing this functor amounts to an integral
comparison between the étale and crystalline cohomology of p-divisible groups. However,
in the current situation over C, there is no Galois action on the Tate module, which would
usually be used in Fontaine’s theory.4

(iv) If 0→ G1 → G2 → G3 → 0 is an exact sequence of p-divisible groups over OC , then the
corresponding sequences 0→ W1 → W2 → W3 → 0 and 0→ Λ1 → Λ2 → Λ3 → 0 are exact.
However, the converse is not true. For example, take G2 of height 2 and dimension 1, with
supersingular special fibre. Then there exists a complex

0→ Qp/Zp → G2 → µp∞ → 0

that becomes exact on Λ’s and W ’s.

(v) Given (Λ,W ), one gets a p-divisible group G over OC by the theorem, and thus an
OC-lattice

W ◦ = (LieG)(1) ⊂ W = (Lie(G)(1))⊗OC C ⊂ Λ⊗Zp C .

Can one describe W ◦ directly in terms of (Λ,W )? We note that there is a second natural
OC-lattice (W ◦)′ = (Λ⊗OC) ∩W . Then Fargues’s theorem implies

p1/(p−1)(W ◦)′ ⊂ W ◦ ⊂ (W ◦)′ ;

however, none of the two inclusions is an equality in general.

4Using the Fargues-Fontaine curve, [13], one can describe the functor up to isogeny.
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(vi) Coming back to (iv), we note that an exact sequence of p-divisible groups gives an exact
sequence on Λ’s and W ◦’s. Is the converse true? It seems not unreasonable to hope that the
answer is yes.5

(vii) Let K be a discretely valued complete extension of Qp with perfect residue field. Then
one can reprove the following theorem of Breuil, [4], (in case p 6= 2), and Kisin, [21], (in
general) ’by descent’:

Theorem 4.18. The category of p-divisible groups over OK is equivalent to the category of
lattices in crystalline representations of Gal(K̄/K) with Hodge-Tate weights 0, 1.

4.4. A p-adic analogue: The geometric perspective.

Definition 4.19. Let R be a ring which is p-torsion, and let G/R be a p-divisible group
(considered as an fpqc sheaf on schemes over R). Define the universal cover of G as G̃ =
lim←−×pG, as an fpqc sheaf on schemes over R. Moreover, let TG = ker(G̃ → G); one has a

short exact sequence of fpqc sheaves

0→ TG→ G̃→ G→ 0 .

We note that TG is a sheafified version of the Tate module: For any R-algebra R′,

TG(R′) = lim←−G[pn](R′) = HomR′(Qp/Zp, G) .

Also, G̃ = TG⊗Zp Qp.

Proposition 4.20. (i) The functor G 7→ G̃ turns isogenies into isomorphisms.

(ii) Let S → R be a surjection with nilpotent kernel, and GS a lift of G to S. Then for any
S-algebra S ′,

G̃S(S ′)
∼=−→ G̃(S ′ ⊗S R) .

In particular, G̃S depends only on G̃: One can consider G̃ as a crystal on the infinitesimal
site of R.

Proof. Part (i) is clear. For part (ii) we may assume S ′ = S. Recall that by a result of
Illusie, [18], the categories of p-divisible groups up to isogeny over R and S are equivalent.
Thus,

G̃S(S) = HomS(Qp/Zp, GS)[p−1] = HomR(Qp/Zp, G)[p−1] = G̃(R) .

�

In some cases, one can write down G̃: One gets examples of perfectoid spaces, by taking
generic fibres!

Proposition 4.21 ([31, Corollary 3.1.5]). Let G be a connected p-divisible group over W (κ),
for some perfect field κ. Then there is an isomorphism of fpqc sheaves,

H̃ ∼= Spf W (κ)[[T
1/p∞

1 , . . . , T
1/p∞

d ]] .

Fix an embedding Fp ↪→ OC/p.

5V. Pilloni has communicated to us a simple proof of this statement, using Fargues’s results on degrees
for finite locally free group schemes, [11].
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Theorem 4.22 ([31, Theorem 5.1.4 (i)]). Let G be a p-divisible group over OC. Then there
is a p-divisible group H/Fp (unique up to isogeny) and a quasi-isogeny ρ : G ⊗OC OC/p →
H ⊗Fp OC/p.

