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0 Introduction 

In this paper we construct a natural category ~r of locally and topologically 
ringed spaces which contains both the category of locally noetherian formal 
schemes and the category of rigid analytic varieties as full subcategories. This 
category has applications in algebraic geometry and rigid analytic geometry. 

The idea of the definition of the category ~r is the following. From a for- 
mal point of view there is a certain similarity in constructing formal schemes 
and rigid analytic varieties. In both cases one starts with a certain class of 
topological rings (the adic rings in formal geometry and Tate algebras in rigid 
geometry), defines to every topological ring of this class a locally and topolog- 
ically ringed space, and glueing of such spaces give formal schemes or rigid 
analytic varieties. 

There is a natural class of  topological rings which contains both the noethe- 
rian adic rings and the Tate algebras and which suggests itself. Namely the class 
of topological rings which have an open adic subring with a finitely generated 
ideal of definition. We call such a ring f-adic. 

The points of  the formal scheme SpfA associated with an adic ring A 
are the open prime ideals of A, and the points of the rigid analytic variety 
SpA associated with a Tate algebra A are the maximal ideals of A. In both 
cases one can consider the points as continuous valuations of A. (A valuation 
v: A ~ F~ U {0} of a topological ring A is called continuous if the mapping 
v is continuous with respect to the ring topology of A and the order-induced 
topology of Fv U {0}.) Namely, if  p is an open prime ideal of an adic ring 
A then the trivial valuation vp of A with vp (a) = 0 iff a C p is continuous, 
and if p is a maximal ideal of a Tate algebra A over a valued field k then the 
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valuation vp of A extending the valuation of k and with v,,(a) - -0  iff a E p is 
continuous. 

This suggests to consider, for every f-adic ring A, the set SpaA of all con- 
tinuous valuations of A. There is a natural topology on SpaA. The topological 
space SpaA has been studied in [HI]. In this paper we will show that if A 
satisfies a certain condition of noetherianness then there is a natural sheaf CA 
of  topological rings on SpaA. All stalks of CA are local rings. Every continu- 
ous ring homomorphism A ~ B between f-adic rings induces a morphism of  
locally and topologically ringed spaces (SpaB, Cs) --~ (SpaA, CA). We call 
a locally and topologically ringed space which is locally isomorphic to some 
SpaA = (SpaA, CA) adic.(Here we suppress some details of the definition of 
adic spaces). 

The functor SpfA ~ SpaA from the category of noetherian affine formal 
schemes to the category of adic spaces extends in a natural way to a functor 
from the category of locally noetherian formal schemes to the category of adic 
spaces. Similarly, the functor SpA ~-~ SpaA from the category of affinoid rigid 
analytic varieties to the category of adic spaces extends to a functor from the 
category of rigid analytic varieties to the category of adic spaces. Both functors 
are fully faithful. 

In the papers [H2] and [H3] we will study the coherent cohomology and 
the 6tale cohomology of adic spaces. Concerning the coherent cohomology, the 
main results are Theorem A and B, (i.e., every coherent CA-module ~- on an 
adic space SpaA is generated by its global sections and all higher cohomology 
groups Hi(SpaA, ~ )  vanish) and the proper coherence theorem, ( i.e., all di- 
rect image sheaves R n f . ~  of a coherent Cx-module under a proper morphism 
of  adic spaces f : X  ~ Y are coherent Cr-modules). Many of the basic results 
of  the 6tale cohomology of schemes also hold for the &ale cohomology of adic 
spaces (for example, proper and smooth base change theorem, purity, Poincar6 
duality). 

The theory of adic spaces may be useful for problems in algebraic geometry 
and rigid analytic geometry. For example, in [H3] we will show that the &ale 
topos of a rigid analytic variety X is canonically equivalent to the 6tale topos 
of  the adic space associated with X. Therefore all the results mentioned above 
on the 6tale cohomology of adic spaces also hold for the 6tale cohomology 
of  rigid analytic varieties. In general, it is much easier to work with the 6tale 
toposes of rigid analytic varieties. For example, using geometric points of an 
adic space X, one can easily describe the category'of points of  the 6tale topos 
Xgt of X. (One obtains that X~7 has enough points.) But it is very complicated 
to describe within the category of rigid analytic varieties the points of the 6tale 
topos of  a rigid analytic variety. Another application of the category of adic 
spaces will be given in Sect. 5 of this paper where we analyze Mumford's 
construction of semi-abelian group schemes within the category of adic spaces. 
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This paper is based on [H1]. We recall some notations from [H1]. For more 
details and all unexplained notations we refer to [HI]. 

All our valuations are multiplicative. For a valuation v: A --~ F U {0} of  a 
ring A the prime ideal supp(v) :=  {a E A ] v(a) = 0} of  A is called the support 
of  A. 

The group of  units of  a ring A is denoted by A*, and if R, S are subsets 
of  A then R .  S denotes the additive subgroup of  A generated by { r .  s I 
r E R,s E S}. 

For a topological ring A, the set of  power-bounded elements of  A is denoted 
by A ~ and the set o f  topologically nilpotent elements of  A is denoted by A ~176 
A ring of  definition of  a f-adic ring A is an open adic subring of  A. A Tate 
ring is a f-adic ring which has a topologically nilpotent unit. An affinoid ring 
is a pair A = (W,A + ) where A ~ is a f-adic ring and A + is a ring of  integral 
elements o f  A ~', i.e. A + is a subring of  A ~ which is open and integrally closed 
in A ~" and is contained in (A~') ~ For an affinoid ring A = (B, C), the pair o f  the 
completionsA ~ :=  (/~, C') is an affinoid ring which is called the completion of  A. 
(In this paper complete always means complete and hausdorff). For an affinoid 
ring A, we put SpaA = {viv is a continuous valuation o f  A ~ with v(a)<l 
for every a E A +} and equip SpaA with the topology generated by the sets 
{v E SpaAlv(a)<=v(b)+O} (a, b E A~). A subset U of  SpaA is called rational 
if there are elements sl . . . . .  sn o fA ~ and finite subsets 7"1 . . . . .  Tn o f A  ~ such that 

n /) Ti .A ~isopeninA ~ f o r i =  1 , . . . , n  and U = ~ i = 1 {  E S p a A  I v(t)<v(si)~O 
for all t E 7/}. The rational subsets of  SpaA form a basis of  the topology of  
SpaA and are quasi-compact. 

Contents 

1. A presheaf  on SpaA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  000 
2. Adic spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  000 
3. Adic morphisms,  morphisms of  finite type and fibre products . . . . . . . . . . . . . . . . . . . . . .  000 
4. Formal schemes, rigid analytic varieties and adic spaces . . . . . . . . . . . . . . . . . . . . . . . . . . .  000 
5. Mumford ' s  construction o f  semi-abelian schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  000 

1 A presheaf on SpaA 

In this section we define, for every affinoid ring A ----- (W,A+), a presheaf 
CA of  "analytic functions" on the topological space SpaA. The idea of  the 

 o nition of  is fo.owi g -- = 

SpaA I v(t)<v(si)+-O for all t E 7i} be a rational subset o f  SpaA. Of  
course, every element o f  A ~ should give an analytic function on U, and the 
functions given by sl . . . .  ,s ,  should be invertible. So every element o f  the 

_ -  1 ]  (A)s~ ..... s . . . . .  , should induce a function on U. Further- 

more, every function on U which can be "approximated" by functions from 
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A~ [ 1  . . . . .  1 ]  should be an element of  (gA (U).  So we will define a ring 
L - -  3 

topology on A ~ [ 1  . . . . .  1 ] ,  and then define (~A ( U )  to be the completion of  
L _  

L e n a  and defimfion. (i) Let A be a f-adic ring, sl . . . .  ,sn elements o f  A and 
Tl . . . . .  Tn subsets o f  A such that Ti �9 A is open in A for i = 1 . . . . .  n. Let Ao 
be a ring o f  definition of  A and let I be an ideal o f  definition of  Ao. Let T 

[ 1  1] such that be the group topology of  the localization As~ ....... = A . . . . .  

{I n �9 B ] n E ]N} is a fundamental system of  neighbourhoods of  O, where 

B is the subrin9 Ao [ t] i  = 1  . . . . .  n, t E Ti[ o f  As,.....s,. Then T is 
F 

even ar ing 
k - -  

topology and independent o f  the choice o f  Ao and I. The topological ring 

j )  is denoted by A ( , "" sn J" The c~176 ~  A ( Ts-~l . . . . .  ~ ) 

i s d e n o t e d b y A (  T1 T--a) 
SI , " ' ,  Sn  �9 

(ii) Let A = (A~,A +) be an affinoid ring, sl . . . . .  s, elements o f  A ~ and 
T~ . . . . .  Tn subsets o f  A ~ such that Ti �9 A ~ is open in A ~ for i = 1 . . . . .  n. Let C 

be the integral closure of  A + [ sL ] i  = 1  . . . . .  n, t E Ti] in A ~ [ 1 , . . . ,  1 ] .  Then 

C is a ring of  integral elements o f  B := A ~ "--(/s,l( Tn)- The affinoid r i n g  
, ' " ~  Sn �9 

(B,C)  is denoted by .4---(~S-~l . . . . .  ---~ ). The completion of  A ---( Ts--~l . . . . .  ~ ) is 

. . . . .  

Proof (i) By the subsequent Lemma 1.1 the set ~- �9 A0 is open in A, i.e., there 

exists a n E N with ln C_ Ti . Ao. Then ~ . In C_Ao [ ~i I t E Ti]. Hence, for 

every x E A  [ 1 , . . . , ~ ]  and every neighbourhood U o f 0 i n  the topology T, 

there exists a neighbourhood V of  0 in 7" with x �9 V C_ U. Consequently T is 
a ring topology. Let AI,A2 be two rings of  definition of  A and I i ,h  ideals o f  
definition of  Al,A2. For every m E N there exists a k E N with I~ C_ I~,  and 

then , ~ . A ,  [ t ] i = l  . . . .  ,n, t E T i ] C I r . A 2  [ ~ ] i =  1,.. . ,n, t ETi]. Hence 

T is independent of  the choice of  A0 and I .  [] 

L e m m a  1.1 Let A be a f-adic ring and T a subset o f  A such that T �9 A is 
open in A. Then, for every n E N and every neohbourhood G of  0 in A, the 
set T" �9 G is open in A. 

Proof  With T �9 A also T" �9 A = (T �9 A)" is open. Let U be a subset of  A 
and S a finite subset of  U such that {Um]m E IN} is a fundamental system 
of  neighbourhoods of  0 in A,S �9 U = U 2 C U and U C T" �9 A. We choose 
a finite subset R of  A with S C_ T ~ �9 R, and a k E IN with R �9 U k _C G. Then 
U k+l = S .  U k C ( T  n . R ) .  U k = T  n . ( R .  U k) C_ Tn �9 G. [] 

,v,) Our definition of  A \ sl "'" s,  t immediately implies 
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Universal property o f  A (Ts-~l . . . . .  ~ 3 .  ( i ) L e t  A be a f-adic (1.2) ring, 

sl . . . . .  Sn elements of  A and T1 . . . .  , Tn finite subsets of  A such that Ti �9 A is open 

i nA  f o r i =  1 , . . . ,n .  Then the topological ring A ( / s -~ , . . . , / -~ ) i s  f-adic, the 

canonical ring homomorphism h: A -~ A ( ~  . . . . .  ~n ) is continuous, h 
I 

(si )~ 
N 

A (sT--l( T--a) * and h( t )  CA (sT---l( sT-~n) ~ for every / = 1 . . . .  ,n, t C Ti, 
" ' "  Sn h(si) " ' "  

and if f :  A --~ B is a continuous ring homomorphism from A to a f-adic ring 

B such as that f ( s i )  EB*  and f ( t )  E B  ~ for every i =  1 . . . . .  n,t C Ti then 
f ( s i )  

(L, , ~  there exists a unique continuous ring homomorphism 9:A \ sl "'" sn J --* B 

with f = 9 o h .  

