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0 Introduction

In this paper we construct a natural category .« of locally and topologically
ringed spaces which contains both the category of locally noetherian formal
schemes and the category of rigid analytic varieties as full subcategories. This
category has applications in algebraic geometry and rigid analytic geometry.

The idea of the definition of the category 7 is the following. From a for-
mal point of view there is a certain similarity in constructing formal schemes
and rigid analytic varieties. In both cases one starts with a certain class of
topological rings (the adic rings in formal geometry and Tate algebras in rigid
geometry), defines to every topological ring of this class a locally and topolog-
ically ringed space, and glueing of such spaces give formal schemes or rigid
analytic varieties.

There is a natural class of topological rings which contains both the noethe-
rian adic rings and the Tate algebras and which suggests itself. Namely the class
of topological rings which have an open adic subring with a finitely generated
ideal of definition. We call such a ring f-adic.

The points of the formal scheme SpfA associated with an adic ring 4
are the open prime ideals of 4, and the points of the rigid analytic variety
SpA associated with a Tate algebra A are the maximal ideals of 4. In both
cases one can consider the points as continuous valuations of 4. (A valuation
v: 4 — I', U {0} of a topological ring 4 is called continuous if the mapping
v is continuous with respect to the ring topology of 4 and the order-induced
topology of I', U {0}.) Namely, if p is an open prime ideal of an adic ring
A then the trivial valuation v, of 4 with vy(a) = 0 iff a € p is continuous,
and if p is a maximal ideal of a Tate algebra 4 over a valued field & then the
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valuation v, of 4 extending the valuation of k and with v,(a) =0 iffa € p is
continuous.

This suggests to consider, for every f-adic ring A4, the set Spad of all con-
tinuous valuations of A. There is a natural topology on SpaA. The topological
space Spad has been studied in [H1]. In this paper we will show that if 4
satisfies a certain condition of noetherianness then there is a natural sheaf 04
of topological rings on Spad. All stalks of (4 are local rings. Every continu-
ous ring homomorphism 4 — B between f-adic rings induces a morphism of
locally and topologically ringed spaces (SpaB, Op) — (Spad, 04). We call
a locally and topologically ringed space which is locally isomorphic to some
Spad = (Spad, (0,) adic.(Here we suppress some details of the definition of
adic spaces).

The functor Spf4 +— Spad from the category of noetherian affine formal
schemes to the category of adic spaces extends in a natural way to a functor
from the category of locally noetherian formal schemes to the category of adic
spaces. Similarly, the functor Sp4 +— Spad from the category of affinoid rigid
analytic varieties to the category of adic spaces extends to a functor from the
category of rigid analytic varieties to the category of adic spaces. Both functors
are fully faithful.

In the papers [H2] and [H3] we will study the coherent cohomology and
the étale cohomology of adic spaces. Concerning the coherent cohomology, the
main results are Theorem A and B, (i.e., every coherent (/4-module % on an
adic space Spa4 is generated by its global sections and all higher cohomology
groups H'(Spad, %) vanish) and the proper coherence theorem, ( i.e., all di-
rect image sheaves R” . of a coherent @x-module under a proper morphism
of adic spaces f: X — Y are coherent {y-modules). Many of the basic results
of the étale cohomology of schemes also hold for the étale cohomology of adic
spaces (for example, proper and smooth base change theorem, purity, Poincaré
duality).

The theory of adic spaces may be useful for problems in algebraic geometry
and rigid analytic geometry. For example, in [H3] we will show that the étale
topos of a rigid analytic variety X is canonically equivalent to the étale topos
of the adic space associated with X. Therefore all the results mentioned above
on the étale cohomology of adic spaces also hold for the étale cohomology
of rigid analytic varieties. In general, it is much easier to work with the étale
toposes of rigid analytic varieties. For example, using geometric points of an
adic space X, one can easily describe the category of points of the étale topos
X5 of X. (One obtains that X has enough points.) But it is very complicated
to describe within the category of rigid analytic varieties the points of the étale
topos of a rigid analytic variety. Another application of the category of adic
spaces will be given in Sect. 5 of this paper where we analyze Mumford’s
construction of semi-abelian group schemes within the category of adic spaces.
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Notations

This paper is based on [H1]. We recall some notations from [H1]. For more
details and all unexplained notations we refer to [H1].

All our valuations are multiplicative. For a valuation v:4 — I' U {0} of a
ring A the prime ideal supp(v) := {a € 4 | v(a) = 0} of 4 is called the support
of A.

The group of units of a ring A is denoted by 4*, and if R, S are subsets
of 4 then R - S denotes the additive subgroup of 4 generated by {r - s |
reRseSt.

For a topological ring 4, the set of power-bounded elements of 4 is denoted
by 4° and the set of topologically nilpotent elements of 4 is denoted by 4°°.
A ring of definition of a f-adic ring 4 is an open adic subring of 4. A Tate
ring is a f-adic ring which has a topologically nilpotent unit. An affinoid ring
is a pair A = (4”,4") where 4° is a f-adic ring and 4" is a ring of integral
elements of 4", i.e. A" is a subring of 4” which is open and integrally closed
in A4 and is contained in (4”)°. For an affinoid ring 4 = (B, C), the pair of the
completionsAA := (B, €) is an affinoid ring which is called the completion of 4.
(In this paper complete always means complete and hausdorff). For an affinoid
ring 4, we put Spad = {v|v is a continuous valuation of 4> with v(a)=1
for every a € A7} and equip Spad with the topology generated by the sets
{v € Spad|v(a)<v(b)=+0} (a,b € 4”). A subset U of Spad is called rational
if there are elements sy,...,s, of A~ and finite subsets Ti,..., 7T, of A" such that
T; - A is open in A for i = 1,...,n and U = [\_;{v € Spad| v(t)<v(s;)*0
for all ¢ € T;}. The rational subsets of Spad form a basis of the topology of
Spad and are quasi-compact.

Contents
Lo A presheaf on Spad ... ..o 000
2. AQIC SPACES . ...ttt et e 000
3. Adic morphisms, morphisms of finite type and fibre products...................... 000
4. Formal schemes, rigid analytic varieties and adic spaces..................oovvnnnn. 000
5. Mumford’s construction of semi-abelian schemes...............ccooviiiiiiiiine.a. 000

1 A presheaf on SpaA

In this section we define, for every affinoid ring 4 = (4",4"), a presheaf
04 of “analytic functions” on the topological space Spad. The idea of the

definition of ¢4 is the following. Let U = R (%,,%) = M fv €

Spad | v(t)Sv(s;)+0 for all + € T;} be a rational subset of Spad. Of
course, every element of 4” should give an analytic function on U, and the

functions given by si,...,5, should be invertible. So every element of the
ring (A)s...5p = A [%,,%] should induce a function on U. Further-

more, every function on U which can be “approximated” by functions from
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A [%,,%} should be an element of ¢4,(U). So we will define a ring
1 1

510 8,

topology on A” [

Ve [31-131—}

Lemma and definition. (i) Let 4 be a f-adic ring, s1,...,s, elements of A and
Ti,..., T, subsets of A such that T; - A is open in A for i = 1,...,n. Let Ay
be a ring of definition of A and let I be an ideal of definition of Ay. Let T
sll,...,gl;} such that
{I" - B | n € N} is a fundamental system of neighbourhoods of 0, where

B is the subring Aq [sL,II =1,...,nt€ T,} of Ag,...s, Then T is even a ring

], and then define 04(U) to be the completion of

be the group topology of the localization Ay, ..., = A {

topology and independent of the choice of Ay and I The topological ring

(4s,...50,T) is denoted by A (%}1,,%) The completion of A (%}l,..., %‘)
, T, T,

is denoted by A <§L,,§f‘1>

(ii) Let A = (4°,4%) be an affinoid ring, si,...,s, elements of A° and
Ty,...,T, subsets of A" such that T; - A” is open in A” for i =1,...,n. Let C

be the integral closure of A* [stT |i=1,...,nt€ T,-] in A" [Sll,..., é} Then

C is a ring of integral elements of B .= A” (%},,%) The affinoid ring

(B,C) is denoted by A (%11, LL) The completion of A (%}, Iﬂ) is

TS, “r S,

denoted by A <£11,..., %f>

Proof. (i) By the subsequent Lemma 1.1 the set T; - 4y is open in 4, i.e., there
exists a n € N with I" C T; « 4p. Then st_, - 1" C Ay [SI‘, |t e T,}. Hence, for

every x € 4 [ 1 317} and every neighbourhood U of 0 in the topology T,

R
there exists a neighbourhood V of 0 in T with x - ¥ C U. Consequently T is
a ring topology. Let 4}, 4> be two rings of definition of 4 and I, 1, ideals of

definition of A;,4;. For every m € N there exists a k € N with Il" C I, and
then If « i [£]i=1,.,nre nlcn 4 lLli=1, . nte ;] Hence
T is independent of the choice of 49 and 7. I

Lemma 1.1 Let A be a f-adic ring and T a subset of A such that T - A is
open in A. Then, for every n € N and every neighbourhood G of 0 in A, the
set T" - G is open in A.

Proof. With T - 4 also T" - 4 = (T - A)" is open. Let U be a subset of 4
and S a finite subset of U such that {U"|m € N} is a fundamental system
of neighbourhoods of 0 in 4,8 - U = U2 C U and U C T" - 4. We choose
a finite subset R of 4 with S C 7" - R, and a k € N with R «+ U* C G. Then
Ul =S . U*C(I™-R)- U¥=T"-R-UHCT" -G O

7,

Our definition of 4 (ETll s‘f,‘) immediately implies
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(1.2) Universal property of A (%,,%) (i) Let 4 be a f-adic ring,
S1,...,5, elements of 4 and T, ..., T, finite subsets of 4 such that 7; - 4 is open
in 4 for i = 1,...,n. Then the topological ring 4 (%} " Iﬂ) is f-adic, the

s Sy

canonical ring homomorphism A:4 — 4 (%},,%) is continuous, h(s;) €

,\* h(t ° .
A(%IL"“’EI,L) and ((si)EA(%""’%}zl) for every i = 1,...,nt €T,

and if f:4 — B is a continuous ring homomorphism from 4 to a f-adic ring

B such as that f(s;) € B* and ((;)) € B° for every i = 1,...,n,t € T; then
i

there exists a unique continuous ring homomorphism g: 4 (%},..., %) — B
with f =goh.

(i1) Let 4 be an affinoid ring, s1,...,5, elements of 4~ and T),...,7, finite
subsets of 4~ such that T; - 4~ is open in 4> for i = 1,...,n. Then the

canonical ring homomorphism h:4 — 4 (SZL,,—TJL) from A to the affi-
1 Sn

o\ *
noid nng A (—]:l . .Z_‘ZL) is continuouS, h(si) € (A (ZL IIL) ) and

517 Sy 5177 5y

hO) o g (O T\ g =1 T, and if f:4 — B
) € 5 s or every i = 1,...,nt € T;, and if f:4 —
is a continuous ring homomorphism from 4 to an affinoid ring B such that
f(s;) € (B”)* and {%SQ) € B* forevery i = 1,...,n,t € T;, then there exists a

I

i

. . . . ) T,
unique continuous ring homomorphism g: 4 (?1]" S

>~+Bwithf=goh.

As mentioned before, we want to define, for a rational subset U =
R (ETIL,,%) of the topological space Spad, 0,(U) = A‘><%1L . Ll>

LRI
But we have to check that @4 (U) depends only on U and is independent of
the choice of si,...,8,, T1,...,T,. This is done in the next proposition using

an idea of Tate in [T].

Proposition 1.3 Let A be an affinoid ring and U a rational subset of SpaA.
Then (i) There exists a continuous ring homomorphism h: A — F,(U) from
A to a complete affinoid ring F4(U) such that im(Spa(h)) C U and when-
ever f:A — B is a continuous ring homomorphism from A to a complete
affinoid ring B with im(Spa( f)) C U then there is a unique continuous ring
homomorphism ¢g: F4(U) — B with f =goh.

(ii) Let sy,...,s, be elements of A" and Ty,...,T, finite subsets of A” such

that T; - A" is open in A" for i = 1,...,n and U = R (%11 Zﬂ). Then

soees 5D
the canonical ring homomorphism A — A < Y ’ETf,L> satisfies the property

NES
of (i).
Proof. Let U =R (%},,Zﬁl) be as in (ii) and let 2: 4 —->A<—L . IIL> be

s §1°°°7 8y
the canonical ring homomorphism. It follows immediately from the definition

of 4 <§7—},,%> that im(Spa(#)) C U. Let f:4 — B be a continuous ring
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homomorphism from 4 to a complete affinoid ring B such that im(Spa(f)) C
U. Then v( f(s;))#0 for every i = 1,...,n,v € SpaB, and hence the sub-
sequent Lemma 1.4 implies that f(s;) € (B”)* for i = 1,...,n. Furthermore,

we have v (%%) <1 for every i = 1,...,n,t € T;, v € SpaB, and hence
1

by [HI, 3.3.i] ((st,-)) € Bt for every i = 1,...,n,t € T;. Now the universal

property (1.2. 11} says that there exists a unique continuous homomorphism
g:A <%,,%ﬁl> — Bwith f=goh O

Lemma 1.4 Let A be a complete affinoid ring and m a maximal ideal of A”.
Then there exists a point v € Spad with m = supp(v).

Proof. We equip B”: = 4”/m with the quotient topology. Let B™ C B” be the
integral closure of 4™ is B”. Then B := (B”,B") is an affinoid ring, and the
image of the natural mapping SpaB — Spad is the set of points v € Spad
with m = supp(v). Hence we have to show SpaB={. The set of units of 4” is
open, since 1+ (4”)°° is open and every element of 14 (47)°° is a unit of 4°.
Hence m is closed in 4°, i.e., B® is Hausdorff. Now [H]1, 3.6.i] implies that
SpaB+0. O

The ring homomorphism 4 — F4(U) in (1.3.i) is uniquely determined
up to unique isomorphism. For the following we fix, for every affinoid ring
A and every rational subset U of Spad, a ring homomorphism h,y:4 —
F4(U) which has the property of (1.3.i). We note some properties of these
ring homomorphisms.