In particular, one finds that G̃ ∼= H̃OC , where the latter denotes the evaluation of H̃
on OC , considered as a crystal on the infinitesimal site. Thus, in any dimension, there
are only finitely many possibilities for the universal cover of G, and these are given by the
Dieudonné-Manin classification of p-divisible groups up to isogeny.

Now fix a p-divisible group H over Fp, of height h and dimension d. Note that for any

p-divisible group G over OC , we have the Zp-lattice Λ ⊂ G̃(OC), where Λ = TG(OC) denotes
the Tate module. In particular, we get a fully faithful functor from the category of pairs
(G, ρ), where G is a p-divisible group over OC , and ρ : G ⊗OC OC/p → H ⊗Fp OC/p is a

quasi-isogeny, to the category of Zp-lattices Λ ⊂ H̃(OC). Here, we use ρ to identify G̃ and

H̃.
Thus, as in the case over C, one can ask the question for which Zp-lattices Λ ⊂ H̃(OC)

one can form the quotient H̃/Λ to get a p-divisible group. In order to state the answer, we
need the following proposition.

Proposition 4.23. For any p-divisible group G over OC, there is a natural logarithm map
logG : G(OC)→ LieG⊗ C. One gets a short exact sequence

0→ Λ[p−1]→ G̃(OC)→ LieG⊗ C → 0 ,

where Λ = TG(OC) is the Tate module of G. Moreover, there is a natural ’quasi-logarithm’
map qlog : H̃(OC) → M(H) ⊗ C, where M(H) is the (covariant) Dieudonné module, such
that for any (G, ρ), the diagram

H̃(OC)

∼=
��

qlog
// M(H)⊗ C

��

G̃(OC) // G(OC)
log
// LieG⊗ C

commutes. Here, the map M(H)⊗C → LieG⊗C comes from Grothendieck-Messing theory.

Theorem 4.24 ([31, Theorem D]). The category of pairs (G, ρ) is equivalent to the category
of Zp-lattices Λ ⊂ H̃(OC) such that the cokernel V = coker(Λ ⊗ C → M(H) ⊗ C) is of
dimension d, and the sequence

0→ Λ[p−1]→ H̃(OC)→ V → 0

is exact.
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5. Rapoport-Zink spaces

Using these results, we show in [31] that Rapoport-Zink spaces at infinite level carry a
natural structure as a perfectoid space. More precisely, consider a p-divisible group H over
F̄p of dimension d and height h. Rapoport-Zink, [24], define the following deformation space.

Theorem 5.1 ([24]). The functor sending a W (F̄p)-algebra R on which p is nilpotent to the
set of isomorphism classes of pairs (G, ρ), where G/R is a p-divisible group and

ρ : H ⊗F̄p R/p→ G⊗R R/p
is a quasi-isogeny, is representable by a formal scheme M.

Moreover, its generic fibre Mη, considered as an adic space, has a natural system of
coverings Mn → Mη parametrizing isomorphisms (Z/pnZ)h → G[pn]. Each of them is a
rigid-analytic variety. However, the inverse limit of theMn does not make sense within rigid
geometry. In [31], we prove however the following result. For simplicity, we work with the
base-change Mn,K of Mn to Spa(K,OK), where K/Qp is a perfectoid field.

Theorem 5.2. There is a unique (up to unique isomorphism) perfectoid space M∞,K over
Spa(K,OK) such that M∞,K ∼ lim←−Mn,K. In fact, M∞,K is a locally closed subspace of the

generic fibre of H̃h
OK , defined by certain explicit conditions.

Here, we use ∼ as in Definition 2.20.

Remark 5.3. We note that the generic fibre of H̃h
OK is a perfectoid space, see Proposition

4.21 in the connected case. The map

M∞,K → (H̃OK )hη

is precisely the map from Theorem 4.24 on C-valued points, sending a deformation to the
corresponding lattice in the universal cover.

We remark that the description of M∞,K as an explicit locally closed subspace of the

generic fibre of H̃h
OK allows us to prove duality isomorphisms between Rapoport-Zink spaces

as isomorphisms of perfectoid spaces. We refer to [31] for details. The abstract setup is
however as in the following proposition, which gives the expected cohomological consequences
(which were not included in [31]).