(ii) Let A be an affinoid ring, sl . . . . .  sn elements of  A ~ and T1 . . . . .  Tn finite 
subsets of  A ~ such that T i . A  ~ is open in A ~ for i = 1 . . . . .  n. Then the 

canonical ring homomorphism h:A ~ A "--({~- Tn)" from A to the affi- \ S l  , ' ' ' ~  Sn  ] 

noid ring A (sT---L1 . . . . .  sT-~) is continuous, h(si) E (A  (Ts-~1'"" T~'~*Sn J J and 

. . . .  ' sn  for every i = 1 , . . . , n , t  E Ti, and if f : A  --* B 

is a continuous ring homomorphism from A to an affinoid ring B such that 

f ( s i )  6 (B~) * and ~ 6 B + for every i = 1 . . . . .  n,t  E Ti, then there exists a 

unique continuous ring homomorphism 9:A -(--~,..., T-a)s, - --~ B with f -----9o h. 

As mentioned before, we want to define, for a rational subset U = 

R ( sT--L1 ~ )  of  the topological space SpaA, CA (U)  = A ~ ( T--L T-a) 
~ ' ' ' ,  S1 , ' ' ' ~  Sn " 

But we have to check that CA(U) depends only on U and is independent of  
the choice of  Sl . . . . .  sn, T1,. . . ,  Tn. This is done in the next proposition using 
an idea of  Tate in [T]. 

Proposition 1.3 Let  A be an affinoid rin9 and U a rational subset o f  SpaA. 
Then (i) There exists a continuous ring homomorphism h:A ~ FA(U)  f rom 
A to a complete affinoid rin9 FA(U)  such that im(Spa(h))  C_ U and when- 
ever f : A ~ B is a continuous rin9 homomorphism f rom A to a complete 
affinoid rin9 B with i m ( S p a ( f ) )  C_ U then there is a unique continuous tin9 
homomorphism 9:FA(U)  ~ B with f = 9 o h. 
(ii) Let  sl . . . . .  sn be elements o f  A ~ and T1,. . . ,T~ finite subsets o f  A ~ such 

( T-A-, , ~ ) T h e n  that Ti . A ~ is open in A ~ for  i = 1 . . . .  ,n and U = R \ sl . . . .  

rin9 homomorphism A ~ A -( --~,. . . ,  Tn - satisfies the property the canonical 
I 

of ( i ) .  

(T1,  , T n )  b e a s i n ( i i ) a n d l e t h : A _ . A ( T 1  T n ) b  e Proof  Let U = R kS1 "'" Sn sl . . . . .  Sn 
the canonical ring homomorphism. It follows immediately from the definition 

of  A " (T1 Tn~ - that im(Spa(h))  C U. Let f : A  ~ B be a continuous ring 
S1 ~ ' ' ' ~  Sn / \ 
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homomorphism from A to a complete affinoid ring B such that i m ( S p a ( f ) )  C 
U. Then v(f(si))=[=O for every i = 1 . . . . .  n,v ~ SpaB, and hence the sub- 
sequent Lemma 1.4 implies that f ( s i )  E (B~) * for i = 1 . . . . .  n. Furthermore, 

we have v ( - ~ ) < 1  for every i = 1 . . . . .  n, t E T i ,  v E S p a B ,  and hence 

by [HI,  3.3.i] ~ c B + for every i = 1, . . . ,n , t  E Ti. Now the universal 

property (1.2. ii) says that there exists a unique continuous homomorphism 

g:A(Ts~l . . . .  , sT-~n ) ~ B with f = g o h .  [] 

Lemma 1.4 Let A be a complete affinoid ring and m a maximal ideal of  A ~. 
Then there exists a point v E SpaA with m = supp(v). 

Proof We equip B~: = A~/m with the quotient topology. Let B + C_ B ~ be the 
integral closure of  A + is B ~. Then B := (B~,B +) is an affinoid ring, and the 
image of  the natural mapping SpaB --~ SpaA is the set of  points v c SpaA 
with m = supp(v). Hence we have to show SpaBOe0. The set o f  units o f A  ~ is 
open, since 1 + (A~) ~176 is open and every element of  1 + (A~) ~176 is a unit o f A  ". 
Hence m is closed in A ~, i.e., B ~ is Hausdorff. Now [H1, 3.6.i] implies that 
SpaB ~= 0. [] 

The ring homomorphism A ~ FA(U) in (1.3.i) is uniquely determined 
up to unique isomorphism. For the following we fix, for every affinoid ring 
A and every rational subset U of  SpaA, a ring homomorphism ha,u:A -~ 
F~(U) which has the property of  (1.3.i). We note some properties of  these 
ring homomorpbisms. 

Lemma 1.5 Let A be an affinoM ring and U a rational subset of  SpaA. 

(i) I f  V is a rational subset of  SpaA with V C_ U then there is a unique 
continuous ring homomorphism g: Fa (U) ---+ FA (V)  with hay = 9 o hA,u. 
(ii) The mapping 9 := Spa(ha,u)  : S p a F a ( U )  --+ SpaA is a homeomorphism 
from SpaFA (U)  onto U, and it induces an one-to-one correspondence between 
the rational subsets of  SpaFA (U)  and the rational subsets of  SpaA which are 
contained in U (i.e. if  V is a rational subset of  SpaFA(U) then 9 (V)  is a 
rational subset o f  SpaA, and if  V is a rational subset of  SpaA then 9 -1 (V) 
is a rational subset of  SpaFa (U)) .  
(iii) Put B := FA(U) and 9 := Spa(ha,u): SpaB ~ SpaA. Let V be a ratio- 
nal subset o f  SpaA with V C_ U. Then there exis'ts a unique continuous ring 
homomorphism r :Fa(V)  --+ F B ( g - I ( v ) )  such that the following diagram is 
commutative 

FB(g_I(v) ) r FA(V) 

hB, g-~(v) T T h~,v 
B , A 

hA,u 

Furthermore, r is an isomorphism (i.e., r has a continuous inverse). 

Proof  (i) follows from (1.3.i). 
(ii) Let s be an element o f  A ~ and T a finite subset o f  A ~ such that T .A ~ is 

open in A ~ and U = R ( T ) .  By (1.3.ii) we can assume that ha,u is the canoni- 
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c a l r i n g h o m o m o r p h i s m h : A - - - ~ A ( T ) .  We factorize h into A f--~ A ( T )  _j_. 

A ( T ) .  Since f and / are adic, h is adic, and hence g - ' ( V ) i s  a rfl- 
$ g 

tional subset of SpaA ( T )  for every rational subset V of SpaA (by [HI, 

By [H1, 3.9] Spa ( i ) :  SpaA(-~)'--- --~ SpaA ( T )  3.8.iv]). is a homeomor- 

phism and maps rational subsets to rational subsets. So it remains to show that 

Spa( f ) :  SpaA "(--'~) ~ SpaA is a homeomorphism from SpaA .(T). onto U 

and maps rational subsets to rational subsets. It is evident from our definition of 

A ( T )  that S p a ( f )  i s a  homeomorphism from SpaA ( T )  onto U. Let V be 

a rational subset of SpaA . We choose f ,  gl . . . .  ,gn E A = A ~ 

such that V = .{vESpaA ( T  T) lv(g i )<v(#)+0 for i = l  . . . .  ,n}.. Multiply- 

ing #,gl , . . . ,gn with a suitable power of s, we may assume that there ex- 
ists an element d of A ~ and a finite subset C of A ~ with ( = f ( d )  and 
{gl . . . .  ,.q,} = f ( C ) .  Since V is quasi-compact, there exists by [H1, 3.11] a 
neighbourhood E of 0 in A ~ with v ( f ( e ) ) < v ( f )  for every v E V, e E E. Let 
D be a finite subset of E such that D �9 A ~ is open in A ~. Then we have the 

rational subset W = R ( ~ - ~ )  of SpaA, and S p a ( f ) ( V ) =  U N W. Hence 

Spa( f ) (V)  is rational in SpaA. 
(iii) The existence and the uniqueness of r follow from (1.3.i). By (i) there 
exists a unique continuous ring homomorphism h:B --* FA(V)  with hA,v = 
h o hn,u. We have ira(Spa(h)) C_ g-1 (V) (since im(Spa(hA,v)) C_ V). Then by 
( 1.3.i ) there exi sts a unique continuous ring homomorphi sm f :  FB ( g-  1 (V)) 
FA ( V )  with h = f o hB, g-1 (v). The ring homomorphism f is the inverse of r. 
[] 

Let A be an affinoid ring. For every rational subset W of Spa A we have 
the affinoid ring F A ( W )  = ( F A ( W )  ~, FA(W)+) .  If V C_ W then we have by 
(1.5.i) a canonical continuous ring homomorphism p v, w : F A ( W ) ~ --* F A ( V ) ~. 
For every open subset U of SpaA we put 

Ca ( U )  = li 7 FA ( V )  ~ , 
v 

where the projective limit is taken over all rational subsets V of SpaA contained 
in U and with respect to the ring homomorphisms Pv, w. We equip CA(U)  
with the projective limit topology. Then OA (U) is a complete topological ring. 
Furthermore, if V, W are open subsets of SpaA with V C W then we have 
a canonical continuous ring homomorphism CA(W) ~ CA (V). Thus we have 
a presheaf (PA on SpaA with values in the category of complete topological 
tings. 

For every x E SpaA let Ca, x = li_m d~A (U) be the stalk of Ca at x. (The 
xEU 

inductive limit is taken in the category of rings.) Since the rational subsets of 
SpaA form a basis of the topology of SpaA, we have 
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lim 
(1) (gA, x = ~U (gA(U). 

U rational 

For every rational subset U of SpaA with x E U the valuation x:A ~ --~ 
Fx U {0} extends uniquely to a continuous valuation vv: (gA(U)= FA(U) ~---~ 
Fx U {0} (cf. (1.5.ii)). Then by (1), the valuations vv define a valuation 

vx: (gA, x - ~  r ~  u {o} .  

Thus we have a triple (SpaA, (9,~, (vxlx E SpaA)) consisting of a topological 
space SpaA, a presheaf (gA of complete topological rings on SpaA and a family 
of valuations v, on the stalks CA, x. For every open subset U of SpaA we put 

(9~(U) = { f  E (9~(U) I Vx(f)<=l for all x E U}.  

Then (9 ] is a presheaf of rings on SpaA. For every x E SpaA let CO+, x denote 
the stalk of (9+ at x. 