Lemma 1.5 Let A be an affinoid ring and U a rational subset of SpaA.

(i) If V is a rational subset of Spad with V C U then there is a unique
continuous ring homomorphism g:F4(U) — Fq(V) with hyy = go hyy.

(ii) The mapping g := Spa(hsy) : SpaF4(U) — Spad is a homeomorphism
Jfrom SpaF4(U) onto U, and it induces an one-to-one correspondence between
the rational subsets of SpaF4(U) and the rational subsets of Spad which are
contained in U (i.e. if V is a rational subset of SpaF(U) then g(V) is a
rational subset of Spad, and if V is a rational subset of SpaA then g~ (V)
is a rational subset of SpaF,(U)).

(iii) Put B := F,(U) and g := Spa(hsy):SpaB — Spad. Let V be a ratio-
nal subset of Spad with V.C U. Then there exists a unique continuous ring
homomorphism r:F4(V) — Fg(g~'(V)) such that the following diagram is
commutative

Fp(g™'(V)) «— Fa(V)

hg, g——l(y) T T hA,V
— A
hau

Furthermore, r is an isomorphism (i.e., ¥ has a continuous inverse).

Proof. (i) follows from (1.3.1).
(ii) Let s be an element of 4~ and T a finite subset of 4" such that T'- A" is

openin A" and U =R (%) By (1.3.ii) we can assume that A4y is the canoni-
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cal ring homomorphism A: 4 — 4 <~SZ> We factorize & into AL+ 4 (%) SN
A<—SZ> Since f and i are adic, 4 is adic, and hence g !(¥) is a ra-
tional subset of Spa4 <%> for every rational subset V' of Spad (by [HI,

s
phism and maps rational subsets to rational subsets. So it remains to show that
Spa( f'): Spad (%) — Spad is a homeomorphism from Spa4 (%) onto U
and maps rational subsets to rational subsets. It is evident from our definition of
A (%) that Spa( /) is a homeomorphism from Spa4 (—g) onto U. Let V be

3.8.iv]). By [H1, 3.9] Spa (i) : Spad <—SZ> — Spad (T is a homeomor-

D>
a rational subset of Spad (%) We choose 7,41,...,9, € 4 (%) = A" [H

such that ¥ — {u € Spad (%) [0(g:)<v(£)+0 for i = l,...,n}. Multiply-
ing £,g1,...,9n With a suitable power of s, we may assume that there ex-
ists an element d of A” and a finite subset C of 4~ with ¢/ = f(d) and
{g1,.--,92} = f(C). Since V is quasi-compact, there exists by [H1, 3.11] a
neighbourhood E of 0 in 4> with v( f(e))Sv(f) forevery vE V, e € E. Let
D be a finite subset of E such that D - 4” is open in 4”. Then we have the

rational subset W = R ( CYL) of Spad, and Spa( f)(V) = U N W. Hence
S

Spa( f )(V) is rational in Spa4.

(ii1) The existence and the uniqueness of » follow from (1.3.i). By (i) there
exists a unique continuous ring homomorphism #:B — F, (V) with hypy =
hohyy. We have im(Spa(h)) C g~ (V) (since im(Spa(hsy)) C V). Then by
(1.3.1) there exists a unique continuous ring homomorphism f: Fg(g~'(V)) —
Fq(V) with h= fohp , 1y, The ring homomorphism f is the inverse of r.
O

Let 4 be an affinoid ring. For every rational subset W of Spa 4 we have
the affinoid ring F (W) = (Fq(W)>, F4(W)"). If V C W then we have by
(1.5.1) a canonical continuous ring homomorphism pyw:F (W) — F4(V).
For every open subset U of Spad we put

04(U) = lim Fy(VY
12

where the projective limit is taken over all rational subsets V' of Spad contained
in U and with respect to the ring homomorphisms pyy. We equip O4(U)
with the projective limit topology. Then 04 (U) is a complete topological ring.
Furthermore, if V, W are open subsets of Spad with ¥V C W then we have
a canonical continuous ring homomorphism O4 (W) — 04(V). Thus we have
a presheaf 04 on Spad with values in the category of complete topological
rings.

For every x € Spad let Oy , = lim 04(U) be the stalk of O, at x. (The

xelU

inductive limit is taken in the category of rings.) Since the rational subsets of
Spad form a basis of the topology of Spad, we have
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lim

) Oax= . OuU).

U rational

For every rational subset U of Spad with x € U the valuation x: 4> —
I', U {0} extends uniquely to a continuous valuation vy: O4(U) = Fy(U)> —
I'y U {0} (cf. (1.5.ii)). Then by (1), the valuations vy define a valuation

vy O4 x — I U{0}.

Thus we have a triple (Spad, 04, (v¢|x € Spad)) consisting of a topological
space Spad, a presheaf (04 of complete topological rings on Spad and a family
of valuations v, on the stalks @, . For every open subset U of Spad we put

O U)={f €04U)|v:(f)E] for all x € U} .

Then O} is a presheaf of rings on Spad. For every x € Spad let (Qj’ . denote
the stalk of O} at x.

Proposition 1.6 (i) For every x € Spad, the stalk Oy , is a local ring and
the maximal ideal of 04, x is the support of v.

(ii) For every x € Spad the stalk O . is a local ring. We have O , =
{f €04 x| v:(f)S1} with maxzmal ideal {f € O4, | v:(f) < 1}.

(iii) For every open subset U of Spad and every f,g € O4(U) the set {x €
Ul (f) < v5(g)=*0} is open in Spad.

(iv) For every rational subset U of Spad we have 04(U) = F4(UY and
05 (U) = F4(UY*.

Proof. (i) Let x be a point of Spad, U an open subset of Spad with x € U and
f an element of O4(U) with v, ( f)+0. We have to show that f is a unit in
04, x. Let W be a rational subset of Spad with x € W C U. The valuation v, of
04, » gives by restriction to 0,(W') a continuous valuation vy of 04(W). Since
vy ( f)+0, there exists a finite subset T of the f-adic ring Fy(W)> = O4(W)
such that T - F (W )" is open in Fq(W)” and v (¢) £ vy (f) foreveryt € T.

Then we have in SpaF (W) the rational subset V' = R (%) with vy € V, and

f is a unit in Fg(V)> where B := F(W). Now (1.5.ii) and (1.5.iii) imply
that there exists a rational subset S of Spad such that x € SC W and f is a
unit in O4(S).

(it) With (iii) we obtain OF , = {f € Oy, x | v:(f)<1}. Then (i) implies
that OF _ is a local ring with maximal ideal { /' € Oy, x | 0:(f) < 1}.

(iii) We can assume that U is rational. The set {v € SpaF,(U) | v(f)=<
v(g)=+0} is open in SpaF, (U) by the definition of the topology of SpafF, (U).
Now the assertion follows from (1.5.ii).

(iv) By definition we have 04(U) = F4(U). By (1.5.ii) the mapping
SpaF(U) — Spad is injective with image U. Hence Of(U) = {f €
FqUY | v( f)S1 for all veSpaF,(U)}. Now [H1, 3.3.i] implies O} (U) =
FyU)". O

In general, the presheaf (04 is not a sheaf of rings as the following exam-
ple of M. Rost shows. Let 4> = Z[X;, X3, X3]x,x, be the localization of the
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polynomial ring Z[X,, X;, X3] by X; Xz, and let B be the subring of 4 gener-
ated by X5, X1 X5, X' X0, (XI'X,"X3 | n e N), (X;"X,"Xs | n € N). We
equip 4” with the group topology such that {XJ'B | n € N} is a fundamental
system of neighbourhoods of 0. Then 4> is a Tate ring. Let 4™ be an arbi-
trary ring of integral elements of 4”, and put 4 = (4", 4%). The topological
space Spad is covered by the open subsets U = {v € Spad|v(X;)<1} and
V ={v € Spad | v(X1)=1}. Let X be the element of ¢,(Spad) given by Xi.
Then X|U = 0 and X|V = 0, since X3 lies in every neighbourhood of 0 in

A” (l%) and 4° (XIT) But X 0, since X3 € X3 B as a direct computation

shows.

2 Adic spaces

Let X be a topological space and F a presheaf of complete topological rings
on X (ie., F is a presheaf of rings on X and, for every open subset U C
X, the ring F(U) is equipped with a complete ring topology such that all
restriction homomorphisms F (V') — F (W) are continuous). Then F is a sheaf
of complete topological rings (in the sense of [EGA*, 0.3.1]) if and only if
F is a sheaf of rings and for every open covering (U;);c; of an open subset
U of X the natural mapping F (U) — [],¢; F(U,) is a topological embedding,
where [],., F(U;) carries the product topology.

We will use the following category ¥". The objects are the triples X =
(X, Ox, (vy | x€X)), where X is a topological space, Ox is a sheaf of
complete topological rings on X and vx € Spv0y,  is a valuation of the stalk
Ox, x. (Ux,x denotes the inductive limit lim Ox (U) in the category of rings.)

xelU
The morphisms X — Y are the pairs ( f, @), where f:X — Y is a continuous
mapping and ¢: 0y — f.0y is a morphism of sheaves of topological rings
(i.e. @ is a morphism of sheaves of rings and, for every open subset U C Y,
the mapping @y: Oy (U) — Ox( f~1(U)) is continuous) such that, for every
x € X, the induced ring homomorphism ¢,: Oy, r(xy — O, » is compatible with
the valuations v, and vsp) (1.€., Vr) = Spv(@x)(vr)).

In the last paragraph we constructed to every affinoid ring 4 a triple
(Spad, O4,(v|x € Spad)). We saw that, in general, ¢4 is not a sheaf. But if
04 is a sheaf of topological rings then (Spad, @4, (v.|x € Spad)) is an object
of ¥~ which we call the adic space associated with 4.

Definition. An affinoid adic space is an object of ¥~ which is isomorphic to
the adic space associated with an affinoid ring. An adic space is an object
X, Ox, (x)x € X)) of ¥ which is locally an affinoid adic space, i.e., every
x € X has an open neighbourhood U C X such that (U, Ox | U, (v, | x € U))
is an affinoid adic space. A morphism X — Y between adic spaces X, Y is a
morphism in V.

The main aim of this paragraph is to show that for two important classes
of affinoid rings 4 the presheaf ¢4 on Spad is a sheaf of topological rings
(Theorem 2.2). Furthermore, we will show that the morphisms Spa4 — SpaB
between the adic space Spad and SpaB associated with complete affinoid rings
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A4 and B correspond bijectively to the continuous ring homomorphism B — 4
(Proposition 2.1). With these two results we will see in Sect. 4 that the category
of adic spaces is large enough that it contains both the category of locally
noetherian formal schemes and the category of rigid analytic varieties.

We begin with some general remarks on adic spaces. Let (X, Oy, (vx|x € X))
be an adic space. Then O} denotes the subsheaf of Oy with 05 (U) = { f €
Ox(U) | v( f)Z1 for all x € U}. O} is a sheaf of rings. By (1.6.i, ii) the
stalks Oy, and (9},x of the sheaves Uy and O} are local rings. Furthermore,
if f1(X,0x,(vx | x € X)) = (Y,0y,(vy | y € Y)) is a morphism of adic
spaces then f induces morphisms of locally ringed spaces (X, Ox) — (¥, Oy)
and (X, 0%) — (Y, 07). (In (2.1) we will prove a converse of this.)

Let (Spad, 04, (v, | x € Spad)) be the adic space associated with an affi-
noid ring 4. Then (U, €4 | U, (v | x € U)) is an affinoid adic space for every
rational subset U of Spad (by 1.5.i, iii)). Hence open subspaces of adic
spaces are adic spaces. If X is an affinoid adic space then (Ox(X), 0% (X))
is an affinoid ring, and X is isomorphic to the adic space associated with

Let A = (4”, A™) be an affinoid ring and 4 = ((4°)", (4*)") the completion
of 4. Then O is a sheaf of topological rings on Spad if and only if ¢ is
a sheaf of topological rings on Spad, and the adic spaces associated with 4
and 4 are isomorphic. This follows from (1.5.ii, iii) with U = Spad4 (note
F4(Spad) 2A).

Proposition 2.1 (i) Let X = SpaB and Y = SpaA be the adic spaces associated
with affinoid rings B and A. Then every continuous ring homomorphism A —
B induces in a canonical way a morphism of adic spaces X — Y. Thus we
have a mapping from the set of continuous ring homomorphisms A — B to
the set of morphisms of adic spaces SpaB — SpaA. If B is complete then this
mapping is bijective.

(ii) Let X be an adic space and Y = Spad the adic space associated with an
affinoid ring A. Then there is a natural one-to-one correspondence between
the set of morphisms X — Y and the set of continuous ring homomorphisms
A — (0x(X), O} (X)).

(iii) Let X = (X, Ox, (v | x € X)) and Y = (Y, 0y, (v, | y € Y)) be adic
spaces, and let g = ( f, ¢): (X, Ox) — (Y,0y) be a morphism of topologi-
cally ringed spaces (i.e.,( f, @) is a morphism of ringed spaces and, for every
open subset U C Y, the ring homomorphism @y: Oy (U) — Ox( f~1(U)) is
continuous). Then g is a morphism of adic spaces if and only if the following
two conditions are satisfied.

(a) g: (X, Oy) — (Y, Oy) is a morphism of locally ringed spaces.