Proposition 5.4. Let C be an algebraically closed and complete extension of Qp. Let G, Ǧ be
two p-adic reductive groups, and let MU , M̌Ǔ be two towers of partially proper smooth adic
spaces over C parametrized by compact open subgroups U ⊂ G(Qp), resp. Ǔ ⊂ Ǧ(Qp), and
with an action of G(Qp), resp. Ǧ(Qp), on the tower, such that for U ′ ⊂ U an open normal
subgroup, MU ′ is a finite étale Galois cover of MU with Galois group U/U ′, respectively the
similar statement for the tower M̌Ǔ . Moreover, assume Ǧ(Qp) acts continuously on each
MU , and G(Qp) acts continuously on each M̌Ǔ , such that all group actions are compatible
and commute.

Finally, assume that there is a perfectoid space M over C with a continuous action of
G(Qp)× Ǧ(Qp) such that

M∼ lim←−
U

MU , M∼ lim←−̌
U

M̌Ǔ ,
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where both maps to the inverse limit are G(Qp)× Ǧ(Qp)-equivariant. Let ` 6= p be a prime.

(i) For any m ≥ 1, there are G(Qp)× Ǧ(Qp)-equivariant isomorphisms

lim−→
U

H i
c(MU ,Z/`mZ) ∼= H i

c(M,Z/`mZ) ∼= lim−→̌
U

H i
c(M̌Ǔ ,Z/`mZ) .

(ii) The action of Ǧ(Qp) on H i
c(MU ,Z`) is smooth for any U ⊂ G(Qp); similarly, the action

of G(Qp) on H i
c(M̌Ǔ ,Z`) is smooth for any Ǔ ⊂ Ǧ(Qp).

(iii) There is a G(Qp)× Ǧ(Qp)-equivariant isomorphism

lim−→
U

H i
c(MU ,Z`) ∼= lim−→̌

U

H i
c(M̌Ǔ ,Z`) .

Moreover, both identify with the G(Qp)× Ǧ(Qp)-smooth vectors in H i
c(M,Z`).

Remark 5.5. Some remarks about the definitions of the various objects involved. We recall
that for partially proper spaces, cohomology with compact support is defined as the derived
functor of the functor Γc of taking sections with quasicompact support. This leads to the
following equivalent definition. Fix some U , and let V0U ⊂ V1U ⊂ . . .MU be a sequence of
qcqs open subsets exhausting MU . Let V ′0U ⊂ V ′1U ⊂ . . .MU be a second such sequence,
such that VkU ⊂ V ′kU is a strict inclusion for all k, i.e. the VkU ⊂ V ′kU . Let jkU : VkU → V ′kU
be the open inclusion. Then

H i
c(MU ,Z/`mZ) = lim−→

k

H i(V ′kU , jkU !Z/`mZ) .6

The same applies for M, i.e. at infinite level.
For Z`-cohomology, one has to take inverse limits, and one has to take some care about

the order. We define

H i
c(MU ,Z`) = lim−→

k

H i(V ′kU , jkU !Z`) = lim−→
k

lim←−
m

H i(V ′kU , jkU !Z/`mZ) .

We remark that a result of Huber in the book [17] ensures that the groups

H i(V ′kU , jkU !Z/`mZ) = H i
c(VkU ,Z/`mZ)

are finite. We define H i
c(M,Z`) in the same way.

Proof. (i) There are obvious G(Qp) × Ǧ(Qp)-equivariant maps, and we have to prove that
they are isomorphisms; thus we may restrict to one tower, MU .

Fix some U , and let V0U ⊂ V1U ⊂ . . .MU be a sequence of qcqs open subsets exhausting
MU . Let V ′0U ⊂ V ′1U ⊂ . . .MU be a second such sequence, such that VkU ⊂ V ′kU is a strict
inclusion for all k, i.e. the VkU ⊂ V ′kU . Let jkU : VkU → V ′kU be the open inclusion. Then

H i
c(MU ,Z/`mZ) = lim−→

k

H i(V ′kU , jkU !Z/`mZ) .

For U ′ ⊂ U , let us denote by VkU ′ etc. the corresponding objects induced by base-change,
as well as Vk ⊂M. It is enough to prove that

lim−→
U ′⊂U

H i(V ′kU ′ , jkU ′!Z/`mZ)→ H i(V ′, jk!Z/`mZ)

6The latter groups are also usually denoted Hi
c(VkU ,Z/`mZ). In that case however, they are not the

derived functors of global sections with compact support: VkU is not partially proper.
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is an isomorphism. But this follows from [30, Corollary 7.18].