Proposition 1.6 (i) For every x E SpaA, the stalk Ca, x is a local ring and 
the maximal ideal o f  (gA, x is the support o f  Vx. 
(ii) For every x E SpaA the stalk (9+A, x is a local ring. We have (9 +A, x = 
{ f E CA, x I Vx ( f )  ~ 1 } with maximal ideal { f E (gA, x ] Vx ( f )  < 1 }. 
(iii) For every open subset U of  SpaA and every f ,  9 E CA (U) the set {x E 
U]v x ( f )  < v~(g)=t=0} is open in SpaA. 
(iv) For every rational subset U o f  SpaA we have (gA(U) = FA(U) ~ and 
(9+ (U)  --- FA(U) +. 

Proof (i) Let x be a point of SpaA, U an open subset of SpaA with x E U and 
f an element of OA(U) with Vx(f)4=O. We have to show that f is a unit in 
(9A, x. Let W be a rational subset of SpaA with x E W C U. The valuation Vx of  
(gA, x gives by restriction to CA (W) a continuous valuation vw of (gA (W). Since 
vw(f)4=O, there exists a finite subset T & t h e  f-adic ring FA(W) ~ = 6~(W) 
such that T �9 FA(W)  ~ is open in FA(W) ~ and Vw(t) < v w ( f )  for every t E T. 

( T )  w i t h v w E V ,  and Then we have in SpaFA (W) the rational subset V = R 

f is a unit in FB(V) ~ where B := FA(W). Now (1.5.ii) and (1.5.iii) imply 
that there exists a rational subset S of SpaA such .that x E S C_ W and f is a 
unit in (gA (S). 
(ii) With (iii) we obtain C +, x = { f  E CA, x I V x ( f ) < l }  �9 Then (i) implies 
that O~, x is a local ring with maximal ideal { f  E (9A, x I v x ( f )  < 1}. 
(iii) We can assume that U is rational. The set {v E SpaFA(U) I v ( f ) <  
v(9) 4= 0} is open in SpaFA (U)  by the definition of the topology of SpaFA (U). 
Now the assertion follows from (1.5.ii). 
(iv) By definition we have CA(U) = FA(U) ~. By (1.5.ii) the mapping 
SpaFA(U) ~ SpaA is injective with image U. Hence (9+(U) = { f  E 
F A ( U ) ~ I v ( f ) < I  for all vESpaFA(U)} .  Now [H1, 3.3.i] implies (9+(U) = 
FA(U) +. [] 

In general, the presheaf CA is not a sheaf of rings as the following exam- 
ple of M. Rost shows. Let A ~ = Z[XhXz ,  X3]x~x2 be the localization of the 
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polynomial ring 71[X1,X2, X3] by X1X2, and let B be the subring ofA ~ gener- 
ated by X2, XIX2, XI-IX2, (X~X2nX3 [ n E IN), (Xl-nx2nx3 I n E IN). We 
equip A ~ with the group topology such that {X~B I n E ]N} is a fundamental 
system of neighbourhoods of 0. Then A ~ is a Tate ring. Let A + be an arbi- 
trary ring of integral elements of W, and put A -- (A ~, A +). The topological 
space SpaA is covered by the open subsets U : {v E SpaA[ v(X1)<l}  and 
V = { v E SpaA ] v(Xl)> 1}. Let X be the element of CA(SpaA) given by )(3. 
Then X[U = 0 and XIV = 0, since X3 lies in every neighbourhood of  0 in 

A ~ -( " " ~ )  and A ~ ---(~, -). But X 4= 0, since X3 ~ X2 B as a direct computation 

shows. 

2 Adic spaces 

Let X be a topological space and F a presheaf of complete topological tings 
on X (i.e., F is a presheaf of rings on X and, for every open subset U C_ 
X, the ring F(U)  is equipped with a complete ring topology such that all 
restriction homomorphisms F(V)--~ F ( W )  are continuous). Then F is a sheaf 
of complete topological rings (in the sense of [EGA*, 0.3.1] ) if and only if 
F is a sheaf of rings and for every open covering (Ui)i~l of an open subset 
U of X the natural mapping F (U)--~ i - I iEIF( f i )  is a topological embedding, 
where I-liE1 F(Ui) carries the product topology. 

We will use the following category ~ .  The objects are the triples X --- 
(X, (gx, (Vx I x E X)),  where X is a topological space, (gx is a sheaf of 
complete topological rings on X and Vx E SpvCx, x is a valuation of the stalk 
(gx, x. (Cx, x denotes the inductive limit tim Cx(U)  in the category of  rings.) 

xEU 
The morphisms X ~ Y are the pairs ( f ,  ~p), where f : X - - *  Y is a continuous 
mapping and q~: (gr --~ f . (gr  is a morphism of  sheaves of topological rings 
(i.e. r is a morphism of sheaves of rings and, for every open subset U C_ y, 
the mapping q~u: Cr(U)  --~ (gx( f -1  (U))  is continuous) such that, for every 
x E X, the induced ring homomorphism ~ox: (gr, f(x) ~ Cx, x is compatible with 
the valuations Vx and Vf(x) (i.e., Vf(x) = Spv(~px)(V~)). 

In the last paragraph we constructed to every affinoid ring A a triple 
(SpaA, (gA,(v~lx E SpaA)). We saw that, in general, (gA is not a sheaf. But if 
CA is a sheaf of topological rings then (SpaA, CA, (v~lx E SpaA)) is an object 
of ~/~ which we call the adic space associated with A. 

Definition. An affinoid adic space is an object of  ~U which is isomorphic to 
the adic space associated with an affinoid ring. An adic space is an object 
(X, (gx, (Vx[X E X ) )  of  ~tr which is locally an affinoid adic space, i.e., every 
x E X has an open neiohbourhood U c X such that (U, (gx I U, (Vx I x E U)) 
is an affinoid adic space. A morphism X ~ Y between adic spaces X, Y is a 
morphism in ~V'. 

The main aim of this paragraph is to show that for two important classes 
of affinoid rings A the presheaf CA on SpaA is a sheaf of topological rings 
(Theorem 2.2). Furthermore, we will show that the morphisms SpaA ~ SpaB 
between the adic space SpaA and SpaB associated with complete affinoid rings 
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A and B correspond bijectively to the continuous ring homomorphism B ~ A 
(Proposition 2.1). With these two results we will see in Sect. 4 that the category 
of adic spaces is large enough that it contains both the category of locally 
noetherian formal schemes and the category of rigid analytic varieties. 

We begin with some general remarks on adic spaces. Let (X, Cx, (Vx[X E X ) )  
be an adic space. Then (9 + denotes the subsheaf of (gx with (9+(U) = { f E 
( g x ( U ) [ v x ( f ) < l  for all x E U}. (9+ is a sheaf of rings. By (1.6.i, ii) the 
stalks (gX, x and (9+,x of  the sheaves Cx and (9+ are local tings. Furthermore, 
if f : (X ,  (gx,(Vx ] x E X ) )  ~ (Y, (gr, (Vy [ y E Y)) is a morphism of adic 
spaces then f induces morphisms of locally ringed spaces (X, (gx) ~ (Y, (gr) 
and (X, C~-.) ~ (Y, (9+). (In (2.1) we will prove a converse of this.) 

Let (SpaA, CA, (Vx [ x E SpaA)) be the adic space associated with an affi- 
noid ring A. Then (U, (gA [ U, (Vx Ix E U)) is an affinoid adic space for every 
rational subset U of SpaA (by 1.5.ii, iii)). Hence open subspaces of adic 
spaces are adic spaces. If X is an affinoid adic space then ((gx(X), (9+(X)) 
is an affinoid ring, and X is isomorphic to the adic space associated with 
((gx(X), (9+(X)) (by (1.5.ii, iii) and (1.6.iv)). 

Let A = (A ~, A + ) be an affinoid ring and.,~ = ((A ~)A, (A + )A) the completion 
of A. Then CA is a sheaf of topological rings on SpaA if and only if CA- is 
a sheaf of topological rings on SpaA, and the adic spaces associated with A 
and.~ are isomorphic. This follows from (1.5.ii, iii) with U = SpaA (note 
FA (SpaA) ~A). 

Proposition 2.1 (i) Let X = SpaB and Y = SpaA be the adic spaces associated 
with affinoid rings B and A. Then every continuous ring homomorphism A 
B induces in a canonical way a morphism of  adic spaces X -~ Y. Thus we 
have a mapping from the set of  continuous ring homomorphisms A --~ B to 
the set of morphisms of  adic spaces SpaB ~ SpaA. I f  B is complete then this 
mapping is bijective. 
(ii) Let X be an adic space and Y = SpaA the adic space associated with an 
affinoid ring A. Then there is a natural one-to-one correspondence between 
the set of morphisms X ~ Y and the set of  continuous ring homomorphisms 
A ~ ((gx(X),  (9+(X)). 
(iii) Let X = (X, (gx, (vx [ x E X ) )  and Y = (Y, (9~,, (Vy [ y E Y)) be adic 
spaces, and let g = ( f ,  q~): (X, (gx) --~ (Y, Cr )  be a morphism of topologi- 
cally ringed spaces (i.e., ( f ,  q~) is a morphism of ringed spaces and, for every 
open subset U C_ y, the ring homomorphism ~Ou: (_0r (U)~  ( g x ( f - l ( U ) )  is 
continuous). Then g is a morphism of  adic spaces i f  and only i f  the following 
two conditions are satisfied. 

(a) g: (X, (gr) ---* (Y, Cr)  is a morphism of locally ringed spaces. 
(b) g induces a morphism of locally ringed space (X, C+ ) --+ ( Y, (9+) (i.e., the 
sheaf homomorphism q~: (gy ---~ f . (gx satisfies q~( (9+ ) c f .  (9+, and ( f ,  ~k): (X, 
(9+) ~ ( Y, (9+) is a morphism of  locally ringed spaces, where ~: (9+ ~ f .  (_9+ 
is the restriction of ~o). 

Proof (i) Let f : A  ~ B be a continuous ring homomorphism. We construct 
a morphism of  adic spaces s ( f ) : X  --+ Y. Let 9 = Spa( f ) :  SpaB ~ SpaA 
be the continuous mapping induced by f .  By the universal property described 
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in (1.3.i) there exists, for every rational subset U of SpaB and every rational 
subset V of SpaA with 9 ( U )  C_ V, a unique continuous ring homomorphism 
r v, v: F~ (V) ~ FB (U) such that the following diagram commutes 

F~,(U) L~- FA(V) 

B < A .  
f 

These qgv, w induce a morphism of sheaves of  topological rings q~: CA 
9, CB. For every x C SpaB the induced ring homomorphism CA, g(x) ~ CB, x is 
compatible with the valuations va(x) and Vx. Hence s ( f )  := (9, q~):X ~ Y is 
a morphism of adic spaces. 