(b) g induces a morphism of locally ringed space (X, O%) — (Y, 0F) (i.e., the
sheaf homomorphism @: Oy — f, Ox satisfies (OF) C f. 0%, and ( f,¥): (X,
03) — (Y, 0F) is a morphism of locally ringed spaces, where y: 03 — f. 0%
is the restriction of @).

Proof. (i) Let f:4 — B be a continuous ring homomorphism. We construct
a morphism of adic spaces s( f):X — Y. Let g = Spa( f):SpaB — Spad
be the continuous mapping induced by f. By the universal property described
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in (1.3.1) there exists, for every rational subset U of SpaB and every rational
subset ¥ of Spad with g(U) C V, a unique continuous ring homomorphism
oy u:Fq4(V)— Fg(U) such that the following diagram commutes

vy

Fp(U) = Fu(V)
hgy 1 ThA,V

These ¢y induce a morphism of sheaves of topological rings ¢: 04 —
g« Op. For every x € SpaB the induced ring homomorphism Oy 4x) — Op,x is
compatible with the valuations v,() and v,. Hence s( f) :=(g, 9): X — Y is
a morphism of adic spaces.

Now assume that B is complete. Let f1, f2:4 — B be continuous ring ho-
momorphisms with s( 1) = s( f2). Let ¢: 04(Spad) — Og(SpaB) be the
ring homomorphism induced by s( f1) =s(f2), and let hy: 4> — 04(Spad)
and hg: B> — (p(SpaB) be the canonical ring homomorphisms. Then by the
construction of s( f1) and s( f;) we have hgo f1 = @ohy and hgo fr =
@ o hy. Since B is complete and therefore hg is an isomorphism, we obtain
fi1 = f2. Let X — Y be a morphism of adic spaces. We have to show
that there exists a continuous ring homomorphism f:4 — B with r = s( f).
Let ¢:F,(Spad) = (U4(Spad), 0} (Spad)) — (Uz(SpaB), O;(SpaB)) =
Fz(SpaB) be the ring homomorphism induced by r. Since kg spap is an iso-
morphism, we have a continuous ring homomorphism f:4 — B such that the
following diagram commutes

Fp(SpaB) £ F4(Spad)

1M hpSpaB T ThA,SpaA

Since for every x € SpaB the ring homomorphism 04,y — Op, in-
duced by r is compatible with the valuations v,() and vy, the commutativity
of (1) shows r(x) = Spa( f)(x) for every x € SpaB. Let U = R (—5) be

a rational subset of Spad. Put V = r~'(U) = s(f)~'(U) C SpaB. Let
hy:A® — 04(U) and hy: B> — Og(V) be the canonical ring homomorphisms,
and let a: O4(U) — Op(V) and B: 04(U) — Op(V) be the continuous ring
homomorphisms induced by r and s( f). Of course § makes the following
diagram commutative

Os(V) «—— 0O4(U)
(2) hEDT Thy

— A°.

The commutativity of (1) implies that also « makes the diagram (2) com-
mutative. Since d is invertible in 0 (U) and 4> [}7} is dense in O4(U), we
obtain a = f. Hence r = s( f).
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(ii) To a morphism f:X — Y we assign the continuous ring homomorphism
A — (0x(X), 03(X)) which is the composition of the canonical ring homo-
morphism 4 — (Oy(Y), 03 (Y)) and the ring homomorphism (Cy (Y), 03 (Y))
— (0x(X), 0}(X)) induced by f. Thus we have a mapping from the
set of morphisms X — Y to the set of continuous ring homomorphisms
A — (Ox(X), 0F(X)) which is bijective by (i).

(iii) Assume that (a) and (b) are satisfied. We have to show that for every
x € X the mapping ¢,: Oy, sy — Ox, is compatible with the valuations vy
and vy, i.e., Ur(x) = Spv(@x)(v:). By (1.6.i) the maximal ideals of Oy, 7 and
Ox x are the supports of v/(,, and v,. Hence by (a) both v,(,) and Spv{(ex)(vy)
have the support Mey C @y,f(x). Let A (QY,f(x) — k= (Qy,f(x)/mf(x) be the
canonical mapping, and let 47,y C k and A, C k be the valuation rings
to vrx) and Spv(ey)(v:). We have to show that 4,y = A4,. The rings
h™ Ay () and A~'(4,) are local. By (1.6.ii) we have 2! (ds) = OF ;(,,
and A7 (4,) = ;' (OF,). So (b) implies that 2~'(4,) dominates 2~ (4 ).
Then A, dominates Ay (), and hence 4, = Ar). U

_ For every Tate ring 4 let A(Xy,...,X;,) denote the subring {Za, X" €
A[[Xl,...,X,,]]|(aV)V€N3 is a zero sequence in A} of A[[X,,...,X,]]. We equip
A{Xy,...,X,) with the group topology such that {U (X )|U neighbourhood of 0
ind} is a fundamental system of neighbourhoods of 0 in A4(X,...,X,), where
UX) = {Za,X¥ € 4(X1,...,X,) | ay € U for all v}. Then 4(Xi,....X,) is
a complete Tate ring. We say that 4 is strongly noetherian if 4(X;,..., X,)
is noetherian for every » € INy. Now we can state the main result of this
paragraph.

Theorem 2.2 Let A be an affinoid ring such that A° has a noetherian ring
of definition or A is a strongly noetherian Tate ring. Then O4 is a sheaf of
complete topological rings on Spad. Furthermore, H' (U, 0O4) = 0 for every
i € N and every rational subset U of Spad.

We will even prove a slight generalization of (2.2), namely a theorem
analogous to (2.2) for ¢4-premodules. For that we need some preparations.

Let 4 be a topological ring and M a finitely generated 4-module. We
call the 4-module topology on M such that every 4-module homomorphism
M — N from M to a topological A-module N is continuous the natural A4-
module topology of M. If my,...,m, is a system of generators of M over 4 then
the set of all sets {x;m; +...+x,m | x1,...,%; € U} with U a neighbourhood
of 0 in 4 is a fundamental system of neighbourhoods of 0 in the natural 4-
module topology of M. Now assume that 4 is f-adic with ring of definition 4,
and ideal of definition / of 4;. Let My be a Ag-submodule of M, and equip
M, with the [-adic topology. Then M) is an open subspace of M in the natural
A-module topology of M if and only if M, is open and bounded in M. (A
subset My C M is called bounded if for every neighbourhood U of 0 in M
there exists a neighbourhood ¥ of 0 in 4 with {a - m|a € V,m e My} C U.)

A mapping f:X — Y between topological spaces X and Y is called strict
if f is continuous and the restriction X — f(X) is open.



A generalization of formal schemes and rigid analytic varieties 525

Lemma 2.3 Let A be a f-adic ring which has a noetherian ring of a definition.
Let M and N be finitely generated A-modules equipped with their natural A-
module topology. Then.

(i) Every A-module homomorphism f:M — N is strict.

(i) If A is complete then M is complete and every A-submodule of M
is closed in M.

(iii) The natural mapping M Q) , A — M is an isomorphism of topological
A-modules if we equip M @ y A with its natural A-module topology.

Proof. (i) and (ii) follow from analogous results for finitely generated modules
over noetherian adic rings, and (iii) is a consequence of (ii). [J

Lemma 2.4 (i) Let A be a topological ring which has a zero sequence
(an | n € N) with a, € A* for every n € N (for example, A a Tate ring). Let
M and N be topological A-modules which are complete and have countable
Sfundamental systems of neighbourhoods of 0. Then every continuous surjective
A-module homomorphism M — N is open.

(i1) Let A be a complete noetherian Tate ring, and let M and N be finitely
generated A-modules equipped with their natural A-module topologies. Then
M is complete and every A-module homomorphism M — N is strict.

Proof. In order to prove (i) one can take over without any change the proof of
Banach’s open mapping theorem (cf. [B1, 1.3.3.]). (ii) follows from (i) with
the methods of [BGR, 3.7]. O

Let 4 be an affinoid ring and let M be a finitely generated 4”-module. For
every rational subset W of Spad we equip the 04 (W )-module M @, C4(W)
with the natural @, (W )-module topology. Then, for rational subsets V, W with
V C W, the natural mapping pyrw: M @ p O4(W) - M@, 04(V) is conti-
nuous. For every open subset U of Spad we put

(M ® 04)U):=lim MRO(V),
14 A

where the projective limit is taken over all rational subsets ¥ of Spad contained
in U and with respect to the transition mappings pyw. We equip (M ® 04 (U)
with the projective limit topology. Then (M ® 04)(U) is a topological 0, (U)-
module, and for ¥V C U the canonical mapping (M ® O4)(U) - (M Q0 4)(V)
is continuous. So we have a topological O 4-premodule M ® 04. Now we can
generalize (2.2) to the following theorem

Theorem 2.5 Let A be an affinoid ring such that A~ has a noetherian ring
of definition or A" is a strongly noetherian Tate ring, and let M be a finitely
generated A>-module. Then M @ 04 is a sheaf of complete topological groups
on Spad, and H(U,M ® O4) = 0 for every i € N and every rational subset
U of Spad.

Proof We distinguish the cases that 4> has a noetherian ring of definition
and that 4~ is a strongly noetherian Tate ring. In the first case our proof is
motivated by Raynaud’s paper [R], and in the second case our proof is similar
to the proof of Tate’s acyclicity theorem in [BGR].

Case I. 4" has a noetheriarr ring of definition.
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First we describe a construction which generalizes the blowing up of ideals.
Let ¢:C — B be a ring homomorphism and let J be a C-submodule of B.
Then we have the graduated C-algebra EBneNOJ", where J%: = ¢(C) and, for
n=1,J" is the subgroup of B generated by jj -...- j, with ji,...,j, € J. We
have a canonical morphism of schemes g: Proj (EBneNOJ") — Spec C. Let
be the ideal of B generated by J. Then the inclusion €B,cn /" — Dpen,!”
defines a morphism of schemes s: Proj(@neNol") — Proj (@neNOJ ") such that
the following diagram commutes

X:=Proj( @ I") — SpecB

HG]NO
(IL1) s !
:=Proj( € J") — SpecC
n€Ny 9

One can easily check

(1.2)

(i) s is affine.

(ii) Let F be a set of generators of the C-module J. Let S be a nonempty
finite subset of F CJ' and let t € J'S! be the product of the elements of
S. Put U =Dy(t) = {p € Proj(D,cn, /")t € P} C Y. Then one can con-
sider Oy(U) and Ox(s~!(U)) as subrings of the localization B;, and we have
Oy(U)=C[L | f e F,seS)and Ox(s~'(U))=B[L | f € F,s € S].

(iii) Let H be an ideal of C such that Spec(¢): SpecB — SpecC induces
an isomorphism SpecB — V(H - B) — SpecC ~ V(H) and V(I) C V(H - B).
Then g induces an isomorphism ¥ — g~ (V(H)) — SpecC — V(H).

The essential step in our proof of case I is the following point.

(1.3)
Let B be an affinoid ring, let fy,..., f, be elements of B> with B> = foB” +
...+ fnB, and let P be a finitely generated B°-module. We assume that B”
has a noetherian ring of definition. Put &% := P ® (03,Z := SpaB, and U; :=
R (-%—"&) C Z for i =0,...,n. Then the augmented Cech complex to #
and the covering {Uy,...,U,} of Z
() 0— F(2) — [1F(Uy) — 1 FUyNUy) — ...

i (i)
is exact. Furthermore, if we equip all components of (*) with their natural
topologies then all differentials of (x) are strict.

Proof of (1.3) Let P be the quasi-coherent sheaf on SpecB” defined by P.
We consider the augmented Cech complex to P and the covering {D( fy),...,
D( fr)} of X = SpecB®

(%) 0= PX) - [IP(D(fi)) = 1 PO(Sfi) ND(f1y)) = ...

(o, 1)

Put F = {fo,..., fx}. We equip P(X) = P with the natural B”-module
topology. For every ( fi,...,f;) € F¥™!, the underlying ring of the topo-
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logical ring B> [ £-,..., 47 ) is the localization of B* by fi -...- fi. So
7;;7 i 7'; 1) v Iy
PID(fi)N...0D(f) = PQp B ({-%) and hence P(D( f;,) N
Iy I
.0 D(fy)) is a finitely generated B” (%,...,{;)—module. We equip

5 : F F
P(D( fi,) N ...N D( f;)) with the natural B~ (7’;,..., 7;)- module topo-
logy, and [, ,k)eFkHP(D( fig) N ...ND( f;,)) with the product topology.

Then every differential of (+x) is continuous. Let (x+)" be the completion of
the complex (). By (2.3. iii}, (+*)" is the complex (*). The complex (x*) is
exact. If all differentials of (x+) are strict then by [B2, 1I1.2.12 Lemma 2] all
differentials of (xx)" are strict and (**)" is exact. So it is sufficient to show
that all differentials of (x*) are strict.

Let C be a noetherian ring of definition of B>, and let J be the C-submodule
of B” generated by F. Since B> = foB” + ... + f,B°, we have by (L1) a
commutative diagram

SpecB® = X
la
Y:=Proj( @ J") — SpecC.
neNy 9
Let N be a finitely generated C-submodule of P which generates the
B”-module P, and let N be the coherent sheaf on SpecC defined by N. The
inclusion N — P induces a morphism of sheaves N — h,(P). The compo-
sition of g*(1):¢ (N ) = g*h(P) = g*gu5.(P) with the adjunction morphlsm
9*g.5x(P) — s5.(P) gives a morphism of sheaves o: g *(N) = 5,(P). The im-
age ¥ of ¢ is a coherent sheaf on Y, since ¢g*(N) is coherent and se(P) is
quasi-coherent.