(ii) It suffices to check for U small enough (using a Hochschild-Serre spectral sequence), so
we may assume U is pro-p. Now, the map

H i
c(MU ,Z/`mZ)→ lim−→

U ′⊂U
H i
c(MU ′ ,Z/`mZ) = H i

c(M,Z/`mZ)

is injective. (The transition map to U ′ ⊂ U normal has an inverse, given by averaging over
U/U ′.) On the right-hand side, the action of Ǧ(Qp) is continuous by the comparison to the
other tower in part (i), thus it is continuous on H i

c(MU ,Z/`mZ).
The result follows by noting that for actions of pro-p-groups on finitely generated `-adic

modules, smoothness is equivalent to continuity. (By definition, one may write the cohomol-
ogy as a direct limit of finitely generated Z`-modules.)

(iii) It suffices to identify the G(Qp)× Ǧ(Qp)-smooth vectors in H i
c(M,Z`) with

lim−→
U

H i
c(MU ,Z`) .

By parts (i) and (ii), the direct limit injects into the G(Qp) × Ǧ(Qp)-smooth vectors in
H i
c(M,Z`). On the other hand, take a vector v ∈ H i

c(M,Z`) which is invariant under a
compact open subgroup U ⊂ G(Qp), without loss of generality pro-p. By averaging over U
(which is possible, as U is pro-p), we see that v comes from H i

c(MU ,Z`), as desired.
�

Remark 5.6. We remark that the proof shows that in part (iii), the G(Qp)-smooth vectors are
the same as the Ǧ(Qp)-vectors, which are then the G(Qp)× Ǧ(Qp)-smooth vectors identified
in part (iii).

In the equal characteristic case, Weinstein, [35], has considered the Lubin-Tate case ex-
plicitly. In that case, the theory of Drinfeld level structures give natural integral models of
Mn for all n, showing that in fact

Mn
∼= (Spf F̄p[[X1,n, . . . , Xh,n]])η ,

where the canonical coordinates X1,n, . . . , Xh,n come from the level-n-structure. This permits
one to show by explicit computation that

M∞ ∼= (Spf F̄p[[X1/p∞

1 , . . . , X
1/p∞

h ]])η ,

which obviously has the desired property of being perfectoid. It should be noted that these
spaces live over the base field Fq[[t]], but it is rather hard to write down the element t as an

element of F̄p[[X1/p∞

1 , . . . , X
1/p∞

h ]] (a formula appears at the very end of [14]).
The paper [31] also contains a result on Dieudonné theory.

Theorem 5.7 ([31, Theorem 4.1.4]). Let R be a ring of characteristic p which is the quotient
of a perfect ring by a finitely generated ideal. Then the Dieudonné module functor on p-
divisible groups is fully faithful up to isogeny.

Our result is slightly more precise than that, and in the case that R is perfect, it recovers
the fact that the Dieudonné module functor is fully faithful, not just up to isogeny. Inter-
estingly, the proof of this fully faithfulness result requires the use of perfectoid spaces, and
most notably the almost purity theorem! In fact, this result from Dieudonné theory bridges
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the gap between universal covers of p-divisible groups, and Fontaine’s rings. Indeed, one gets
the following corollary, where B+

cris is Fontaine’s crystalline period ring (associated to C).

Corollary 5.8. Let C be an algebraically closed complete extension of Qp. Let H/F̄p be a

p-divisible group, and write H̃ for its universal cover (lifted canonically to OC). Then

H̃(OC) = (M(H)⊗B+
cris)

ϕ=p ,

where M(H) is the Lie algebra of the universal vector extension of H. Under this identifi-
cation, the quasi-logarithm map

qlog : H̃(OC)→M(H)⊗ C
gets identified with

1⊗Θ : M(H)⊗B+
cris →M(H)⊗ C ,

where Θ : B+
cris → C is Fontaine’s map.

This translates also Theorem 4.24 into p-adic Hodge theory terms.
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6. Shimura varieties, and completed cohomology

A result very similar to the result for Rapoport-Zink spaces holds for Shimura varieties.
Let ShK , K ⊂ G(Af ) be a Shimura variety of Hodge type associated to some reductive
group G over Q, defined over the reflex field E. For convenience, let us assume that ShK
is projective, so that we do not have to worry about compactifications. Let Cp be the
completion of an algebraic closure of Ep, where p|p is a chosen place of E, and denote by
ShK,Cp the adic space over Spa(Cp,OCp) associated to the base-change of ShK to Cp. The
following result is work in progress.