Now assume that B is complete. Let f l ,  f 2 : A  ~ B be continuous ring ho- 
momorphisms with s ( f l )  = s ( f 2 ) .  Let ~0: CA(SpaA)--~ C s ( S p a B )  be the 
ring homomorphism induced by s ( f l )  = s ( f 2 ) ,  and let hA: A ~ --~ CA(SpaA) 
and hB: B ~ --~ Cs(SpaB) be the canonical ring homomorphisms. Then by the 
construction of s ( f l )  and s ( f 2 )  we have h~ o f l  = ~0 o hA and hs 0 f2  = 
tp o hA. Since B is complete and therefore hB is an isomorphism, we obtain 
f l  -- f2. Let r : X  ~ Y be a morphism of adic spaces. We have to show 
that there exists a continuous ring homomorphism f : A  --~ B with r = s ( f ) .  
Let q~: FA (SpaA) = (CA (SpaA), C + (SpaA)) ~ (C8 (SpaB), (9 + (SpaB)) = 
F~(SpaB) be the ring homomorphism induced by r. Since ho, SpaB is an iso- 
morphism, we have a continuous ring homomorphism f : A  ~ B such that the 
following diagram commutes 

(1) 

FB(SpaB) ~ FA(SpaA) 

hB,SpaB T ThA,Sp~A 
B ~ - -  A.  

f 

Since for every x E SpaB the ring homomorphism CA,r(x) ~ CB, x in- 
duced by r is compatible with the valuations Vr(x) and Vx, the commutativity 

(1) shows r ( x )  = S p a ( f  )(x) for every x E SpaB. Let U = R ( ~ )  of  be 

a rational subset of  SpaA. Put V :-- r - l ( u )  = s ( f ) - l ( U )  C SpaB. Let 
hu:A  ~ ~ CA(U)  and h v : B  ~ ~ CB(V)  be the canonical ring homomorphisms, 
and let ~: CA(U)  ~ CB(V)  and t :  CA(U)  ~ CB(V)  be the continuous ring 
homomorphisms induced by r and s ( f ) .  Of course fl makes the following 
diagram commutative 

(2) 

cB(v) ~ - -  c A ( U )  

hv T Yhu 
B ~ ~ A ~ , 

f 

The commutativity of  (1) implies that also ~ makes the diagram (2) com- 

mutative. Since d is invertible in C A ( U ) a n d  A ~ [~] is dense in CA(U), we 

obtain ct = ft. Hence r = s ( f ) .  



524 R. Huber 

(ii) To a morphism f : X  --~ Y we assign the continuous ring homomorphism 
A --.+ ( C x ( X ) ,  (9+(X)) which is the composition of the canonical ring homo- 
morphism A --~ ((gy (Y), (9 + (Y)) and the ring homomorphism ((gr (Y), C + (Y)) 
---* ( (gx(X) ,  (9+(X)) induced by f .  Thus we have a mapping from the 
set of  morphisms X ~ Y to the set of continuous ring homomorphisms 
A ~ ((gx(X),  (9+(X)) which is bijective by (i). 
(iii) Assume that (a) and (b) are satisfied. We have to show that for every 
x E X the mapping ~Px: Cr, f(x) --~ (gX, x is compatible with the valuations Vf(x) 
and Vx, i.e., vf(x) = Spv(tpx)(Vx). By (1.6.i) the maximal ideals of Cy, f(x) and 
(gx, x are the supports of Vf(x) and Vx. Hence by (a) both Vf(x) and Spv(qgx)(Vx) 
have the support my(x) C (gY, f(x). Let h: (gr, f(x) --* k := (gY, f ( x ) /mf (x )  be the 
canonical mapping, and let Af(x)  C k and Ax C k be the valuation rings 
to Vf(x) and Spv(tpx)(V~). We have to show that Af(x) = Ax. The rings 
h- l (A f ( x ) )  and h - l ( A x )  are local. By (1.6.ii) we have h - l ( A f ( x ) )  = (9 + Y,f(x) 
and h -1 (Ax) = qgx I ((9+,x)" So (b) implies that h -1 (Ax) dominates h -1 (Af(x)). 
Then Ax dominates Af(x),  and hence Ax = Af(x) .  [] 

For every Tate ring A let A(X1 . . . . .  Xn) denote the subring {Xa,~X '~ E 
,~[[Sl . . . . .  Xn]]l(av)vcN3 is a zero sequence in,,t} of,4[[X1,...,Xn]]. We equip 
A(Xl . . . . .  Xn) with the group topology such that { U ( X ) t U  neighbourhood of 0 
in,4} is a fundamental system of neighbourhoods of 0 in A(X1 . . . . .  Xn), where 
U(X)  = { S a v X  ~ C A(X1, . . . ,Xn)  [ a~ E U for all v}. Then A(X1 . . . . .  X,)  is 
a complete Tate ring. We say that A is strongly noetherian if A(X1 . . . .  ,X~) 
is noetherian for every n E No. Now we can state the main result of this 
paragraph. 

Theorem 2.2 Let  A be an affinoid ring such that A ~ has a noetherian ring 
o f  definition or A ~ is a strongly noetherian Tate ring. Then CA is a sheaf  o f  
complete topological rings on SpaA. Furthermore, H i ( u ,  (gA) = 0 fo r  every 
i E IN and every rational subset U o f  SpaA. 

We will even prove a slight generalization of (2.2), namely a theorem 
analogous to (2.2) for (gA-premodules. For that we need some preparations. 

Let A be a topological ring and M a finitely generated A-module. We 
call the A-module topology on M such that every A-module homomorphism 
M ~ N from M to a topological A-module N is continuous the natural A- 
module topology of M. If ml . . . . .  ms is a system of generators of M over A then 
the set of all sets {xl ml + . . .  +Xs ms Ix1 . . . .  ,xs E U} with U a neighbourhood 
of 0 in A is a fundamental system of neighbourhoods of 0 in the natural A- 
module topology of M. Now assume that A is f-adic with ring of definition A0 
and ideal of definition I of  A0. Let M0 be a A0-submodule of M, and equip 
M0 with the I-adic topology. Then M0 is an open subspace of M in the natural 
A-module topology of M if and only if M0 is open and bounded in M. (A 
subset M0 C_ M is called bounded if for every neighbourhood U of 0 in M 
there exists a neighbourhood V of 0 in A with {a �9 m ] a E V,m E M0} C_ U.) 

A mapping f : X  --* Y between topological spaces X and Y is called strict 
if f is continuous and the restriction X ~ f ( X )  is open. 
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Lemma 2.3 Let A be a f-adic ring which has a noetherian ring of  a definition. 
Let M and N be finitely generated A-modules equipped with their natural A- 
module topology. Then. 

(i) Every A-module homomorphism f :M ~ N is strict. 
(ii) I f  A is complete then M is complete and every A-submodule of  M 

is closed in M. 
(iii) The natural mapping M ~ A  A --~ ~I is an isomorphism of  topological 

A-modules i f  we equip M ~ A  ~ with its naturalA-module topology. 

Proof (i) and (ii) follow from analogous results for finitely generated modules 
over noetherian adic rings, and (iii) is a consequence of (ii). [] 

Lemma 2.4 (i) Let A be a topological ring which has a zero sequence 
(an I n E IN) with a, c A* for every n E IN (for example, A a Tate ring). Let 
M and N be topological A-modules which are complete and have countable 
fundamental systems of  neighbourhoods of  O. Then every continuous surjective 
A-module homomorphism M --~ N is open. 
(ii) Let A be a complete noetherian Tate ring, and let M and N be finitely 
generated A-modules equipped with their natural A-module topologies. Then 
M is complete and every A-module homomorphism M --+ N is strict. 

Proof In order to prove (i) one can take over without any change the proof of 
Banach's open mapping theorem (cf. [B1, 1.3.3.]). (ii) follows from (i) with 
the methods of [BGR, 3.7]. [] 

Let A be an affinoid ring and let M be a finitely generated A~-module. For 
every rational subset W of SpaA we equip the (gA (W)-module M ~A~ (gA (W) 
with the natural CA (W)-module topology. Then, for rational subsets V, W with 
V C_ W, the natural mapping pv, w:M(~A~ C A ( W ) ~  M ~ A ~  CA(V) is conti- 
nuous. For every open subset U of SpaA we put 

(M | CA )(U): := li_m M@(gA(V) ,  
V A t~ 

where the projective limit is taken over all rational subsets V of SpaA contained 
in U and with respect to the transition mappings Pv, w. We equip (M | (gA)(U) 
with the projective limit topology. Then (M @ CA)(U) is a topological CA (U)- 
module, and for V C U the canonical mapping (M @ CA)(U) --~ (M| 
is continuous. So we have a topological CA-premodule M | (gA. Now we can 
generalize (2.2) to the following theorem 

Theorem 2.5 Let A be an affinoid ring such that A ~ has a noetherian ring 
of  definition or A ~ is a strongly noetherian Tate ring, and let M be a finitely 
generated A~-module. Then M | CA is a sheaf of  complete topological groups 
on SpaA, and Hi(U, M @ CA) = 0 for every i E IN and every rational subset 
U of  SpaA. 

Proof We distinguish the cases that A ~ has a noetherian ring of definition 
and that A ~ is a strongly noetherian Tate ring. In the first case our proof is 
motivated by Raynaud's paper [R], and in the second case our proof is similar 
to the proof of Tate's acyclicity theorem in [BGR]. 

Case I. A ~ has a noetherian, ring of definition. 
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First we describe a construction which generalizes the blowing up of ideals. 
Let tp: C --, B be a ring homomorphism and let J be a C-submodule of B. 
Then we have the graduated C-algebra ~)ncN0 Jn, where j0: __ ~o(C) and, for 
n >  1,J n is the subgroup of B generated by j l  ". . .  "jn with j l  . . . . .  jn E J .  We 
have a canonical morphism of schemes g:Proj(~)n~r~0 Jn) --~ Spec C. Let I 

be the ideal of B generated by J .  Then the inclusion ~)ncN0 Jn ~ ~)n~NoI n 

defines a morphism of schemes s: Proj (~)n~N0 In) ~ Proj (E~)ncN0 J" )  such that 
the following diagram commutes 

X: = P r o j ( ~ )  I n) ---* SpecB 
hEN 0 

(I.1) s J. J. 
Y: = Proj( ~ jn )  ~ SpecC 

nEN0 g 

One can easily check 

(I.2) 
(i) s is affine. 

(ii) Let F be a set of  generators of the C-module d. Let S be a nonempty 
finite subset of F C j l  and let t E jISl be the product of  the elements of 
S. Put U = D + ( t )  = {p E P r o j ( ~ n ~ o J n ) [ t  ~ p} _C Y. Then one can con- 

sider (gr(U) and C x ( S - l ( U ) )  as subrings of the localization Bt, and we have 
C r ( U )  = C[Z s [ f E F,s  E S] and C x ( S - l ( U ) )  = B[Z [ f E F,s  E S]. 

(iii) Let H be an ideal of C such that Spec(~o): SpecB ~ SpecC induces 
an isomorphism S p e c B -  V(H �9 B)  --~ SpecC - V ( H )  and V(I )  C V(H �9 B). 
Then g induces an isomorphism Y - g -1 (V(H))  ~ SpecC - V(H).  

The essential step in our proof of  case I is the following point. 