Let I be an ideal of definition of C. For every i € N let K® be the aug-
mented Cech complex to the sheaf /'% and the covering {D.( fi o) D)}
of Y. Since D( f1) = s~ (D,( fi)) for k=0,...,n, we can 1dentxf}~l the com-
plex (**) with the augmented Cech complex K0 to the sheaf s.(P) and the
covering {D.( fo),...,Ds( fn)} of Y. Since s.(P) D ¥ D19 D% D ...,
we have a sequence of subcomplexes K§ 2 K 2 Ky 2 .... For every i € Ny
let df: K} — K7*' be the differentials of the complex K?. Then we have

(1.3.1)

(i) Given p € Z and u € N then there exists a v € Ny with im(df) O
ker(dZ™).

(ii) For every p € Z, the set {K | i € N} is a fundamental system of
neighbourhoods of 0 in K7

Proof. (i) The assertion is trivial if p < 0. So we fix 2 p € Ny. For every x €
I" and y € HP\(Y,1*%) let x @ y € HPTI(Y,I**" %) be the image of y under
the mapping H?*!(Y,1"9) — HP*!(Y,I"" %) induced by the x-multiplication
I*G — ["V"4. Then by [EGA, TII. 3.3.2] there exists a k € N such that

(1) HPYN (Y, [*V"%) = I" © HPY\(Y, [*%9) for every u2k and r 0.
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It is enough to proof (I.3.1. 1) for u = k. We fix a u = k. By [H],
3.7], SpecB” — V(I - B) — SpecC — V(I) is an isomorphism. Hence (I.2.
iii) implies that ¥ — g~!(V(I)) — SpecC — V(I) is an isomorphism. The
sheaf HP*1(Y,1“%)™ on SpecC associated with the finitely generated C-module
HP+(Y,1*%) is equal to the higher direct image sheaf RP*'g,(1*%). Hence
the restriction of HP*(Y,1“%)™ to Spec C — V(I) vanishes. Then according
to [EGA*, 1.6.8.4] there exists a t € N with
(2) 'HPTY(Y,I*%9) = 0.

We show im(df) D ker(d”!!). Notice that H"(K?) = H"(Y,I'%) for
every n,i € N. Let a € ker(dZ/}) be given, and let 4 € HP!(Y,1*'%)
be the cohomology class represented by a. By (1) there exist xj,...,x, € I
and 3,,...,7, € HPPY(Y,I*G) witha=x, O J; +...+x, © J,,. Let y1,..., yw
be elements of ker(d} +1) which represent the cohomology classes y,,...,7,.
Then a — (x1y1 + ... + xwyw) € im(df,,) C im(d7). By (2) we have x;y; €
im(df) for j =1,...,w. Hence a € im(d{).

(ii) Let S be a non empty subset of F. Then C[é |s€S, feF]isaring
of definition of the f-adic ring B°(£ |s € §), and L: =1 - C[é |ses, feF]
is an ideal of definition of C[é | s€S, f€F] Let G be the image of
NQ®c ClL|s€8, feFlinPQp B (L |s€S). Then {L' - G|ieN}isa
fundamental system of neighbourhoods of 0 in the natural B° (% | s € §)-module
topology of P Qg B‘>(§ | s €8). By (1.2ii) we have Oy([\,cy D4(s5)) =
Oy(D;([les ) = C[f | s €S,/ € F]. Hence in case p=0 the assertion
of (1.3.1.i) follows immediately from our construction of the sheaf 4. Now
we assume p = —1. By construction of 4 we have I'N C I'(Y,I'%) for
every i € N. Let £ € N be fixed. We have to show that there exists a i € N
with I'(Y,I'%) C I*N. By [EGA, II1.3.3.2] there exists a » € IN such that
I(Y,I'"%) = °'I'(Y,I"%) for every s € N. Since I'(Y,I’9) is a finitely gen-
erated C-submodule of P and J*N is an open C-submodule of P, there exists
ateN with I'T(Y,I"%) C I*N. Hence I'(Y,I"*'%) C I*N.

Now we can show that all differentials of the complex (x*) = K are
strict. Let p € Z be given. Applying (1.3.1.ii) to KZ!, we see that im(d?) N
ker(d”*') = im(d?) N K/*" is a neighbourhood of 0 in im(df) for every
i € N. Now (1.3.1.i, ii) shows that d§:KJ — im(d}) is open. This concludes
the proof of (1.3).

By (1.5) we have

(1.4)

Let U be a rational subset of Spad. Put B = F4(U) and P = M @ ,» B>. Then
there exists a homeomorphism f:SpaB — U and a morphism of presheaves
o:(M®0,) | U — f.(P® Op) such that f induces a bijection between
the set of the rational subsets of SpaB and the set of the rational subsets of
Spad contained in U, and, for every rational subset V' of Spad with V' C U,
the mapping @(V): (M Q 04) (V) — (P ® Og)(f~'(V)) is an isomorphism of
topological groups.
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Note that, for every rational subset U of Spad, F,(U)" is complete and has
a noetherian ring of definition. Hence, applying (1.3), (1.4) and the subsequent
Lemma 2.6, we obtain

(L5)

Let (¥;)jes be an open covering of a rational subset U of Spad. Then there
exist rational subsets Uj,..., U, of Spad such that U ={J 7| U;, every U; is
contained in some ¥}, and the augmented Cech complex to # := M ® 04 and
the covering (U; |i=1,...,n) of U

0-FWU)—[[FWU,)— [l ZW,nU)—...
i

(i, 11)

is exact and has strict differentials.

Now we are ready to finish the proof of (2.5) in our first case. We have
to show that M ® (¢4 is a sheaf of complete topological groups and that, for
every rational subset U of Spad and every i € N,H (UM ® 04) = 0. By
(2.3.1), (M ® O)U) is complete for every rational subset U of Spad, and
then (M @ O)U) is complete for every open subset U of Spad (by definition
of M ® 04). So we have a presheaf of complete topological groups. In order
to show that M ® O, is a sheaf of complete topological groups it is enough to
show that, for every rational subset U of Spad and every covering (U;);e; of
U by rational subsets of Spad, the sequence

(+) 0 — M O)U) - [IM ® 0)(Ui) — N e onwnu)
i i, j

is exact and d is strict [EGA*, 0.3.2.2]. Then it is easy to see that it is even
sufficient to show that, for every rational subset U of Spad4 and every covering
(V)jes of U by rational subsets of Spad, there exists a refinement (U;);e; of
(V;)jes by rational subsets U; of Spad such that (4) is exact and d is strict.

But this is covered by (L.5). Likewise by (I.5) we have ﬁi(U,M ®04) =0
for every i € N and every rational subset U of SpaA. Then [G, 3.8 Corollary
4] implies H'(U,M ® 04) = 0 for every i € N and every rational subset U of
Spad.

Case II. A" is a strongly noetherian Tate ring.
In the following two points (I1.1) and (IL2) let B be an affinoid ring such
that B” is a strongly noetherian Tate ring.

(IL1)

(i) Let B> (X, X~') be the ring of all formal series }_,.z bsX" such
that b, € (B”)" for every n € Z and, for every neighbourhood U of 0 in
(B*)",b, ¢ U for only finitely many n € Z. Then the B>-algebras B> (X, X ')
and B°(X,Y)/(1 — XY) are canonically isomorphic.

(i) Fori=1,....mlet T, = { fu,..., fin)»g:} be a finite subset of B”
with B> = T, - B. Put C = B>(X;; | i = 1,...,m,j = 1,...,n(i)) and let I be
the ideal of C generated by { fi;—g:X;; | i =1,...,m,j = 1,...,n(i)}. Then the

topological B”-algebras B~ —]—1,..., Tu and C/I are canonically isomorphic.
g g1

gm
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(iii) For every rational subset U of SpaB, the Tate ring Op(U) is strongly
noetherian.
(iv) For every rational subset U of SpaB, 0p(U) is flat over Og(SpaB).

Proof- (i) We equip B>(X,X ') with the group topology such that the sets
{3 ,czbnX™ € B(X,X7') | by € U for every n € Z} (U neighbourhood of 0
in (B*)") form a fundamental system of neighbourhoods of 0 in B>(X,X!).
Then B>(X,X~') is a complete Tate ring. By (2.4.ii), the ideal (1 — XY) is
closed in B”(X,Y) and hence B*(X,Y)/(1 — XY) is a complete Tate ring. Both
ring homomorphisms B> — (B”(X,X~'); X) and B”> — (B*(X,Y)/(1 — XY ); X)
are universal with respect to continuous ring homomorphisms from B” to com-
plete Tate rings with a distinguished unit » such that u and »~' are power-
bounded (cf. (3.3.1)).

(ii) By (2.4.i), I is closed in C, and hence C/I is a complete f-adic ring.
Every g; is a unit in C/I, since B> = T; - B”. Now it is easily seen that both
ring homomorphisms B> — B” <§IL,,%> and B> — (/I satisfy the same
universal property, cf. (1.2) and (3.3.i).

(iii) follows from (3.4.i, ii).

(iv) We proceed as in the proof of [FP, I1I1.7.10]. First we show that it
is enough to prove the assertion only for some special rational subsets U.
For that we use (1.5). Namely let f1,...,fs.g be elements of B> with
U ={xeSpaB | x(fi)Sx(g)+0 of i = 1,...,n}. Since U is quasi-compact,
there exists by [H1, 3.11] a unit s of B” with x(s)<x(g) for every x € U. Put
Yi:= {x € SpaB|l <x (%)} Then g | Y1 is a unit of Op(Y¥)), and so we can
define inductively rational subsets Y5,..., Y1 of Yo:=SpaB with Y5 D ¥ D
Y 2.0 Y =Uby ¥ = {x € Vi, |x(f-’§,——1) <1} (k=2,...,n+1).
Then the restriction 4: Op(SpaB) — 0p(U) factorizes into A = A, 0...0 hy,
where h;: Og(Y;) — Op(Yiyy) is the restriction. Using (2.4.ii) and (ii) one
can prove with the ideas of [FP, II1.7.8, 7.9] that, for every complete affi-
noid ring D such that D” is noetherian and Tate and for every f € D, the
restrictions Op(SpaD) — Op(U;) and Op(SpaD) — Op(U,) are flat, where
Uy = {x € SpaD|x( f)=1} and U, = {x € SpaD | x( f)<1}. Hence by (iii),
all ring homomorphisms A4; are flat.

(11.2) ‘

Let f be an element of B°, and put U; = {x € SpaBix(f)=<1} and U, =
{x € SpaB | x( f)=1}. Then the augmented Cech complex to @ and the
covering {U;, U,} of SpaB

0 — Op(Spa B) — Op(Ur) x Op(Uy) =2 Op(Uy N Uz) — 0

is exact.

Proof. By (li.1.iv) the ring homomorphism ¢ is flat. With (1.4) we obtain
that ¢ is faithfully flat and hence injective. By (IL.1.i, ii) we have Op(U)) =
B (X)/( f —X),08(Uy) = B(Y)/(1 = f¥) and Op(Ur N Uz) = B> (X, Y)/( f —
X1—fY)=BXY)/(f-X1-XY)=BXX")/(f—X). Now an easy
computation shows that d is surjective and im(g) = ker(d) (cf. [BGR, 8.2.3]).
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(1.3)

Let (V;)jcs be an open covering of a rational subset U of Spad. Then there
exist rational subsets U,,..., U, of Spad such that U = U;’Zl U, every U, is
contained in some ¥}, and the augmented Cech complex to M ® ¢4 and the
covering (U;|li = 1,...,n) of U is exact.

Proof. By (IL.1.iv) it is sufficient to prove (I1.3) for M = 4 (use the alter-
nating Cech complexes). (1.4) holds also in our case II. Hence by (IL1.ii1)
we can assume that 4” is complete and U = Spad. Then by the subsequent

lemma we can assume (V;);es = (R (M) li = 0,...,m) with some
1

foreoor fm € A" with 4% = fod” +...+ fnA”. Now using (I1.2) one can prove
(I1.3) with the reasonings of [BGR, 8.2.2].

(I1.3) implies that M ® O, is a sheaf of groups and H'(UM ® (4) =
0 for every i € N and every rational subset U of Spad. By (2.4.ii) and
(IL.1.ii1), (M ® 04)(U) is complete for every rational subset U of Spad. Then
(M®0,4)(U) is complete for every open subset U of Spad. It remains to show
that M & 04 is a sheaf of topological groups. Let (U;);c; be an open covering
of an open subset U of Spad. We have to show that &:(M ® O, U) —
[Lier (M ® O4)(U;) is strict. By [EGA*, 0.3.2.2] we may assume that U and
all U; are rational, and since U is quasi-compact we may assume that [ is
finite. im(e) is closed in [[,.; (M ® U4)(U;), since im(e) is the kernel of
Hiet M ® 0)(U;) - I1, ;o M ® O4)(U; N Uj). Now (2.4.1) implies that ¢
is strict. I
Lemma 2.6 Let A be a complete affinoid ring, and let (V;)jc; be an open
covering of SpaAd. Then there exist fo,..., fn € A" such that A” = fod° +
.ot fnd> and, for every i € {0,...,n}, the rational subset R( Qoooes ”) is

I

contained in some V.
Proof. Let x € Spad C Spv4”. Let cI'y be the characteristic subgroup of I'y
as defined in [H1]. Let y be the valuation x | ¢c['x of 4”. Then I', = cI'y and

y € Spad. We choose a V; with y € V. Since I'y, = cI'y, there exists by the
proof of [HI1, 2.6.ii] an element s € A~ and a finite subset 7 of 4~ such that

leTand yeR (%) C V;. We have x € R (%—), since x is a generalization
of y. Using that Spad is quasi-compact, we obtain that the there exist elements
S1,...,5, € A” and finite subsets Ti,...,7, of 4” such that 1 € T; for every
i=1,...,n and (R( ) li=1,...,n) is a covering of Spad refining (¥;);e,.
We may assume s; € T fori=1,.