Theorem 6.1 ([28]). For any sufficiently small level Kp ⊂ G(Ap
f ) away from p, there exists

a perfectoid space ShKp,Cp over Spa(Cp,OCp) such that ShKp,Cp ∼ lim←−Kp ShKpKp,Cp.

Let us explain a consequence of this theorem, when combined with the first result on p-
adic Hodge theory. Recall Emerton’s definition of p-adically completed cohomology groups,
in the torsion case (where no completion has to be taken):

H i(Kp,Fp) = lim−→
Kp

H i
ét(ShKpKp,Q̄,Fp) .

Corollary 6.2. For i > dim ShK, we have H i(Kp,Fp) = 0.

Proof. First, we can rewrite

H i(Kp,Fp) = lim−→
Kp

H i
ét(ShKpKp,Q̄,Fp) = lim−→

Kp

H i
ét(ShKpKp,Cp ,Fp) .

It is enough to prove that H i(Kp,Fp)⊗Fp OCp/p is almost zero. But now

H i(Kp,Fp)⊗Fp OCp/p = lim−→
Kp

(H i
ét(ShKpKp,Cp ,Fp)⊗Fp OCp/p) ,

and the latter is almost equal to

lim−→
Kp

H i
ét(ShKpKp,Cp ,O+

ShKpKp,Cp
/p)

by Theorem 3.3. Now we use that ShKp,Cp ∼ lim←−Kp ShKpKp,Cp (which implies in particular a

similar relation among étale topoi), giving

lim−→
Kp

H i
ét(ShKpKp,Cp ,O+

ShKpKp,Cp
/p) = H i

ét(ShKp,Cp ,O+
ShKp,Cp

/p) .

But note that for affinoid perfectoid spaces X, H i
ét(X,O+

X/p) is almost zero for i > 0. It
follows that H i

ét(ShKp,Cp ,O+
ShKp,Cp

/p) and H i
an(ShKp,Cp ,O+

ShKp,Cp
/p) are almost equal. But

now standard bounds on the cohomological dimension of topological spaces give the desired
vanishing result. �

The corollary implies Conjecture 1.5 of Calegari and Emerton, [6], in the case of (compact)
Shimura varieties of Hodge type, except for nonstrict instead of strict inequalities on the
codimensions. More applications of these ideas will appear in [28].



PERFECTOID SPACES: A SURVEY 37

References

[1] F. Andreatta and A. Iovita. Comparison Isomorphisms for Formal Schemes.
http://www.mathstat.concordia.ca/faculty/iovita/paper 14.pdf.

[2] E. Bierstone and P. D. Milman. Canonical desingularization in characteristic zero by blowing up the
maximum strata of a local invariant. Invent. Math., 128(2):207–302, 1997.
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[8] P. Deligne. Théorie de Hodge. I. In Actes du Congrès International des Mathématiciens (Nice, 1970),
Tome 1, pages 425–430. Gauthier-Villars, Paris, 1971.

[9] P. Deligne. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math., (52):137–252, 1980.
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[18] L. Illusie. Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck). Astérisque, (127):151–
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und verschwindende Zyklen in ungleicher Charakteristik. Invent. Math., 68(1):21–101, 1982.

[24] M. Rapoport and T. Zink. Period spaces for p-divisible groups, volume 141 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 1996.

[25] W. Schmid. Variation of Hodge structure: the singularities of the period mapping. Invent. Math.,
22:211–319, 1973.

[26] P. Schneider. The cohomology of local systems on p-adically uniformized varieties. Math. Ann.,
293(4):623–650, 1992.



38 PETER SCHOLZE

[27] P. Scholze. http://mathoverflow.net/questions/65729/what-are-perfectoid-spaces.
[28] P. Scholze. On torsion in the cohomology of locally symmetric varieties. in preparation.
[29] P. Scholze. p-adic Hodge theory for rigid-analytic varieties. 2012. arXiv:1205.3463, to appear in Forum

of Mathematics, Pi.
[30] P. Scholze. Perfectoid Spaces. Publ. Math. de l’IHÉS, 116(1):245 – 313, 2012.
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