(I.3) 
Let B be an affinoid ring, let f o  . . . . .  f n  be elements of  B ~ with B ~ = f o B  ~ + 
... + f n B  ~, and let P be a finitely generated B~-module. We assume that B ~ 
has a noetherian ring of definition. Put ~- := P | C~, Z := SpaB, and Ui :-- 

R ( f ~  . . . . .  fn  ) C Z f o r / =  0 . . . . .  n. Then the augmented Cech complex to 
f i  

and the covering {U0,.. . ,  Un} of Z 

( , )  o ~ ~ ( z )  ---, 1-I~(U,o) --, FI ~(U,o  n u,~) ~ . . .  
i0 (i0,il) 

is exact. Furthermore, if we equip all components of (*) with their natural 
topologies then all differentials of ( . )  are strict. 

P r o o f  o f  (1.3) Let t5 be the quasi-coherent sheaf on SpecB ~ defined by P. 
We consider the augmented Cech complex to/5 and the covering {D( f0 )  . . . . .  
D ( f n ) }  o f X  = SpecB ~ 

(**) 0 ---*_P(X) --~ I - IP(D( f io ) )  ---* I-I P ( D ( f i o ) M D ( f i l ) )  --~ . . .  
io (io, il ) 

Put F = { f 0  . . . .  , fn}.  We equip /3(X) : P with the natural B~-module 
topology. For every ( f io  . . . .  , f i k )  E F k+l, the underlying ring of the topo- 
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logical ring B~ ( F , F )  "'"~k-/k is the localization of B ~ by f i o ' . . . "  fik. So 

(~io F )  and hence P(D(fio)f? P(D( fio ) f3...  f? D( fik )) = P @B~ B~ . . . .  ' ~ik ' 

N D ( f i k ) )  is a finitely generated B ~ (  F ,  ~ ) - m o d u l e .  We equip 

P(D(fio)  N . . .  n D(f ik) )  with the natural B ~" ~ . . . .  ~ - module topo- 

logy, and 1--[(io,...,ik)eFk+lP(D(fio)N... A D(f ik) )  with the product topology. 
Then every differential of (**) is continuous. Let (**)^ be the completion of 
the complex (**). By (2.3. iii), (**)A is the complex ( ,) .  The complex (**) is 
exact. If all differentials of (**) are strict then by [B2, III.2.12 Lemma 2] all 
differentials of (**)A are strict and (**)A is exact. So it is sufficient to show 
that all differentials of (**) are strict. 

Let C be a noetherian ring of definition of  B ~', and let J be the C-submodule 
of B ~ generated by F. Since B ~ = foB ~ + ... + fnB ~, we have by (I.1) a 
commutative diagram 

SpecB ~" = X 

Y:= Proj( (~ jn )  ~ SpecC. 
n E N  0 g 

Let N be a finitel X generated C-submodule of  P which generates the 
B~-module P, and let N be the coherent sheaf on SpecC defined by N. The 
inclusion N --+ P induces a mo~hism of sheaves z: N --~ h,(/5). The compo- 
sition o f  g*(z): 9*(N) --* 9*h,(P) = 9*#,s,(P) with the adjunction morphism 
9*9,s,(P) ~ s,(P) gives a morphism of sheaves a: 9*(N) --* s,(/5). The im- 
age f~ of a is a coherent sheaf on Y, since 9"(~') is coherent and s,(/5) is 
quasi-coherent. 

Let I be an ideal of definition of C. For every i E N let K~ be the aug- 
mented Cech complex to the sheaf/if# and the covering {D+(f0)  . . . . .  D+( f , ) }  
of Y. Since D ( f k )  = s - l (D+( fk ) )  for k = 0, . . . ,n ,  we can identi~ the com- 
plex (**) with the augmented Cech complex K~ to the sheaf s,(P) and the 
covering {D+( fo ) , . . . ,D+( fn )}  of Y. Since s,(/5) ~ ff ~ IC.# ~ 12fr _~ . . . .  
we have a sequence of subcomplexes K~ _~ K~' ~ K z" ~ . . . .  For every i E No 
let d(:K~ p --~ KiP +l be the differentials of the complex K~*. Then we have 

0.3.1) 
(i) Given p C ;g and u E N then there exists a v C No with im(d~) _D 

ker(ag +T). 
(ii) For every p E Z, the set {K~ I i E N} is a fundamental system of 

neighbourhoods of 0 in K0 p. 

Proof (i) The assertion is trivial if p < 0. So we fix a p E No. For every x E 
I ~ and y E HP+1(Y,I~9) let x 63 y E HP+I(Y,I"+~f#) be the image of y under 
the mapping Hp+I ( y, l"f#) ~ H p+I ( y, iu+r ~)  induced by the x-multiplication 
I"f# --, I " + ~ .  Then by [EGA, IlL 3.3.2] there exists a k E 1N such that 

(1) HP+t(y, Iu+rfg) = I ~ 63HP+l(y, Iufg) for every u>=k and r > 0 .  
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It is enough to proof (1.3.1. i) for u > k. We fix a u > k. By [H1, 
3.7], SpecB ~ - V ( I .  B ~) ~ S p e c C -  V(I)  is an isomorphism. Hence (I.2. 
iii) implies that Y -  g - I ( v ( I ) )  ~ S p e c C -  V(I) is an isomorphism. The 
sheaf H p+I (y, lu~)  ~ on Spec C associated with the finitely generated C-module 
HP+1(Y, lUfa) is equal to the higher direct image sheaf Rp+I#,(IU~). Hence 
the restriction of HP+I(y, Iu~)~ to Spec C -  V(1) vanishes. Then according 
to [EGA*, 1.6.8.4] there exists a t E IN with 

(2) ItHp+l(y, lu(ff) = O. 
We show im(dff) D ker(dP+/1). Notice that Hn(KT) = Hn(y, Iif#) for 

every n,i E IN. Let a C ker(dP+t I ) be given, and let ~i c Hp+l(y, lu+tc~) 
be the cohomology class represented by a. By (1) there exist xl . . . . .  xw c I t 
and 351 . . . . .  35w E HP+1(Y, IUf#) with d = Xl Q 351 + . . .  +Xw Q33w. Let Yl . . . . .  Yw 
be elements of ker(du p+l) which represent the cohomology classes 331 . . . .  ,33w' 
Then a -  (xlyl + ... + XwYw) c im(dP+t) C im(dP). By (2) we have xjyj C 
im(dff) for j = 1 . . . . .  w. Hence a E im(duP~ 

(ii) Let S be a non empty subset o f F .  Then C[{ [ s c S, f E F] is a ring 

of definition of the f-adic ring ~ F B (T Is  E S), and L : = I .  C[L Is c S, f c F ]  
is an ideal of  definition of C [ (  I s C S ,  f C F ] .  Let G be the image of 

U (~c  C[s s I s c S, f c F] in P ~ B ~ (  F I s E S). Then {L i �9 G li E IN} is a 
fundamental system of neighbourhoods of 0 in the natural B~( F Is  E S)-module 

topology of P ( ~ B ~ ' (  F I s  E S). By (I.2.ii) we have (9r(Ns~ s D+(s)) = 

(gy(D+(I-Lc s s)) = C[ s I s  c S , f  E F]. Hence in case p > 0  the assertion 
of (I.3.1.ii) follows immediately from our construction of the sheaf ft. Now 
we assume p = - 1 .  By construction of f# we have I iN c_ F(y, Iif#) for 
every i E N. Let k C IN be fixed. We have to show that there exists a i C IN 
with I'(y, Iifr C_ IkN. By [EGA, III.3.3.2] there exists a r E IN such that 
F(Y, Ir+Sf#) = PF(Y,  Irf#) for every s E IN. Since F(Y, Ff#)  is a finitely gen- 
erated C-submodule of  P and IkN is an open C-submodule of P, there exists 
a t E IN with I t F ( y , I ~ )  C IkN. Hence ['(y, Ir+tc~) C_ IkN. 

Now we can show that all differentials of the complex (**) = K~ are 

strict. Let p E 7/ be given. Applying (I.3.1.ii) to K p+I, we see that im(d0 p) A 

ker(d p+I) = im(d if) nK/p+~ is a neighbourhood of 0 in im(d0 p) for every 
i E IN. Now (I.3.1.i, ii) shows that dP:Ko p ~ im(d p) is open. This concludes 
the proof of  (I.3). 

By (1.5) we have 

(I.4) 
Let U be a rational subset of  SpaA. Put B = FA(U) and P = M (~A~ B"" Then 
there exists a homeomorphism f :  SpaB --~ U and a morphism of presheaves 
~0:(M | C)A) I U ~ f , ( P  | (gB) such that f induces a bijection between 
the set of the rational subsets of  SpaB and the set of  the rational subsets of 
SpaA contained in U, and, for every rational subset V of SpaA with V c_ U, 
the mapping ~o(V): (M | CA)(V) ~ (P | ( gB ) ( f - I (V ) )  is an isomorphism of 
topological groups. 
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Note that, for every rational subset U of  SpaA,FA(U) ~ is complete and has 
a noetherian ring of  definition. Hence, applying (I.3), (I.4) and the subsequent 
Lemma 2.6, we obtain 

0 . 5 )  

Let (Vj)j~j  be an open covering of  a rational subset U of  SpaA. Then there 
exist rational subsets U1 . . . . .  Un of  SpaA such that U = U 7=1 ui, every ui is 
contained in some Vj, and the augmented Cech complex to o~- :-- M | (gA and 
the covering (Ui I i = 1 , . . . , n )  of  U 

0 ~ ~ - ( u )  ~ 1-I~(ui0)  ~ 1-I ~ ( ~ 0  n u , , )  - - ,  . . .  
i0 (i 0, il ) 

is exact and has strict differentials. 
Now we are ready to finish the proof  of  (2.5) in our first case. We have 

to show that M | CA is a sheaf of  complete topological groups and that, for 
every rational subset U of  SpaA and every i E ]N, H i ( U , M  | (9.4) = 0. By 
(2.3.ii), (M | (9)(U) is complete for every rational subset U of  SpaA, and 
then (M | (9)(U) is complete for every open subset U of  SpaA (by definition 
of  M | (gA). So we have a presheaf of  complete topological groups. In order 
to show that M | CA is a sheaf of  complete topological groups it is enough to 
show that, for every rational subset U of  SpaA and every covering (Ui)i~l of  
U by rational subsets of  SpaA, the sequence 

(+)  0 > (M | C.4)(U) a 1--[( M | CA)(Ui) ~ 11 (M | (gA)(Ui fq Uj) 
i (i, j )  

is exact and d is strict [EGA*, 0.3.2.2]. Then it is easy to see that it is even 
sufficient to show that, for every rational subset U of  SpaA and every covering 
(Vj) je j  of  U by rational subsets o f  SpaA, there exists a refinement (Ui)ict of  
(Vj) je j  by rational subsets Ui of  SpaA such that ( + )  is exact and d is strict. 

But this is covered by (I.5). Likewise by (I.5) we have tzIi(U,M | CA) = 0 
for every i E N and every rational subset U of  SpaA. Then [G, 3.8 Corollary 
4] implies H i ( U , M  | CA) = 0 for every i E N and every rational subset U of  
SpaA. 

Case II. A ~ is a strongly noetherian Tare ring. 
In the following two points (II.1) and (II.2) let B be an affinoid ring such 

that B ~ is a strongly noetherian Tate ring. 

(II. 1 ) 
(i) Let B~(X,X -1) be the ring of  all formal series Y~,~z bnXn such 

that b, E (BY) A for every n E Z and, for every neighbourhood U of  0 in 
(B~')A,b, ~ U for only finitely many n E Z. Then the B~-algebras B~'(X,X -1) 
and B t~ (X, Y)/(1 - XY) are canonically isomorphic. 