Now we can follow the proof of [FP M25. Pt 7={f ... ot €T;
fori=1,...,n}and S={t, - ... ty|t; €T; fori=1,...,n and t; = s; for at
least one i e {1,...,n}}. We note the following trivial properties

(1) For every t; € T,...,t, € T, we have R(%) = ﬂ,'.'zl R(%) with
ti=fH « ...« t,.

(2) For every i € {1,...,n}, Spad = U, R (%l)
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N

By (1) R (
imply
(3) Spad = Uyes R ().

From (1.4) and (3) we obtain A = § - A”. Furthermore, (3) implies
R (—Z;) =R (%) for every s € S. Hence every R (S ) is contained in some

s

) is contained in some R (ET'L) for every s € §. (1) and (2)

j.

3 Adic morphisms, morphisms of finite type and fibre products
The following definition turns out to be very useful.

Definition. 4 point x of an adic space X is called analytic if there exists
an open neighbourhood U of x in X such that Ox(U) has a topologically
nilpotent unit. We put X, = {x € X|x is analytic} and X,y = X —X,. If every
point of X is analytic then X is called analytic.

Remark 3.1 If X = Spad is the adic space to an affinoid ring 4 then x € X
is analytic if and only if supp(x) € SpecA” is not open in 4. (So the above
definition coincides with the definition of an analytic point in [H1].)

Proof. Let x be a point of Spad such that supp(x) is open in 4, and let
U be an open neighbourhood of x in Spad. We have to show that Ox(U)
has no topologically nilpotent unit. Let ¥ be a rational subset of Spad with
xeVCU Putp={f¢€bxV)|vi(f)= 0} Then p is a prime ideal
of Ox(V) with p N 4" = supp(x). Since supp(x) is open in 4", it follows
immediately from the definition of Ox (V') that p is open Ox(¥V'). Hence every
topologically nilpotent element of Ox(V) lies in p. But since p contains no
unit of Ox(V), Ox(V') has no topologically nilpotent unit. Now let x be a point
of Spad such that supp(x) is not open in 4°. Then there exists a topologically
nilpotent element s of A4~ with x(s)+0. Put U = { y € Spad | y(s)=%0}. The
U is an open neighbourhood of x in Spad, and the image of s in Ox(U) is a
topologically nilpotent unit of Ox(U). O

In [H1] we called a ring homomorphism f:4 — B between f-adic rings
adic if there exist rings of definition Ao, By of 4,8 and an ideal of definition
I of Ay such that f(4¢) € By and f(I) - By is an ideal of definition of By.

Definition. 4 morphism f:X — Y between adic space is called adic if for ev-
ery x € X there exist an open affinoid neighbourhood U of x in X and an open
affinoid subspace V of Y such that f(U) C V and the ring homomorphism
between f-adic rings Oy(V) — Ox(U) induced by f is adic.

(3.1) and [H1, 3.8] imply

Proposition 3.2 Let f:X — Y be a morphism of adic spaces. Then

(i) If 1 is adic then, for all open affinoid subspaces U and V of X and
Y with f(U) CV, the ring homomorphism Oy(V) — Ox(U) is adic.

(ii) f is adic if and only if f(X;) C Y.
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(it}) f(Xna) € Yna-

In order to define morphisms of finite type between adic spaces we first
introduce ring homomorphisms of topologically finite type between f-adic rings
and affinoid rings. Let 4 be a f-adic ring and let M1,..., M, be finite subsets
of A4 such that M; - 4 is open in 4 for every i = 1....,n. We put

AX )y = A(Xl,...,X,,)Ml,,:,M,, = {3} aX e A[[X1,.... %] | for every
neighbourhood U of 0 ind,a, € M{* -...-M}» - U for only finitely many
v=(v1,...,v) € NZ}.

Obviously 4(X)s is a subgroup of A[[Xi,...,X,]]. We equip A(X)y with
the group topology such that the sets {3 a,X* € A(X)p | av € M{* -...-
M)» - U for every v = (vj,...,v,) € Ni} (U a neighbourhood of 0 ind) from
a fundamental system of neighbourhoods of 0. Using (1.1), one can easily see
that A(X ), is a subring of A[[X},...,X,]], and moreover A(X)y is a complete
f-adic ring. The natural ring homomorphism 4 — A(X),s is continuous.

We put

.....

We say that a ring homomorphism f:4 — B from 4 to a complete f-adic ring
B is of topologically finite type if there exist n € Ny, finite subsets M;,..., M,
of 4 with M; « 4 open in 4 for i = 1,...,n and a surjective, continuous, open

.....

,,,,,

check

Lemma 3.3 (i) (Universal property of A(Xi,...,Xu)um,..um,) Let h:d —
A(Xy, ..., Xn)m,,.. u, e the natural ring homomorphism. Then h(m)X; is power-

.....

bounded in A(Xy,...,Xu)uM,,. .M, fOr every i € {1,...,n} and m € M;, and if
[:A — B is a continuous ring homomorphism from A to a complete f-adic
ring B and by ...,b, are elements of B such that f(m)b; is power-bounded in
B for every i € {1,...,n} and m € M; then there exists a unique continuous
ring homomorphism g:A(Xy, ..., Xu)m,...m, — B with f = goh and b; = g(X;)
fori=1,...,n

(ii) Let f:A — B be a ring homomorphism from A to a complete f-adic ring
B. Then the following conditions are equivalent

(a) f is of topologically finite type

(b) [ is adic, there exists a finite subset M of B such that A[M] is dense in
B, and there exist rings of definition Ay, By of A,B and a finite subset N of
By such that f(Ag) C By and Ao[N] is dense in B.

(iii) If A is Tate then a ring homomorphism f:A — B from A to a complete
f-adic ring B is of topologically finite type if and only if f factors through a
surjective, continuous and open ring homomorphism g: A(Xi,...,X,) — B for
some n € N,.

(iv) Let B,C be complete f-adic rings and f: 4 — B and g: B — C continuous
ring homomorphisms. If f and g are of topologically finite type then go f
is of topologically finite type, and if go f is of topologically finite type then
g is of topologically finite type.
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Corollary 3.4 (i) Let s1,...,s, be elements of A and Ty,...,T, finite subsets
of A such that T; - A is open for i = 1,...,n. Then the natural ring homo-

morphism A — A <_—Z—;l, ey %’l‘l> is of topologically finite type.

(ii) If A is Tate then the following conditions are equivalent

(a) A is strongly noetherian.
(b) Every Tate ring of topologically finite type over A is noetherian.
(c) Every Tate ring of topologically finite type over A is strongly noetherian.

(iii) Let B be a complete f-adic ring of topologically finite type over A. If
A has a noetherian ring of definition then also B has a noetherian ring of
definition.

Proof. Applying (3.3.ii), (i) follows immediately from the definition of

A <§T}§a> (ii) follows from (3.3.iii,iv), and (iii) follows from (3.3.ii).

Let k be a complete, non-archimedean, valued field. Then & is a Tate ring.
In rigid analytic geometry one calls the complete topological k-algebras which
are quotients of some k{X,...,X,) affinoid algebra or Tate algebras over k.
We call them, according to (3.3.iii), Tate rings of topologically finite type over
k.

Let A = (A", 4") be an affinoid ring, and let M,..., M, be finite subsets
of A" such that M; - 4" is open in A" for i =1,...,n. Then B:={}_ a. X' €
AX)y | ay € MV - Mn - (AT for every v = (vi,...,v,) € NI} s
a subring of 4”(X)y. The integral closure C of B in 4°(X)y is a ring of
integral elements of A4”(X)y. The affinoid ring (4°(X)y,C) is denoted by

A ring homomorphism f: B — C between affinoid rings is called a quotient
mapping if f:B> — C® is surjective, continuous and open and C* is the
integral closure of f(8%) in C*. A ring homomorphism f:4 — B from 4 to
a complete affinoid ring B is called of topologically finite type if there exist a
n € Ny, finite subsets M,,..., M, of 4” with M; - A" openin 4" fori=1,...,n

.....

.....

Then we have analogously to (3.3)

Lemma 3.5 (i) (Universal property of A(X\,...,Xu 6, m,) Let i:Ad — A{X )y
be the natural ring homomorphism. Then h(m)X; € (A{(X)y)* for every i €
{1,....,n} and m € M;, and if f:A — B is a continuous ring homomorphism
from A to a complete affinoid ring B and by,...,b, are elements of B> such
that f(m)b; € BT for every i € {1,...,n} and m € M,, then there exists a
unique continuous ring homomorphism g:A{(X)y — B with f = goh and
g(X;)=b; fori=1,...,n.

(i) Let f:4 — B be a ring homomorphism from A to a complete affinoid
ring B. Then the following conditions are equivalent

(a) f is of topologically finite type
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(b) f: 4> — B® is of topologically finite type and there exists an open subring
C of Bt such that B* is integral over C, f(AY)Y C C and f: A" — C is of
topologically finite type.

In particular, for elements s,,...,s, of 4> and finite subsets Ty,...,T, of
A” with T; « A" open in A” for i = 1,...,n, the natural ring homomorphism

A—A <£l I'l> is of topologically finite type.

P
(iii) If A is Tate then a ring homomorphism f:4 — B from A to a complete
affinoid ring B is of topologically finite type if and only if f factors through
a quotient mapping A(X,...,X,) — B for some n € N.

(iv) Let B,C be complete affinoid rings and f:A — B and g: B — C contin-
uous ring homomorphisms. If f and g are of topologically finite type then
go f is of topologically finite type, and if go f is of topologically finite type
then g is of topologically finite type.

Definition. Let f:X — Y be a morphism between adic spaces. We say f is
locally of finite type if for every x € X there exist an open affinoid neighbour-
hood U of x in X and an open affinoid subspace V of Y such that f(U)YCV
and the morphism between affinoid rings (Oy(V), 07(V)) — (Ox(U),03(U))
induced by f is of topologically finite type. If [ is quasi-compact (i.e., for
every quasi-compact open subset U of Y, f~'(U) is quasi-compact) and lo-
cally of finite type then f is called of finite type.

If f:X — Y is locally of finite type then to every neighbourhood U’ of
a point x € X and every neighbourhood ¥’ of f(x) there exist open affinoid
neighbourhoods U and V of x and f(x) in U’ and ¥’ such that f(U) C V
and (Oy(V),03(V)) — (Ox(U),0%(U)) is of topologically finite type (3.5.ii,
iv). In [H2] we will show

Proposition 3.6 Let X, Y be adic spaces and f: X — Y a morphism locally of
finite type. Let U and V be open affinoid subspaces of X and Y with f(U) C
V. We assume that Oy(V) has a noetherian ring of definition or is a strongly
noetherian Tate ring. Then the morphism of affinoid rings (Oy(V),05(V)) —
(Ox(U), 03(U)) is of topologically finite type.

Now we consider fibre products. In (3.7) we consider fibre products in the
category of adic spaces and in (3.8) we consider the “fibre product” S xy X
of an adic space S and a scheme X both living over a scheme Y.

Proposition 3.7 Let X,Y,S be adic spaces and f:X — § and g:Y — §
morphisms. We assume that f is locally of finite type, g is adic, and every
point y € Y has an open affinoid neighbourhood U in Y such that Oy(U) has
a noetherian ring of definition or is a strongly noetherian Tate ring. Then
there exists in the category of adic spaces the fibre product X x5 Y of X
and Y over S. The projection X xs Y — Y is locally of finite type and the
projection X x5 Y — X is adic.

Proof. We can assume that S = Spa4,Y = SpaB,X = SpaC are affinoid, B”
has a noetherian ring of definition or is a strongly noetherian Tate ring, and g
and f are induced by ring homomorphisms A:4 — B and p: 4 — C such that
4 is adic and p is of topologically finite type. Then there exist finite subsets
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M,...,M, of 4> such that M; - 4" is open in 4" and p factors through a quo-
tient mapping a: A(X\,...,Xu)m,,.,m, — C. Since A is adic, A(M;) - B” is open
=: E be the natural extension of 1. We equip D" ;= E*/A'(kero) + E” with the
f-adic topology such that the canonical mapping n: E> — D" is continuous
and open. Let DT be the integral closure of n(E™) in D”. Then DY is a ring
of integral elements of D”. We have a commutative diagram of affinoid rings
(D:= (D", D))

I

=— O
n— 0

(*)

—

which is cocartesian in the category of complete affinoid rings (3.5.i). By
ring. So by (2.2) we have an adic SpaD associated with D. The commutative
diagram induced by (*)
SpaD — SpaC
1 1
SpaB —— Spad

is cartesian in the category of adic spaces by (2.1.i). [J

Proposition 3.8 Let _ denote the forgetful functor from the category of adic
spaces to the category of locally ringed spaces which assigns to an adic space
(X, Ox, (v | x € X)) the locally ringed space (X, Ox).

Let X,Y be schemes, S an adic space, and X — Y and ¢:S — Y
morphisms of locally ringed spaces. We assume that f is locally of finite
type and that every s € § has an open affinoid neighbourhood U in S such
that Os(U) has a noetherian ring of definition or is a strongly noetherian Tate
ring. Then there exist an adic space R, a morphism of adic spaces p:R — S
and a morphism of locally ringed spaces q: R — X such that the diagram

R L x

pl Lr

§ — Y
q

commutes and the following universal property is satisfied. If U is an adic
space, uw:U — S a morphism of adic spaces and 0:U — X a morphism of
locally ringed spaces with gou = f ov then there exists a unique morphism
of adic spaces w:U — R withu= pow and v=qgow.

The morphism p:R — S is locally of finite type. We call R the fibre
product of X and S over Y and denote it by X xy S. Every morphism
[:X; — Xp between schemes locally of finite type over Y induces by the
universal property a morphism X| xy S — X, Xy § of adic spaces over S
which we denote by f(s).