(ii) For i = 1 . . . .  ,m let Ti = { f i l  . . . . .  fin(i},gi} be a finite subset o f  B ~ 
with B ~ = Ti �9 B ~'. Put C = B~'(Xij ] i = 1 . . . .  ,m , j  = 1 . . . . .  n(i)) and let I be 
the ideal o f  C generated by { f i j - y i X i j  ] i = 1, . . . , m , j  = 1 . . . . .  n(i)}. Then the 

topological B~-algebras B ~ t / T--l, ,Tm \ \ gl "'" a m /  and C/I are canonically isomorphic. 
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(iii) For every rational subset U of SpaB, the Tate ring CB(U) is strongly 
noetherian. 

(iv) For every rational subset U of SpaB, CB(U) is fiat over CB(SpaB). 

Proof (i) We equip Bv(X,X -1) with the group topology such that the sets 
{~nEzbn Xn C B~(X,X -1) I bn E U for every n c 71} (U neighbourhood of 0 
in (B~) ̂ )  form a fundamental system of neighbourhoods of 0 in B~(X,X-1). 
Then/~IX,  X -1) is a complete Tate ring. By (2.4.ii), the ideal (1 - X Y )  is 
closed in B~(X, Y) and hence B~/X, Y)/(1 - X Y )  is a complete Tate ring. Both 
ring homomorphisms B ~ --~ (B ~ (X,X-1 ) ;X) and B ~ --~ (B ~ (X, Y)/(1 - XY); X)  
are universal with respect to continuous ring homomorphisms from B ~ to com- 
plete Tate rings with a distinguished unit u such that u and u - l  are power- 
bounded (cf. (3.3.i)). 
(ii) By (2.4.ii), I is closed in C, and hence C/I is a complete f-adic ring. 
Every 9i is a unit in C/l, since B ~ = Ti �9 B ~. Now it is easily seen that both 

ring homomorphisms B ~ -~ B~ \( ~41 .... , T~gm ) and B ~ ~ C/I satisfy the same 

universal property, cf. (1.2) and (3.3.i). 
(iii) follows from (3.4.i, ii). 
(iv) We proceed as in the proof of [FP, III.7.10]. First we show that it 
is enough to prove the assertion only for some special rational subsets U. 
For that we use (1.5). Namely let f ~ , . . . , f n , 9  be elements of B ~ with 
U = {x E SpaB I x ( f i ) ~ x ( 9 ) + O  of i = 1 . . . .  ,n}. Since U is quasi-compact, 
there exists by [HI, 3.11] a unit s o f B  ~ with x(s )~x(9  ) for every x c U. Put 

Y,:= {x C SpaBIl__<x (s~)}. Then air, is a unit of CB(Y1), and so we can 

define inductively rational subsets Y2,-.., Yn+l o f  Yo: ~ SpaB with Y0 -~ Y1 -~ 

Y2 ~-.. .  D Yn+t = U by Y, = {x E Yk-I I x ( J . - -~ )  <1} (k = 2  . . . . .  n + 1). 

Then the restriction h: (gs(SpaB) ~ (gB(U) factorizes into h = h, o ... o h0, 
where hi:CB(Y/) ~ Cs(Y/+t) is the restriction. Using (2.4.ii) and (ii) one 
can prove with the ideas of  [FP, III.7.8, 7.9] that, for every complete affi- 
noid ring D such that D ~ is noetherian and Tate and for every f c D ", the 
restrictions CD(SpaD) ~ (~D(U1)  and CD(SpaD) ---+ (~D(U2) are fiat, where 
U~ = {x E SpaDix(f)=> 1 } and U2 = {x E S p a D I x ( f ) < l  }. Hence by (iii), 
all ring homomorphisms hi are fiat. 

(II.2) 
Let f be an element o f B  ~, and put Ul = {x E SpaB[x(f)<=l} and U2 = 
{x C SpaB [ x ( f ) _ > l } .  Then the augmented Cech complex to (gS and the 
covering {U1, U2} of SpaB 

0 ~ Ce(Spa B ) ~  (_.OB(U1) X C B ( U 2 )  6 CB(U 1 ("1U2) �9 ) 0 

is exact. 

Proof By (ILl.iv) the ring homomorphism e is flat. With (1.4) we obtain 
that e is faithfully flat and hence injective. By (II.l.i, ii) we have CB(U1) = 
B~(X)/( f -X),Os(U2) = B~(Y)/(1 - f Y) and OB(U1 r3 U2) = 6~(x,Y)/( f - 
x, 1 - f r )  = g~(x, r ) / ( f  - x ,  1 - x Y )  = B~(X ,X-1 ) / ( f  - X ) .  Now an easy 
computation shows that ~ is surjective and i m ( e ) =  ker(6) (cf. [BGR, 8.2.3]). 
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(II.3) 
Let (~.) jcs  be an open covering of  a rational subset U of  SpaA. Then there 

n exist rational subsets Ul . . . . .  U, of  Spa// such that U = [-Ji=l Ui, every Ui is 
contained in some ~ ,  and the augmented Cech complex to M | CA and the 
covering (~1i  = 1 . . . . .  n) o f  U is exact. 

Proof  By (II.l . iv) it is sufficient to prove (11.3) for M = A" (use the alter- 
nating Cech complexes). (I.4) holds also in our case II. Hence by (II.l.iii) 
we can assume that A ~ is complete and U = SpaA. Then by the subsequent 

we can assume ( ~ ) j ~ j  = ( R -  ( f o  . . . . .  fm'~ [i = 0 . . . .  ,m)  with some lemma 
f i  } 

f0  . . . . . .  f,n C A ~ with A ~ = foA  ~ + . . .  + fmA ~. Now using (II.2) one can prove 
(II.3) with the reasonings of  [BGR, 8.2.2]. 

(I1.3) implies that M | CA is a sheaf of  groups and H i ( U , M  | CA) = 
0 for every i E N and every rational subset U of  SpaA. By (2.4.ii) and 
(II.l.iii), (M | CA)(U) is complete for every rational subset U of  SpaA. Then 
( M |  CA)(U) is complete for every open subset U of  SpaA. It remains to show 
that M | CA is a sheaf of  topological groups. Let (Ui)icl be an open covering 
of  an open subset U of  Spa//. We have to show that e: (M | CA)(U) --~ 
1-Iic~ (M | CA)(Ui) is strict. By [EGA*, 0.3.2.2] we may assume that U and 
all Ui are rational, and since U is quasi-compact we may assume that I is 
finite, ira@) is closed in l-[ir (M | (gA)(Ui), since im(e) is the kernel o f  
~ i c l  (M | CA)(Ui) ~ 1-Ii, }Cl (M | CA)(Ui N Uj). Now (2.4.i) implies that 
is strict. [] 

Lemma 2.6 Let A be a complete affinoid ring, and let ( ~ ) j c J  be an open 
covering o f  SpaA. Then there exist f o , . . . , f n  E A ~ such that A ~ = f oA ~ + 

-4- f nA ~ and, for  every i c {0 . . . . .  n}, the rational subset R - ( f o , f n ~  is 
"'" f i  } 
contained in some Vj. 

Proof  Let x E SpaA C SpvA v. Let CFx be the characteristic subgroup of  Fx 
as defined in [HI]. Let y be the valuation x [ cFx of  A v. Then F y  = CFy and 
y E SpaA. We choose a ~. with y C ~.. Since / ' y  = cFy, there exists by the 
proof o f  [HI,  2.6.ii] an element s E A ~ and a finite subset T o f  A ~ such that 

t E T and y c R ( ~ - ) C _  ~.. We have x c R ( -~) ,  since x is a generalization 

of  y. Using that SpaA is quasi-compact, we obtain that the there exist elements 
sl . . . . .  sn C A ~ and finite subsets T1 . . . . .  T, of  A ~ such that 1 E Ti for every 

- - ( ~ ) ] i  = 1, ,n) is a covering of  SpaA refining (~ )}~ j .  i =  1 . . . . .  n and (R si "'" 

We may assume si E Ti for i = 1 . . . . .  n. 
Now we can follow the proof of  [FP, Ill.2.5]. Put T = {q �9 ... �9 tn[ti E Ti 

f o r i =  1 . . . . .  n} a n d S = { f i  �9 ... ' t n i t i E T i  f o r i =  1 . . . . .  n a n d t i = s i  for at 
least one i C {1 . . . . .  n}}. We note the following trivial properties 

every t, C T, . . . . .  tn E Tn we have R ( T )  = n ,~ ,  R ( ~ i )  (1) For with 

t := tl �9 . . .  �9 in. 

(2) For every i E {1 . . . . .  n}, Spa.4 = Ut~r  ' R ( ~ ) .  
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B y ( 1 ) , R ( T )  is contained in some R (s~)  f o r e v e r y s C S . ( 1 )  and(2)  

imply 

: R 

From (1.4) and (3) we obtain A ~ = S .  A ~. Furthermore, (3) implies 

R ( T )  = R( -~ )  for every s E S .  Hence every R ( S )  is contained in some 
\ / \ t '  \ /  

Zj. [] 

3 Adic morphisms, morphisms of finite type and fibre products 

The following definition turns out to be very useful. 

Definition..4 point x of an adic space X is called analytic i f  there exists 
an open neighbourhood U of x in X such that 6x(U) has a topologically 
nilpotent unit. We put Xa = {x E XIx is analytic} and Xna = X --Xa. I f  every 
point of X is analytic then X is called analytic. 

Remark 3.1 If X = SpaA is the adic space to an affinoid ring A then x E X 
is analytic if and only if supp(x) c SpecA ~ is not open in A ~. (So the above 
definition coincides with the definition of an analytic point in [H1].) 

Proof Let x be a point of SpaA such that supp(x) is open in A ~, and let 
U be an open neighbourhood of x in SpaA. We have to show that Cx(U) 
has no topologically nilpotent unit. Let V be a rational subset of SpaA with 
x E V C_ U. Put p = { f  E (gx(V) [ Vx(f) = 0}. Then p is a prime ideal 
of Cx(V) with p n A ~ = supp(x). Since supp(x) is open in A ~, it follows 
immediately from the definition of Cx(V) that p is open Cx(V). Hence every 
topologically nilpotent element of (gx(V) lies in p. But since p contains no 
unit of (gx(V), (gx(V) has no topologically nilpotent unit. Now let x be a point 
of  SpaA such that supp(x) is not open in A ~. Then there exists a topologically 
nilpotent element s o f A  ~ with x(s)+O. Put U = { y  E SpaA [ y(s )+0}.  The 
U is an open neighbourhood o f x  in SpaA, and the image o f s  in (gx(U) is a 
topologically nilpotent unit of Cx(U). [] 

In [H1] we called a ring homomorphism f:A.---~ B between f-adic tings 
adic if there exist tings of definition Ao, Bo of A,B and an ideal of definition 
I of A0 such that f(Ao) C Bo and f ( I )  �9 Bo is an ideal of definition of B0. 