Proof. We may assume that ¥ = SpecB, X = SpecB[X},...,X,)/1,S = Spad, A
has a noetherian ring of definition or is a strongly noetherian Tate ring, and
g is induced by a ring homomorphism A:B — A4°. Let E be a finite set
of topologically nilpotent elements of 4~ such that £ - 4 is open. For every
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k € N let A(k) = A(Xl,...,X,,>E(k) ’’’’’ E(k) with E(k) := {61 R/ | e € E
for i = 1,...,k}, and let A;: B[X,,...,X,] — A(k) be the extension of A with
A(Xp) = X; for i=1,...,n. Let mp: (kY — AkY/}(I) - A(k)” =: A4} be the
natural mapping. We equip 4} with the f-adic topology such that m; is con-
tinuous and open. Then 4} has a noetherian ring of definition or is a strongly
in A}. Then Ay := (43,4 ) is an affinoid ring. By (2.2) we have an adic space
Ry associated with Ag. For £ < h, let @i Ry — R, be the morphism which is
induced by the continuous A-homomorphism A;, — 4y with m,(X;) — m (X))
for i = 1,...,n (3.5.i). Then @4 is an isomorphism of R; onto the rational
subset {x € Ry | vi(ems(X;)) <1 for every e € E(k),i = 1,...,n} of R;. Hence
there exists in the category of adic spaces over S the inductive limit R of the
system (Ri, 9w | k,h € N). Let p:R — S be the structure morphism. The
ring homomorphisms 7y o A¢: B[X),...,X,] — A} induce morphisms of locally
ringed spaces (Ry)— — X which glue together to a morphism of locally ringed
spaces ¢:R — X. We have go p = f ogq. Using (2.1.i) and (3.5.1), one can
easily check that R, p,q satisfy the universal property. ]

Lemma 3.9 (i) Let
XxsY 4 X
rl Lr

Y — S
g

be a cartesian square as in (3.7). Then, for every x € X and y € Y with
S (x) =g(y), there exists a z € X x5 Y with x = q(z) and y = p(z).

(i) Let

R — X
ri L
s — Y

be the commutative diagram of (3.8). Then, for every x € X and s € § with
S (x) = g(s), there exists a r € R with x = q(r) and s = p(r).

Proof. (i) We use the notations of the proof of (3.7). Let Ag, By, Cy be rings
of definition of 4%, B>, C> with A(4) C By and u(4g) C Cyp, and let 7 be an
ideal of definition of 4y. Let F be the image of By®y, Co in E” := B> Q4 C°,
and let E* be the integral closure of the image of B* ®,+ C* in E>. We equip
E” with the group topology such that {/” - F|n € N} is a fundamental system
of neighbourhoods of 0. Then E” is a f-adic ring and E* is a ring of integral
elements of E”. The completion of the affinoid ring £ = (E”, ET) is denoted
by B®, C. The commutative diagram

B®AC — C

T T
B «— A

is cocartesian in the category of complete affinbid rings. Hence X x5 Y =
SpaB®, C = Spak.

Let x be a point of X and y a point of ¥ with f(x) = g(y). We consider
x and y as valuations of C* and B”. There exists a valuation v of E> which
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lies over x and y. Let (I'y) and (I',) be the convex hulls of the value groups
I'y and I', of x and y in the value group I', of v. Put H := (I';) U(I",) (hence
H = (I'y) or H = (I'})). Then H contains the characteristic subgroup c¢I', of v
(cf. [H1, Sect. 2]). Therefore we have the valuation w := v|H of E” (cf. [HI,
Sect. 2]). Also w lies over x and y. We have w(e)=<1 for every e € ET, and
w(i) is cofinal in I', for every i € I (since x(i) is cofinal in Iy and y(i) is
cofinal in I',). Hence w € SpaF.

(ii) We may assume Y = SpecB, X = SpecC, S = Spad, and f and g are
given by ring homomorphisms B — C and B — A4°. Let p € SpecC be a prime
ideal of C and v € Spad a valuation of 4> with pN B = supp(v)NB. We show
that there exists a ¥ € R with p = g(r) and v = p(r). We choose a prime
ideal q of C ®p 4> with p = ¢ N C and supp(v) = g N 4", and a valuation » of
C ®p A” such that q = supp(r), r extends the valuation v of 4” and the value
groups I', and I', of v and r have the same divisible hull (in particular, I', is
the convex hull of I, in I',). Let Ay be a ring of definition of 4%, I a finitely
generated ideal of definition of 4y, and C’ C C a finite set of generators of C
over B. We choose a k € N such that 7(c®i)<1 for every ¢ € C’ and i € I*.
Then let Dy denote the subring Ag[c ® ilc € C',i € I¥] of D* := C @3 4,
and let D denote the integral closure of 4*[c ® i|c € C',i € I*] in D*. We
equip D with the group topology such that {I” - Dy|n € N} is a fundamen-
tal system of neighbourhoods of 0. Then D” is a f-adic ring and D' is a
ring of integral elements of D”>. We have r € Spa(D°,D"), and Spa(D”,D™)
is an open subspace of R. Hence r is an element of R with p = ¢(r) and
v=p(r). O

4 Formal schemes, rigid analytic varieties and adic spaces

In this paragraph we construct a functor #: % — &/ form the category %
of locally noetherian formal schemes to the category &/ of adic spaces, and
a functor ri: % — o/ from the category of rigid analytic varieties over a
complete non-archimedean valued field £ to the category of adic spaces. The
idea of the definition of ¢ and r; is the following. First we notice that if 4 is a
noetherian adic ring or a Tate ring of topologically finite type over k then, for
every ring A" of integral elements of 4, we have an adic space Spa(4, 4T)
associated with the affinoid ring (4, A™) (2.2). So we can define ¢ and r;
on the affine objects of the categories # and %, namely if X = Spf4 then
t(X) := Spa(4, A) and if X = Sp4 then r(X) := Spa(4, A°). We will see
that every open subset U of an affine object X of & (resp. #;) induces in a
natural way an open subset a(U) of #(X) (resp. rx(X)), and every morphism
f:U; — U, between two open subspaces of affine objects Xi, X, of & (resp.
Ay ) induces in a natural way a morphism of adic spaces a( f ): a(U;) — a(Us).
Then it is obvious how one has to define ¢ and r, on general objects, namely
if an object X of # (resp. %) is obtained by glueing affine objects (X;|i € I)
along isomorphisms @j;: Uy — Uy then #(X) (resp. (X)) is defined to be
the adic space obtained by glueing (¢#(X;)|i € I) (resp. (r(X;)|i € 1)) along the
isomorphisms a(@;;): a(Uy) — a(Uy).
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In the following proposition we construct the functor . If X is an adic
space then we equip, for every open subset U of X, 03(U) with the subspace
topology of Ox(U). Then (X, €%}) is a locally and topologically ringed space.

Proposition 4.1 Let X be a locally noetherian formal scheme. Then there
exist an adic space H(X) and a morphism of locally and topologically ringed
spaces T = my:(H(X), (9;&,)) — (X, Ox) such that the following universal
property is satisfied. If Z is an adic space and A:(Z, 03) — (X, Ox) is a
morphism of locally and topologically ringed spaces then there exists a unique
morphism between adic space [:Z — t(X) such that the diagram

Z, 07)
pl i
(1(X), Ofyy) — (X, Ox)

commutes, where | is the morphism induced by f.

If f:X — Y is a morphism between locally noetherian formal schemes
then by the universal property there exists a unique morphism between adic
spaces t( f): t(X) — t(Y) such that the diagram

(t(X), Opy) =5 (X, Ox)

wl Lr
x¥), (9;&)) Ty" (¥, Oy)

commutes, where | is the morphism induced by t( ). So we have a functor
t from the category of locally noetherian formal schemes to the category of
adic spaces.

Proof. We may assume that X = Spfd is affine. Then we put #(X) :=
Spa(4, 4). By the following point (1), the identity 4 — A induces a mor-
phism of locally and topologically ringed spaces m: (¢(X), (O;EX)) — (X, Ox).
By (2.1.ii) and (1), #(X) and 7 satisfy the universal property.

(1) Let Y be an adic space. Then the morphisms of locally and topologically
ringed spaces (¥, 07) — (X, Ox) correspond bijectively to the continuous ring
homomorphisms Ox(X) — 0F(Y).

Proof. We may assume that Y = Spa(B, BT) is the adic space associated
with a complete affinoid ring (B, BT). Let a continuous ring homomorphism
@: Ox(X) — 0F(Y) be given. We will construct a morphism of locally and
topologically ringed spaces f:(Y, 03) — (X, Ux) such that f*:Ox(X) —
O%(Y) is equal to ¢. For every y € Y put g(y) = {a € Ox(X)|v,(p(a)) < 1}.
Then g(y) is an open prime ideal of Ox(X) = 4. Hence we have a mapping
g:Y — X. This mapping is continuous, since, for every s € Ox(X),g'({x €
X|s(x)*0}) = {y € Y|1Sv,(p(a))}.
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Let s € Ox(X) be given. Put U = {x € X|s(x)#+0}. Then Ox(U) = 4(%)

s

and 03 (g~ (U)) = B+(-¢(ls—)). Hence by (1.2.i) there exists a unique continuous

ring homomorphism @y: Ox(U) — 0} (g~'(U)) such that the diagram

g\ (U)) & 0x(U)

T T
0y (Y) o Ox(X)

commutes. The ¢y define a morphism of sheaves ¥: Ox — ¢, 07 . It remains to
show that, for every y € Y, the ring homomorphism ¥ ,: Ox 4(,) — Oy, induced
by ¥ is local. Let m, and my(,) be the maximal ideals of ¢y , and Oy (), and
let h: Ox(X) — Ox 4y be the natural ring homomorphism. Then by definition
of g we have h~'(my(,)) = h~'(¥;'(m,)) which implies my,y = ¢ ;' (my).
O

We call a subcategory € of the category &/ of adic spaces saturated if it
satisfies the following properties. If X € € and U C X is an open subspace
then U € &; if X € of has an open covering (U;);e; with U; € € for every
ielthen X €4, if X € of is isomorphicto a Y €e ¥ then X € €; ¥ is a
full subcategory of <.

Proposition 4.2 (i) The functor i1 F — o from the category F of locally
noetherian formal schemes to the category of adic spaces is fully faithful
A morphism f: X — Y in & is adic [EGA*, 1.10.12] resp. locally of finite
type [EGA*, 1.10.13] if and only if t( f ) (X) — t(Y) is adic resp. locally
of finite type.

(ii) Let € be the smallest subcategory of o such that t(¥) C % and € is
saturated. Then the objects of € are the adic spaces X with the property that
every x € X has an open affinoid neighbourhood U such that Ox(U) has a
noetherian ring of definition A such that Ox(U) is finitely generated over A
and OF(U) is the integral closure of 4 in Ox(U).

Proof. (i) For every locally noetherian formal scheme Z we have the lo-
cally ringed space Zy = (Z, (OIZ)|Z,) with Z, = {z € #Z)|v, is a trivial
valuation} C #(Z). The morphism of locally ringed spaces jz: Zgp — Z induced
by nz is an isomorphism. Let X, Y be locally noetherian formal schemes. Let
f:t(X) — t(Y) be a morphism of adic spaces. Then f(X;) C Y,, and hence
f induces a morphism of locally ringed spaces fo:Xo — Yo. Let g: X — ¥
be the morphism of locally ringed spaces with g o jx = jy o fo. Then g
is a morphism of formal schemes (since X is locally noetherian), and it
is easily seen that f = f(g). Let g;, g2:X — Y be morphisms of formal
schemes with #(g;) = #(g2) =: f. We have g; 0 jx = jyo fo and goo jx =
Jjy o fo which implies g; = g». Hence the functor ¢ is fully faithful.

Let f:X — Y be a morphism between locally noetherian formal schemes.
(3.3.ii) shows that a ring homomorphism g: 4 — B between noetherian com-
plete adic rings is of topologically finite type (in the sense as defined in
Sect. 3) if and only if g factors through a continuous and open mapping
A{Xj, ... ,X,) — B. Then (3.2.i) and (3.6) imply that f is adic (resp. lo-
cally of finite type) if and only if #( f) is adic (resp. locally of finite type).
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(A more detailed proof would show that one can avoid the use of (3.2.i) and
(3.6)).

(ii) Let 2 be the full subcategory of &/ consisting of the objects with
the property described in (ii). Then {(#) C & and 2 is saturated. Let &
be a subcategory of &/ such that #(%#) C & and & is saturated. We have to
show 2 C &. Let A be an affinoid ring such that there exist a noetherian
ring of definition B of 4” and a finite subset £ = {ey,...,e,} of 4" such that
A® = B[E] and A% is the integral closure of B in 4”. We show that every
point x of Spad has an open neighbourhood U in Spad with U € &. We
assume that v,(e;) > 1 for i = 1,...,5 and v,(g;)<1 for i = s+ 1,...,n.
We choose by,...,b, € B such that {b,...,b,} - B is an ideal of definition
of B and ve(be;)<1 forall i = 1,...,r,j = 1,...,5. Let C be the subring

1 1 . . . .
Blesi1,...,enl [a, cs e_] of the localization 4;, . . We equip C with the adic
s

topology such that {b;,...,b,}-C is an ideal of definition. Let U be the rational
subset {y € Spad|1<v,(e;) for i=1,...,5 and v,(e;)<1 for i=5+1,...,n
and vy(be;)<1 fori=1,...,r,j = 1,...,s} of Spad. Then x € U and U is

1
isomorphic to the rational subspace {y € Spa(C, C)|v,(b;)<v, (e_> +0 for

J
i=1,...,r,j=1,...,5} of Spa(C, C). U

Let k be a field equipped with the complete topology of a rank 1 valuation
of k. Let %, be the category of rigid analytic varieties over k£ as defined in
[BGR, 9.3.1]. Let o/, be the category of adic spaces over Spa(k, k°). (Every
object of .o/ is analytic in the sense of Sect. 3). We will construct a natural
functor ry: &y — . For every X € & let |X| be the Grothendieck topology
of X. Then (1X|,0x) is a ringed site [SGA, IV.13.1], and every morphism
f:X — Y in % induces a morphism of ringed sites f:(|X|, Ox) — (|Y], Oy)
[SGA, 1V.13.3]. Similarly, for every X € of; let |X] be the topology underlying
X. Then (|X|, Ox) is a ringed site, and every morphism f:X — Y in &/} in-
duces a morphism of ringed sites f: (|X|, Ox) — (Y|, Oy). If X = Spa(k, k°)
and Y = Spk then (|X|, Ox) = (]Y|, Oy), and we denote this ringed site by S.
If X is an object of &, or o/, then (|X|, Ox) is a ringed site over S, and if f
is a morphism in %; or ., then f is a morphism of ringed sites over S, i.e,
we have functors from the categories % and 7 to the category of ringed sites
over S. In the following proposition we construct the functor ry: % — 4.