Definition. A morphism f :X ~ Y between adic space is called adic if for ev- 
ery x E X there exist an open affinoid neighbourhood U of x in X and an open 
affinoid subspace V of Y such that f ( U )  c_ V and the rin9 homomorphism 
between f-adic rinos Or(V) -~ (gx(U) induced by f is adic. 

(3.1) and [H1, 3.8] imply 

Proposition 3.2 Let f :X--~ Y be a morphism of adic spaces. Then 
(i) I f  f is adic then, for all open affinoid subspaces U and V of X and 

Y with f ( U )  C V, the rin9 homomorphism (gr(V) ~ Cx(U) is adic. 
(ii) f is adic if  and only / f  f (Xa)  C Ya. 
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(iii) f(Xna) C Yna. 

In order to define morphisms of  finite type between adic spaces we first 
introduce ring homomorphisms of  topologically finite type between f-adic rings 
and affinoid rings. Let A be a f-adic ring and let Ml . . . . .  Mn be finite subsets 
of  A such that Mi �9 A is open in A for every i = 1 . . . . .  n. We put 

A(X)M = A(X1 . . . . .  Xn)MI,...,M n := ( ~  avX v C A[[X1,...,Xn]] I for every 
neighbourhood U of  0 in.~, av ~ M1 ~ . . . . .  M~" �9 U for only finitely many 
Y = (F1 . . . . .  Yn) E N ~ } .  

Obviously A(X)M is a subgroup of.~[[X1 . . . . .  An]]. We equip A(X)M with 
the group topology such that the sets { ~  avX ~ E A(X)M [av E M[ I . . . . .  
M v" . U for every v = (vj . . . .  , v , )  C Ng} (U a neighbourhood of  0 in.~) from 
a fundamental system of  neighbourhoods of  0. Using (1.1), one can easily see 
that A{X}M is a subring of  A[[Xi . . . . .  X,]], and moreover A(X)M is a complete 
f-adic ring. The natural ring homomorphism A --~ A (X)M is continuous. 

We put 

A ( X )  = A(X~ . . . . .  Xo) :=  A(Xl . . . . .  X.)( l~,  .,(1~. 

We say that a ring homomorphism f :  A ~ B from A to a complete f-adic ring 
B is of  topologically finite type if there exist n c N0, finite subsets M1 . . . . .  M, 
of  A with Mi �9 A open in A for i = 1 . . . . .  n and a surjective, continuous, open 
ring homomorphism g:A(XI . . . . .  Xn)M1,...,M, ~ B such that f = g o h, where 
h: A ~ A 0(t . . . .  ,X,)M~,...,M, is the natural ring homomorphism. One can easily 
check 

Lemma  3.3 ( i ) (Unive r sa l  property of  A(XI . . . . .  X,)Mj,...,M,) Let h:A--~ 
A(X1,...  ,Xn)M1,...,M, be the natural ring homomorphism. Then h ( m ~  is power- 
bounded in A(X1 . . . . .  Xn)M1,...,M, for every i E {1 . . . . .  n} and m E Mi, and i f  
f :A ~ B is a continuous ring homomorphism from A to a complete f-adic 
ring B and b~ . . . .  bn are elements of  B such that f (m)bi  is power-bounded in 
B for every i E {1 . . . .  ,n} and m C Mi then there exists a unique continuous 
ring homomorphism 9:A(XI, . . .  ,Xn)M1,...,M " ---+ B with f = 9oh and bi -~- g ( Y i )  

for i =  1 . . . . .  n. 
(ii) Let f :A --~ B be a ring homomorphism from A to a complete f-adic ring 
B. Then the following conditions are equivalent 

(a) f is o f  topologically finite type 
(b) f is adic, there exists a finite subset M of  B such that A[M] is dense in 
B, and there exist rings of  definition Ao, Bo of  A, B and a finite subset N of  
Bo such that f (Ao)  C_ Bo and A0[N] is dense in Bo. 

(iii) I f  A is Tate then a ring homomorphism f : A  --~ B from A to a complete 
f-adic ring B is of  topologically finite type i f  and only i f  f factors through a 
surjective, continuous and open ring homomorphism g:A(X1 . . . . .  Xn) ~ B for 
some n C ]No. 
(iv) Let B, C be complete f-adic rings and f :A ~ B and 9:B --~ C continuous 
ring homomorphisms. I f  f and g are of  topologically finite type then g o f 
is o f  topologically finite type, and i f  g o f is of  topologically finite type then 
g is of  topologically finite type. 
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Corollary 3.4 (i) Let Sl . . . . .  s, be elements of  A and/ '1 , . . . ,  Tn finite subsets 
of  A such that Ti �9 A is open for i = l . . . . .  n. Then the natural ring homo- 

morphism A --~ A -(Tlsl ' " "  ---~n ) is of  topologically finite type. 

(ii) I f  A is Tate then the following conditions are equivalent 

(a) A is strongly noetherian. 
(b) Every Tare ring o f  topologically finite type over A is noetherian. 
(c) Every Tate ring of  topologically finite type over A is strongly noetherian. 

(iii) Let B be a complete f-adic ring of  topologically finite type over A. I f  
A has a noetherian ring o f  definition then also B has a noetherian ring o f  
definition. 

Proof Applying (3.3.ii), (i) follows immediately from the definition of  

A (Ts--~l .. . . .  Tn),sn (ii) follows from (3.3.iii,iv), and (iii) follows from (3.3.ii). 
[] 

Let k be a complete, non-archimedean, valued field. Then k is a Tate ring. 
In rigid analytic geometry one calls the complete topological k-algebras which 
are quotients o f  some k(Xl . . . . .  Xn) affinoid algebra or Tate algebras over k. 
We call them, according to (3.3.iii), Tate rings of  topologically finite type over 
k. 

Let A = (A~,A +) be an affinoid ring, and let M1 . . . .  ,Mn be finite subsets 
o f A  ~ such that Mi �9 A t" is open in A ~ for i = 1 . . . .  ,n. Then B := {y'~ avX v E 
A~(X)M Iav E M~ . . . .  �9 M,~" �9 (A+) A for every v = (Vl,...,Vn) E ]N~} is 
a subring of  A~(X)M. The integral closure C of  B in A~(X)M is a ring of  
integral elements of  A~(X)M. The affinoid ring (A~(X)M,C) is denoted by 
A(X)M = A(X1 . . . . .  Xn)M1,...,M,. We put A(X1,... ,X~) := A(X1 . . . . .  Xn)(l),...,{1}. 

A ring homomorphism f :  B ~ C between affinoid rings is called a quotient 
mapping if f : B  ~ --~ C ~ is surjective, continuous and open and C + is the 
integral closure of  f ( B  +) in C ~. A ring homomorphism f : A  --~ B from A to 
a complete affinoid ring B is called of  topologically finite type if there exist a 
n C ]No, finite subsets M1 . . . . .  Mn of  A ~ with Mi �9 A ~" open in A ~ for i = 1 . . . .  , n 
and a quotient mapping 9:A(Xb...,Xn)M~,...,M, ~ B such that f = goh,  where 
h:A ---+ A(X1 . . . . .  X,)M~,...,M, is the natural homomorphism of  affinoid rings. 
Then we have analogously to (3.3) 

Lemma  3.5 (i) (Universal property of  A (Xl . . . . .  X~ )M1,..., M, ) Let h: A ~ A (X)M 
be the natural ring homomorphism. Then h(m)~ E (A(X)M) + for every i C 
{ 1 . . . . .  n} and m E Mi, and i f  f :  A --~ B is a continuous ring homomorphism 

from A to a complete affinoid ring B and bl , . . . ,  bn are elements of  B ~ such 
that f (m)b i  c B + for every i E {1 , . . . , n}  and m E Mi, then there exists a 
unique continuous ring homomorphism 9:A(X)M --~ B with f = 9 o h and 
g(X i )  = bi for i = 1,. . . ,n. 
(ii) Let f :A --+ B be a ring homomorphism from A to a complete affinoid 
ring B. Then the following conditions are equivalent 

(a) f is of  topologically finite type 
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(b) f :  A ~ ~ B ~ is of  topologically finite type and there exists an open subring 
C o f B  + such that B + is integral over C , f ( A  +) C C and f : A  + ~ C is of  
topologically finite type. 

In particular, for elements sa . . . . .  sn of  A ~ and finite subsets T1 . . . . .  T, of  
A ~ with Ti �9 A ~ open in A ~ for i = 1,. . . ,  n, the natural ring homomorphism 

A ~ A ( Ts--il,... , Ts-~, > is of  topologically finite type. 

(iii) l e A  is Tate then a ring homomorphism f : A  ~ B from A to a complete 
affinoid ring B is o f  topologically finite type i f  and only if f factors through 
a quotient mapping A(XI . . . . .  Xn) ~ B for some n C No. 
(iv) Let B, C be complete affinoid rings and f :  A --* B and 9: B ~ C contin- 
uous ring homomorphisms. I f  f and g are o f  topologically finite type then 
g o f is of  topologically finite type, and if  g o f is of  topologically finite type 
then g is of  topologically finite type. 

Definition. Let f :X  --~ Y be a morphism between adic spaces. We say f is 
locally of  finite type i f  for every x c X there exist an open affinoid neighbour- 
hood U of x in X and an open affinoid subspace V o f  Y such that f ( U )  C V 
and the morphism between affinoid rings (Cy(V),  C+(V))  ~ ( C x ( U ), (9+ ( U ) ) 
induced by f is of  topologically fn i te  type. I f  f is quasi-compact (i.e., for 
every quasi-compact open subset U o f  Y, f - l ( U )  is quasi-compact) and lo- 
cally of  finite type then f is called of  finite type. 

I f  f : X  ~ Y is locally of  finite type then to every neighbourhood U ~ of  
a point x E X and every neighbourhood V p of  f ( x )  there exist open affinoid 
neighbourhoods U and V of x and f ( x )  in U ~ and W such that f ( U )  C_ V 
and (Or(V) ,  (9+(V))--~ (Cx(U), C+(U)) is o f  topologically finite type (3.5.ii, 
iv). In [H2] we will show 

Proposition 3.6 Let X, Y be adic spaces and f :X --~ Y a morphism locally o f  
finite type. Let U and V be open affinoid subspaces o f  X and Y with f ( U )  C 
V. We assume that C~,(V) has a noetherian ring of  definition or is a strongly 
noetherian Tate ring. Then the morphism of  affinoid rings (Cy(V),  C+(V))  
( Cx( U ), C+ ( U ) ) is of  topologically finite type. 

Now we consider fibre products. In (3.7) we consider fibre products in the 
category of  adic spaces and in (3.8) we consider the "fibre product" S •  X 
of  an adic space S and a scheme X both living over a scheme Y. 

Proposition 3.7 Let X, Y,S be adic spaces and f : X  --+ S and g: Y ~ S 
morphisms. We assume that f is locally of  finite type, g is adic, and every 
point y c Y has an open affinoid neighbourhood U in Y such that O r ( U )  has 
a noetherian ring of  definition or is a strongly noetherian Tate ring. Then 
there exists in the category o f  adic spaces the fibre product X • s Y of  X 
and Y over S. The projection X Xs Y --~ Y is locally of  finite type and the 
projection X • s Y --+ X is adic. 