Proposition 4.3 To every X € %y there exist a ri(X) € o and a morphism
p = px: ([re(X)], Orxy) — (X1, Ox) of ringed sites over S such that ri(X) is
locally of finite type over Spa(k, k°), p is locally coherent [SGA, V1.3.7] and
the following universal property is satisfied. If Z is an adic space locally of
finite type over Spa(k, k°) and A:(|Z|, Oz) — ({X|, Ox) is a locally coherent
morphism between ringed sites over S then there exists a unique morphism
[1Z - r(X) in o such that the diagram of ringed sites

(|Z|a COZ)
7 l\ A
(I, Orxy) - (X1, 0x)

commutes.
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If f:X — Y is a morphism in Ry then f:(|X|, Ox) — (|Y|, Oy) is locally
coherent, and hence by the universal property there exists a unigue morphism
re( £)ir(X) — ri(Y) in o, such that the diagram

(nX), Orxy) 5 (X1, Ox)

(| 17
([rk(Y)[> (Ork(Y)) —P;‘) (1Y15 (QY)

commutes. Thus we have a functor ry: By — .

Proof. We may assume that X = SpA is the affinoid rigid analytic variety
associated with a Tate ring 4 of topologically finite type over £. We put
r(X) := Spa(4, 4°). By the subsequent lemma r¢(X) is of finite type over
Spa(k, k°). By [H1, 4.3] there is a natural one-to-one correspondence between
the rational subsets of SpA4 and the rational subsets of Spa(4, 4°). This corre-
spondence extends in a unique way to a morphism of sites m: [ry(X)| — |X|. m
is coherent. For every rational subset U of X and corresponding rational sub-
set ¥V of ry(X) there exists a unique 4-algebra homomorphism @y: Ox(U) —

Or,x)(V), and Oy is bijective. The @y’s induce an isomorphism of sheaves
0:0x — mOpx). Then p = (m, @):(In(X)|, Or,xy) — (X[, Ox) is a
morphism of ringed sites over S. We check the universal property. Let Z
be an adic space locally of finite type over Spa(k, k°) and A:(|Z], Oz) —
(|X|, Ox) a locally coherent morphism between ringed sites over S. There ex-
ists a unique morphism of ringed sites u:(|Z|, 0z) — (In(X)|, Or,(xy) with
A=pop Let g:(Z, 0z) — (ri(X), Or,(x)) be the morphism of ringed spaces
whose associated morphism of ringed sites i1s y (cf. [SGA, IV.4.2.3]). We
have to show that g is a morphism in &/;. We know that g is a morphism
of ringed spaces over k and that for every open quasi-compact subset U of Z
the restriction g: U — (X)) is a quasi-compact mapping. Since the k-algebra
homomorphisms between Tate rings of topologically finite type over k are con-
tinuous [BGR, 6.1.3], we see that @,,(x) — g0z is a morphism of topological
sheaves. It remains to show that, for every z € Z, the ring homomorphism
g3 Or (x),9) — 02z is compatible with the valuations vy.) and v,. For that
we note the following property

(1) Let U C re(X) be open, f € O, x)(U), a € k*. We consider the sets
U = {xeUp(f) < (@}, Ur = {x € Ulp(f) = @)}, V7 = {x €
g (WDl (1)) < 1@}, V2 = {x € g7 (U)I(g"(f)) S vi(a)}. Then
Vi=g""(Uh) and ¥ = g~ (V).

Proof. Let M be the set of points z € Z such that the residue class field of
0z, is finite over k. For every z € M the ring homomorphism g7 : Oy, (x) ¢¢:) —
Oz, is compatible with the valuations vy and v,, since g; is local and the
valuation ring k° of k extends uniquely to every finite extension field of £.
Hence Vy NM = g~ {(Uy))NM and ¥, "M = g~'(U;) N M. Then [H1, 4.3]
and the subsequent lemma imply ¥; = g~ (U)) and V2 = g~ }(Us).

Let z € Z be given. We consider the ring homomorphism g;: Oy, (x), 4¢) —
0z Let my, and m, be the maximal ideals of O (x) 4-) and Oz.. Then
by (1), g;(mye)) = G(Neee{S € Onnngolvge(f) = ve(@)}) C
Nackr{ f € Oz:10:( ) £ v:(@)} = m,, i.e., g: is a local ring homomorphism.
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Furthermore, (1) implies that if f is an element of O, (x),4(.) With vyy( /) =1

(resp. vy f) < 1) then v(gi( f))=S1 (resp. v.(gi( f)) < 1). This shows
that g; is compatible with the valuations v,y and v,. O

Lemma 4.4 Let A be a Tate ring of topologically finite type over k. Then
there exists a unique ring A* of integral elements of A such that k° C A* and
the ring homomorphism of affinoid rings (k, k°) — (A, A") is of topologically
finite type, namely AT = A°.

Proof. Let A™ be a ring of integral elements of 4 such that f:(k, k°) —
(4, A4*) is of topologically finite type. By (3.5.iii) f factors through a quo-
tient mapping g: (k, k°){(X1,...,X,) — (4, AT). We have (k, k°)(X1,....X,)" =
k°(X1,....Xn) = k(X1,...,X,)°. Since g:k(X,,...,X,) — A is surjective, 4° is
the integral closure of g(k(Xj,...,X,)°) in 4 [BGR, 6.4.3]. Hence 4* = A°.
This also shows that (k, k°) — (4, A°) is of topologically finite type. (O

For an object X of .o/, or % let Shv(X) denote the topos of the site |X|.
Before (4.2) we defined the saturated subcategories of .o/. Analogously we
define the saturated subcategories of o7.

Proposition 4.5 (i) For every X € %y, the morphism of ringed toposes
(Shv(r: (X)), O, xy) — (Shv(X), Ox) induced by the morphism of ringed sites
px: (|reX)], Or,x)) — (|X1],Ox) is an equivalence of ringed toposes.

(i) The functor ri: Ry — Ay is fully faithful.

(iii) Let € be the smallest subcategory of 4} such that ri(#y) C € and €
is saturated. Then the objects of € are the adic spaces locally of finite type
over Spa(k, k°).

(iv) The functor ry: Ry — 4y restricts to an equivalence between the cat-
egory of quasi-separated rigid analytic varieties over k and the category of
quasi-separated adic spaces locally of finite type over Spa(k, k°).

(v) For every X € %y, the adic space ri(X) is affinoid if and only if X is an
affinoid rigid analytic variety over k.

Proof. (i}~(iv) follow from the proof of (4.3) (cf. [HI, 4.6] for (i)). Let
X € Ay such that ¥ := rp(X) is an affinoid adic space. By (3.6) the mor-
phism of affinoid rings (k, k°) — (Oy(Y), OF(Y)) is of topologically finite
type. Then by (4.4) O0F(Y) = O(Y)°. The adic space r4(X) is isomorphic
to Spa(Oy(Y), Oy(Y)°) = re(SpOy(Y)) (over Spa(k, k°)). Then by (ii) X is
isomorphic to SpOy(Y). O

Remark 4.6 (i) Let X be a scheme locally of finite type over k. One asso-
ciates with X a rigid analytic variety X*" [BGR, 9.3.4]). The identity k — &
induces a morphism of locally ringed spaces Spa(k, k°)_ — Speck. Then by
(3.8) we have the adic space X Xgpeck Spa(k, k°) over Spa(k, k°). It follows
from our construction of the functor ry and of X Xgpecs Spa(k, £°) that

re(X™) = X Xspeck Spa(k, £°),

where the isomorphism is an isomorphism over Spa(k, £°).

(ii) Let V' be a complete discrete valuation ring of rank 1, and let k be the
quotient field of V. In [R] there is constructed a functor s: 9 — % from the
category & of formal schemes locally of finite type over Spf¥ to the category



544 R. Huber

Ay of rigid analytic varieties over k. Let & be the category whose objects
are the locally noetherian formal schemes and whose morphisms are the adic
morphisms between formal schemes. By (3.2.ii) and (4.2.i) we have the functor
t,: & — o, X — t(X), which assigns to every X € & the open subspace #(X ),
of analytic points of the adic space #(X). Let u: & — & be the natural functor.
Then the diagram

2 = @
ul L
& — A

ta

commutes up to isomorphism, i.e., the functors rx os and ¢, ocu are isomorphic.
(ili) We use the notations of (ii). Let f:X — Y := Spf V' be a formal scheme
locally of finite type over SpfV. We consider the morphism of adic spaces
t( f):t(X) — (Y). The topological space Z underlying #(Y) is the Sierpinski
space, i.e., Z has an open generic point 1 (i.e., {n} is open and {#} = Z) and
Z consists of two points. We have {5} = #(¥),, and the fibre #( £ )~'(y) is
the open subspace of analytic points of #(X). Raynaud calls the rigid analytic
variety s(X) the generic fibre of f. So the diagram in (ii) says that the functor
r transforms the generic fibre s(X) of f into the generic fibre #( £ )~!(n) of
10 f ), ie, ri(s(X)) = (£ )~ ().

(iv) If 4 is an adic noetherian ring then the identity 4 — A induces a morphism
of locally ringed spaces Spa(4, 4)- — SpecA. More general, if X is the formal
completion of a locally noetherian scheme X along a closed subset X' C X
then there is a natural morphism of locally ringed spaces p = pjy: t(X ) — X.
Namely, if (X;|i € I') is an open affine covering of X and X; denotes the formal
completion of X; along X’ N.X; then (#(X;)|i € I) is an open covering of #(X)
and the morphisms L@ — X; just described glue together to a morphism
pii(X)—X.

“Let f:X — Y be a morphism between locally noetherian schemes, and let
X' C X and Y’ C Y be closed subsets with f(X’) C ¥Y’'. Then f induces a
morphism f:X — Y between the formal completions of X and Y along X’
and Y’. The diagram

1Xx) X
() «i)l lr
() — ¥

is commutative. If f is locally of finite type then, by (3.8), (*) induces a
morphism of adic spaces

o) — X xy t(¥).
If X’ = f~1(Y") then the following holds.

(a) im(@) = {x € X xy #(¥)|x has a specialization y in X xy #(¥) such that
v, is a trivial valuation }.

(b) ¢ is a local isomorphism.

(¢) If f is separated then ¢ is an open embedding.

(d) If f is proper then ¢ is an isomorphism.
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5 Mumford’s construction of semi-abelian schemes

Starting from a lattice ¥ in the generic fibre of a split torus G over an adic
noetherian integral domain 4, Mumford constructs in [M] a semi-abelian group
scheme G over 4. In this paragraph we interpretate this construction in the
category of adic spaces over Spa(A A). The adic geometry has two advantages.
First, G is not a quotient of G in the category of schemes over Spec4, whereas
Y induces in a natural way a closed adic subgroup L of the adic group G
associated with G and the adic group G* associated with G is the quotient
of G* by L in the category of adic spaces over Spa(4, A). Secondly, the
construction of G is rather complicated, whereas the construction of G* as the
quotient of G* by L is very easy.

First we recall the construction of rigid analytic tori in our context of adic
spaces. Let R be an adic space. Let ¥ be an abelian group, and for every
y €Y, let U, be an open subspace of R such that Uy = R,U_, = U, and
U,NUy CU,,p forall y, y € Y. Then the direct sum

L=11U,
yeY

is in a natural way an adic group over R. Let GG}, be the torus Spec Z[T},
T;7',...,T,,T-"']. Then according to (3.8).

G:n,R: = G:n XSpecZ R

is an adic group over R. The images of 7i,...,7, € Ogr, (Gy,) under the ring
homomorphism Ogr (G},) — @Gr (G &) are also denoted by T3,...,7,. Let
fiL—G,  bea homomorphlsm of adic groups over R. If u: G, z xr G}, g —
Gz denotes the multiplication of G,  then po ( f x 1d¢~,’r",R) L Xg G p —
G, & is an action of L on G}, »

Proposition 5.1 Assume that for every quasi-compact open subset U of Gy, ¢
the set {y € Y|U, N f~YU)Y*0} is finite (for example, this is satisfied if
[ is quasi-compact) and that Y is torsion-free. Then in the category of adic
spaces over R the quotient m: G,  — Z of G}, r by L exists. m is surjective
and a local isomorphism. (Hence Zis locally of finite type over R). There
exists a unique adic group structure on Z such that n is a homomorphism of
adic groups over R.

Proof. Let p: G}, x — R be the structure morphism. For every y € ¥, f|U, is

a section of p over U,. Let s,: p~}(U,) — p~'(U,) be the translation induced
by f|U,. Assume

(1) There exists an open covering {V;|t € T'} of G, p such that V; Ns,(V; N
p ' (U,)) =0 for every t € T and every y € Y — {0}.

Then one can construct the quotient of G}, by L as follows. For ¢, ' € T and
yeYput Vg, :=V,Nns'(VpNp~ l(U )). Then by (1), V,p y OV, =0
for y*y'. Weput V,p := Uyey Vip,, C V.. Since s,(Vyp , )— Vit 1—ys the
sy(y € Y) define an isomorphism s, s: ¥,y — Vy ,. Let Z be the adic space
obtained by glueing together the V,, t € T along the isomorphisms s, /. Since
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the V; cover G, z, we have a natural morphism n: G,  — Z. It is easily seen
that = is the quotient of @G}, by L and that m has the properties stated in
(5.1).

So it remains to show (1). Let U be an open affinoid subset of R. Let
H = {hy,...,h,} be a finite set of topologically nilpotent elements of Ur(U)
such that H-Og(U) is open in Ox(U). Put L = {1,...,n} x {1,...,r}. The open
subset W:= {x € p~ ! (U)|v,(hT;)<1 and v, (kT ') <1 for every (i,)) € L}
of G}, ; is quasi-compact. Hence the set K:= {y € Y|U, N [~} (W)+0} is
finite. Put k == |K| and V:={x € p~'(U)[u(KTF)<1 and v, (1,77 *)<1 for
every (i,j) € L}. Then we have

2) Uyn f=Y(¥V) =0 for every y € Y — {0} .

Indeed, assume U, N f~1(V)=+0 for some y € ¥ — {0}. Choose a x € U, N
F Y V). Then for i = 0,...,k f(ix) =if (x) € W and ix € Uj,. Since Y is
torsion-free, we obtain |K|=k + 1, contradiction.

For every famlly A= ((a,-j,bij,c,»j,dij)|(i,j) € L) with aij,bij,c,-j,d,-j € Ny
and a; + ¢; = by +dij + 2 for every (i,j) € L we put V, = {x €
PN U0k TH) S o) +0 and v, (b T} %) S (h{”)#0 for every
(i,j) € L}. Now (1) follows from the following point

(3) Vans, (V4N p~'(Uy)) = 0 for every y € Y — {0} and the V,’s cover
p'(U).

Proof of (3) Assume there exists a y € ¥ —{0} with VN5, (V4N p~(U,)) *0.
Let f1,..., f- be the units of Or(U-y) with s* (T;) = f;T; for j =1,...,r.
Then V4 Ns,(Va N p~'(Uy)) = V4 NsZL(Va N p~Y(U-y)) = {x € p~}(UN
U_loah{ T*) Soah?) + 0,0,k T ) Sualh¥ ) 4 0,05 (Y fHTH)
vx(hfij)#o, vx(hfijf;ZkT}‘Zk)§ux(hfij)=#=0 for every (i, j) € L}. Let z be an
element of VN5, (VaN p”l(Uy)). Since a;; + ¢;; = by; + di; + 2 for every
(i, j) € L, we conclude vz(h,-f}‘):_<.1 and uz(h,-fj—k)él for every (i,j) € L
which means p(z) € U_, N f ~(¥), in contradiction to (2).

Let x € p~l(U) be given. We look for a family 4 with x € V.
Let i € {1,...,n} be fixed. If v.(h;) = O then we put a; = ¢; = 1
and b; = dy = 0 for j € {1,...,r}. If v,(A)+0 then we choose, for
every j € {1,...,7‘}, such al-j,b,-j,c,-j,d,-j € Npj- that a; + ¢ = b,‘j -+ d,’j
+ 2 and o.(h)U ™% S (T#) Svo(h;)?~%. (This is possible since v,(T)
+0 and v,(h;) is cofinal in the value group of v,.) Then for this 4 =
((aij, bij, cijdij)|(, j) € L) we have x € V4. O

Now we specify R,Y,L, f. Let 4 be a noetherian normal integral domain
which is complete with respect to an adic topology, and let X be the quotient
field of 4. S denotes the affine scheme Specd and G the torus G}, Xspocz S =
SpecA[Tl,Tl_l,...,T,, T7'. Let Y C G(K) = (K*) be a torsion-free finitely
generated subgroup of rank » which admits a polarization in the sense of [M,
1.2]. To G and Y Mumford constructs in [M] a semi-abelian scheme G over
SpecA.



A generalization of formal schemes and rigid analytic varieties 547

For every y = (y1,...,¥-) € Y we put V, = {p € Specd|y; € (4,)* for
i=1,...,r}. Then ¥, is an open subset of Specd, and Vy = S,¥, = V_, and
VyNVy CV,y forall, y,y € Y. Hence the direct sum

H:= [TV,
yey

is in a natural way a group over S. For every y = (yi,...,)r) € Y, let
gy:Vy — G be the S-morphism with gi(T;) = y; € Os(V)) for i = 1,...,r.
Then

g:=11g,H—G
yEY

is a homomorphism of groups over S.

Let R denote the adic space Spa(4, A). The identity 4 — A induces a
morphism of locally ring spaces ¢:R — S. By (3.8), ¢ induces the functor
X — X Xgs R from the category of schemes locally of finite type over S to the
category of adic spaces locaily of finite type over R. According to (4.6.1) this
functor corresponds to the functor “associated rigid analytic variety” from the
category of schemes locally of finite type over a non-archimedean field k£ to
the category of rigid analytic varieties over k. So we call, for every scheme X
loc‘;ally of finite type over S,X Xy R the associated adic space and denote it by
X,

G = G xsR =G p

GY:=G xsR

H* :=H xsR= [1o7'(V})
yeyY

gad = g(R):Had N Gad .

By the universal property in (3.8), G*,G* and H* are adic groups over R
and g* is a homomorphism of adic groups over R. Although one considers G
as the ‘quotient’ of G by ¥, G is not a quotient of G in the category of schemes
over S, nor does there exist a nontrivial morphism G — G of schemes over S.
But in the category of adic spaces the situation is much better. We have the
following resuit.

Theorem 5.2 (i) There is a natural homomorphism i:G* — G* of adic
groups over R.

(ii) g* is quasi-compact. Hence by (5.1), in the category of adic spaces over
R the quotient 1: G — Z of G* by H™ exists, and Z is in a natural way
an adic group over R.

(ili) There exists a unique morphism of adic spaces y:Z — G* such that the
diagram

Gad
n / \ A
VA — G™
u

commutes. u is an isomorphism of adic groups over R.
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Remark 5.3 (i) Let p:(G*)_ = (G x5 R)_ — G be the projection, and, for
every y € Y C G(K) C G, let { ¥} be the closure of { y} in G. Then Uyey{y}
is not closed in G but p~!'(U,er{»}) is closed in G*, and p~'(U,er{»}) is
the image of the mapping ¢*d: H* — G4,

(ii) Using sheaves of ideals of the structure sheaves, one can define in the usual
way closed subspaces of adic spaces (cf. [H2]). In the situation of (5.1), the
morphism f:L — @Gy, ¢ is a locally closed embedding, i.e., f factors through
an isomorphism onto a closed subspace of an open subspace of Gy, z. Then by
(i) and (5.2.ii), g*d: H* — (™ is a closed embedding, and so we can consider
H™ as a closed adic subgroup of G*. Then (5.2) says that G* is the quotient
of G by a closed adic subgroups of G*.

Proof. Let X be the character group of G. Since we have already introduced
the coordinates 71,...,7, of G, we identify X with Z". For y = (y1,..., %) €
Y C(K*Y and n = (my,...,n,) € Z" we put y" = y/' - ...y € K* and
=T/ ....- T € @G(G). Let ¢: Y — X be a polarization of Y.

(ii) and (5.3.1) follow from the following two points.

(a) For every y € Y,g9,: V), — G is a closed embedding.
(b) For every quasi-compact set U of G*, the set {y € ¥ | ¢~ '(V,) N
(@D~ Y(U) %0} is finite.

to (a): Let y € Y be given. By definition of ¢, we have h: = y%(¥) € 4. By
[M, 14], y* € 4, for every a € Z", In particular, for o = ¢; = (0,...,1,...,0)
we obtain y; = y% € A, and yi‘1 = y~% € Ay, hence y; € (4,)*. This
shows D(h) € V,. As a section of the structure morphism I:G — S over
Vy, gy is a closed embedding into l'l(Vy). It remains to show that g,(V,)
is closed in G. As D(y?»)) C V,, the zero set V(T*») — 19y C G of
the global function 79(») — 1) € Ox(G) is contained in /~!(¥,). Since
gy (V) S V(T#) — y#), we conclude that g,(¥,) is closed in G.

to (b): Let U be a quasi-compact subset of G, Let ay,...,a, be a set of gen-
erators of the ideal 4°° of 4. We choose a £ € N such that U C V := {x €
G*|ny(afTj)<1 and v,(afT; ') <1 for every (i, j) € {1,...,n} x {1,...,r}},
and for every y € Y we choose a n, € N with n, > t-r -k, where
¢t is the maximum of the absolute values of the components of ¢(y) €
Z'. By [M, 1.3] there exists a finite subset Q0 of Y such that for every
z € Y- Qthreisay € Y — {0} with z¢0) € (p%)y» . 4. Since
y() € 4°° for every y € ¥ — {0}, we obtain, for every z € ¥ — Q and
every x € ¢~ '(V2), v:(z%) £ (max{v.(a1),...,v.(ar)})" which implies min

DX(ZJ)’E;(Iz? < (max{vg(ay),...,v:(a,)})* for some j € {1,...,r}. Hence

e\ (V)N (@) '(V)=0 for every z€ Y — Q.

We sketch the proof of (i) and (iii). First we introduce a notation. If
g:M — N is a morphism of ringed spaces and I C Oy is a sheaf of ideals
then we put g(/) = im(g*(/) — Oy ) and V(I):= {x e N | L+0y ,}. We
briefly remind of the construction of G. Let P — § be a relatively complete
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model of G with respect to the periods ¥ and the polarization ¢ [M, 2.1].
We assume that P is separated. For every y € Y, one has a S-morphism,
S,:P — P such that y — §, is an action of ¥ on P. Let B be the formal
completion of P along A°°. The action of ¥ on P induces an action of ¥ on
B. Let /: B — B be the quotient of B by Y in the category of formal schemes
over Spf A as constructed in [M], and let P be the projective S-scheme whose
formal completion along 4°° is equal to B. Let @:B — P and 5:8 — P be
the natural morphisms of locally ringed spaces. G is an open subspace of P.
Let I C Op be the coherent sheaf of ideals such that A(b(I)) = a(J) C Og,
where J C 0p is the sheaf of functions which vanish on the closed subset
P —U,erS,(G) of P. Then G is the open subspagce P — V(I) of P.

By (4.1), we have a morphism of locally ringed spaces 7: (#(B), (9,’28)) —
(B,0p). Composing © with the natural morphism of ringed spaces {(B) =
(t('B), Oymy) — (1(B), (Qt(%)) we obtain a morphism of ringed spaces e: 1(8) —
B. We put ¢ := &b(l)) C Oysy. By (4.6iv), we have natural morphisms
c:((B) — P4 and d: #(B) — P* of adic spaces over R. For every y € Y,
the morphism S,: 2 — P induces morphisms 7,:#(B) — t(iB) and U,: P —
P, Then y — T, and y + U, are actions of ¥ on t(%) and P"ld Since
G and G are open subspaces of P and P, we consider G* and G*¢ as open
subspaces of P2 and P*. One can show

(1) (a) The morphism t(h):t(f%) — t(*B) is the quotient of t(f&) by Y in the
category of adic spaces.

(b) The morphism c: #(B) — P* is Y-equivariant.

(c) The morphism d:¢(B) — P* induces by restriction an isomorphism d’:
H(B) - V(F) — G4,

(d) The morphism c: t(2~3) — P2 induces by restriction an isomorphism
(B — 1) (V(F)) = Uyer TH(G*).
By (l.c) and (1.d) there exists a morphism a:UyeyTy(Gad) — G* such that
the diagram

(B) — () V() = UperTy(G)

) |1 Lo
H(B)-V(H) ‘% G

commutes. We put A := ¢ | G*:G* — G*. By (l.a) and (1.b), ¢ is the
quotient of U yeyTy(G"’d) by Y. From this one can deduce that 4 is the quotient
of G by H*. Hence there exists an isomorphism yu: Z — G* of adic spaces
over R with 4 = po 7. (Since 7 is a local isomorphism, there exists at most
one morphism of adic spaces 7:Z — G* with A = o x.) It remains to show
that A is a homomorphism of adic groups over R. For that we have to analyze

the construction of the group structure of G in [M]. Let G" and G" be the
formal completions of G and G along 4°°. Mumford’s construction of G gives

a natural isomorphism of formal schemes p: G" - 6N By (4.6.iv) we have
open embeddings m: t(é/\) — G and n:/(G") — G*. One can show
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(2) The diagram
6"y - G
1p) | 12
t(G/\) N Gad
commutes. . !

Now let (G, Y;, ¢i, P;),i = 1,2 be two tori over S together with groups of
periods, polarizations and relatively complete models. Let G; be the associated
semi-abelian schemes over S, and let 1;:G* — G2 be the morphisms of
adic spaces as constructed above. Let &: G, — G, be a homomorphism of
groups over S with @(Y;) C Y,. Then by [M, 4.6] there exists a S-morphism
o: Gy — G, such that the diagram

CANN AN -4
3) ol 1e

G — G}

commutes. This implies
(4) The diagram

gu 2L g
il L i
Gzlad N ng
commutes.
Proof. We consider the diagram

Ga}ld * G;d
AL HEN) A
HGy) = «Gy)

A wen) | 1 e P

HGY) w HGP)

L

ad ad

The diagrams [1] and [3] commute by functoriality, [2] and [4] commute by
(2), and [5} commutes by (3). Then the identity principle for adic morphisms
imply 4; 0 @2 = a® 0 2.

(4) together with the construction of the group structure of G in [M, 4.8]
shows that i: G* — G* is a homomorphism of adic groups over R. O
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