Proof We can assume that S --- SpaA, Y : SpaB,X = SpaC are affinoid, B ~ 
has a noetherian ring o f  definition or is a strongly noetherian Tate ring, and g 
and f are induced by ring homomorphisms 2:A ~ B and #:A ~ C such that 
2 is adic and p is o f  topologically finite type. Then there exist finite subsets 
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M1 . . . . .  Mn of  A > such that Mi �9 A ~" is open in A ~ and p factors through a quo- 
tient mapping a:A(X1 . . . . .  X,)M~,...,M, ~ C. Since 2 is adic, 2(Mi) �9 B v is open 
in B ~ for i = 1 . . . .  ,n. Let 21:A(Xt . . . . .  X ,  ) M1,..., M, ---' B(XI,...,Xn);.(M~),...,~(M,) 
=:  E be the natural extension of  2. We equip D ~ :-- E~/2~(kera) �9 E ~ with the 
f-adic topology such that the canonical mapping n : E  ~ --~ D ~ is continuous 
and open. Let D + be the integral closure of  rifE +) in D ~. Then D + is a ring 
o f  integral elements o f / Y .  We have a commutative diagram of  affinoid rings 
(D: = (D ~ , D + )) 

D ~ - -  C 
T T 

(*) B ' A 

which is cocartesian in the category o f  complete affinoid rings (3.5.i). By 
(3.4.ii, iii) D ~ has a noetherian ring o f  definition or is a strongly noetherian Tate 
ring. So by (2.2) we have an adic SpaD associated with D. The commutative 
diagram induced by (*) 

SpaD ~ Spa C 
l l 

SpaB ; SpaA 

is cartesian in the category o f  adic spaces by (2.1.i). [] 

Proposition 3.8 L e t -  denote the forgetful functor f rom the category o f  adic 
spaces to the category o f  locally ringed spaces which assigns to an adic space 
(X, Cx,(Vx Ix  E X ) )  the locally ringed space (X, Cx). 

Let X , Y  be schemes, S an adic space, and f : X  --* Y and g:S --+ Y 
morphisms o f  locally ringed spaces. We assume that f is locally o f  finite 
type and that every s c S has an open affinoid neighbourhood U in S such 
that (~s(U) has a noetherian ring o f  definition or is a strongly noetherian Tare 
ring. Then there exist an adic space R, a morphism o f  adic spaces p: R --~ S 
and a morphism o f  locally ringed spaces q: R --+ X such that the diagram 

q 
R - -~  X 

el l: 
S ~ Y 

g 

commutes and the following universal property is satisfied. I f  U is an adic 
space, u: U ~ S a morphism o f  adic spaces and v: U ~ X a morphism o f  
locally ringed spaces with g o u = f o v then there exists a unique morphism 
o f  adic spaces w: U ~ R with u = p o w and v = q o w. 

The morphism p: R --~ S is locally o f  finite type. We call R the fibre 
product o f  X and S over Y and denote it by X • S. Every morphism 
f :X1  ~ )(2 between schemes locally o f  finite type over Y induces by the 
universal property a morphism Xl • r S ~ X2 • r S o f  adic spaces over S 
which we denote by f (s). 

Proof  We may assume that Y = SpecB, X = SpecB[Xl,. . .  ,Xn]/1,S -- SpaA,W 
has a noetherian ring of  definition or is a strongly noetherian Tate ring, and 
g is induced by a ring homomorphism 2:B ~ A ~. Let E be a finite set 
of  topologically nilpotent elements o f  A ~ such that E �9 A ~ is open. For every 
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k E IN let A(k )  :=  A(X1 . . . .  ,Xn)E(k),...,E(k) with E ( k )  :=  {el " . . .  'ek [ ei E E 
for i = 1 . . . .  ,k}, and let 2k:B[X1 . . . . .  Xn] ~ A (k )  ~ be the extension of  2 with 
2k(X,.) = 3(/ for i =  1 . . . .  ,n. Let z~k:A(k) ~ --~ A(k)~/2k(I )  �9 A (k )  ~ =:A~ be the 
natural mapping. We equip A~ with the f-adic topology such that ~k is con- 
tinuous and open. Then A~ has a noetherian ring o f  definition or is a strongly 
noetherian Tate ring (3.4.ii, iii). Let A + be the integral closure of  z~k(A(k) +) k 

tA b A +~ is an affinoid ring. By (2.2) we have an adic space i n A ~ . T h e n A k : = ~  k, kJ  
Rk associated with Ak. For k < h, let ~0kh:Rk --~ Rh be the morphism which is 
induced by the continuous A-homomorphism Ah --* Ak with ~h(X~-) H ~k(Xi) 
for i = 1 . . . . .  n (3.5.i). Then q~kh is an isomorphism of  Rk onto the rational 
subset {x C Rh [ Vx(egh(Xi) )<l  for every e C E ( k ) , i  = 1 . . . .  ,n} o f  Rh. Hence 
there exists in the category of  adic spaces over S the inductive limit R of  the 
system (Rk,~Okh I k ,h  E IN). Let p : R  ~ S be the structure morphism. The 
ring homomorphisms ~k o 2k: B[Xi , . . .  ,Xn] ~ A~ induce morphisms of  locally 
ringed spaces (Rk)-  -~ X which glue together to a morphism of  locally ringed 
spaces q:R---+ X. We have 9 o p = f o q. Using (2.1.i) and (3.5.i), one can 
easily check that R, p, q satisfy ~ e  universal property. [] 

Lemma 3.9 (i) Le t  

X •  q> X 

P~ ~ f  
Y > S 

9 
be a cartesian square as in (3.7). Then, f o r  every x E X and y E Y with 
f (x)  = g ( y ) ,  there exists  a z E X • Y with x = q(z)  and y = p(z) .  

(ii) Let  
q 

R ~ X 

e,!. ,l+s 
S - ~  Y 

9 

be the commutat ive diagram o f  (3.8). Then, f o r  every x c X and s E S with 
f (x)  = g(s), there exists a r C R with x = q(r)  and s = p(r) .  

P r o o f  (i) We use the notations o f  the proof o f  (3.7). Let A0, B0, Co be tings 
o f  definition of  A ~, B ~, C ~ with 2(A0) C_ B0 and #(A0) C Co, and let I be an 
ideal of  definition o f  A0. Let F be the image of  Bo| Co in E ~ :=  B ~ | C ~, 
and let E + be the integral closure o f  the image of  B + | C+ in E ~. We equip 
E ~ with the group topology such that {I  n �9 Fin E IN} is a fundamental system 
of  neighbourhoods o f  0. Then E ~ is a f-adic ring and E + is a ring of  integral 
elements o f  E ~. The completion o f  the affinoid ring E = (E ~, E +) is denoted 
by B~A C. The commutative diagram 

B~A C ~ - -  C 
T Y 
B ~ A 

is cocartesian in the category o f  complete affinbid rings. Hence X •  Y = 
SpaB~A C = SpaE. 

Let x be a point of  X and y a point o f  Y with f ( x )  = 9(Y) .  We consider 
x and y as valuations of  C ~ and B ~. There exists a valuation v of  E ~ which 
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lies over x and y. Let (Ix) and (Fy) be the convex hulls o f  the value groups 
Fx and Fx o f x  and y in the value group Fv of  v. Put H :=  (Fx)t2 (Fy) (hence 
H = (Fx) or H = (Fy)). Then H contains the characteristic subgroup cFv of  v 
(cf. [H1, Sect. 2]). Therefore we have the valuation w :=  vlH of  E ~ (el. [HI, 
Sect. 2]). Also w lies over x and y. We have w ( e ) <  1 for every e E E +, and 
w(i) is cofinal in Fw for every i E I (since x(i) is cofinal in Fx and y(i) is 
cofinal in Fy). Hence w E SpaE. 

(ii) We may assume Y = SpecB, X = SpecC, S = SpaA, and f and 9 are 
given by ring homomorphisms B ~ C and B ~ A ~. Let p E SpecC be a prime 
ideal of  C and v E SpaA a valuation o f  W with p NB = supp(v)AB. We show 
that there exists a r E R with p = q(r) and v = p(r). We choose a prime 
ideal q o f  C | A v with p = q n C and supp(v) = q n W ,  and a valuation r of  
C | A ~ such that q = supp(r), r extends the valuation v o f  A ~ and the value 
groups F~ and Fr of  v and r have the same divisible hull (in particular, Fr is 
the convex hull of  F~ in Fr). Let A0 be a ring of  definition o f  W, I a finitely 
generated ideal of  definition o f  A0, and C '  C C a finite set o f  generators o f  C 
over B. We choose a k E ]N such that r(c | i) < 1 for every c E C'  and i E I k. 
Then let Do denote the subring Ao[c | ilc E C', i E I k] of  D" := C | W,  
and let D + denote the integral closure o f  A+[c | i[c E C',i E I k] in D ~. We 
equip D ~ with the group topology such that {I n. Do[n E N }  is a fundamen- 
tal system of  neighbourhoods o f  0. Then D ~ is a f-adic ring and D + is a 
ring o f  integral elements of  D ~. We have r E Spa(D~, D+ ), and Spa(D~,D +) 
is an open subspace of  R. Hence r is an element of  R with p = q(r) and 
v = p(r). [] 

4 Formal schemes, rigid analytic varieties and adic spaces 

In this paragraph we construct a functor t: ~,~ --~ d form the category 
o f  locally noetherian formal schemes to the category d of  adic spaces, and 
a functor rk :~k  ~ ~r from the category of  rigid analytic varieties over a 
complete non-archimedean valued field k to the category o f  adic spaces. The 
idea o f  the definition o f  t and rk is the following. First we notice that if A is a 
noetherian adic ring or a Tate ring of  topologically finite type over k then, for 
every ring A + of  integral elements of  A, we have an adic space Spa(A, A +) 
associated with the affinoid ring (A, A +) (2.2). So we can define t and rk 
on the affine objects o f  the categories ~-  and ~k, hamely if  X = SpfA then 
t(X) :=  Spa(A, A) and i f X  = SpA then rk(X) :=  Spa(A, A~ We will see 
that every open subset U of  an affine object X of  ~-  (resp. ~k )  induces in a 
natural way an open subset a(U) of  t (X) (resp. rk(X)), and every morphism 
f :  U1 --~ U2 between two open subspaces o f  affine objects )(1, )(2 of  ~ (resp. 
~tk) induces in a natural way a morphism of  adic spaces a( f ): a(Ul ) --+ a(Ua). 
Then it is obvious how one has to define t and rk on general objects, namely 
if an object X of  o~- (resp. ~ k )  is obtained by glueing affine objects (X/[i E l )  
along isomorphisms ~Pji: Uij --~ Uji then t(X) (resp. rk(X)) is defined to be 
the adic space obtained by glueing (t(Xi)li E I )  (resp. (rk(X/)[i E I ) )  along the 
isomorphisms a(tpji): a( Uq ) --~ a( Uji ). 
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In the following proposition we construct the functor t. If X is an adic 
space then we equip, for every open subset U of X, (9~-.(U) with the subspace 
topology of (gx(U). Then (X, (9+) is a locally and topologically tinged space. 

Proposition 4.1 Let X be a locally noetherian formal scheme. Then there 
exist an adic space t(X) and a morphism of locally and topologically ringed 
spaces rr Ztx: (t(X), + = (gt(x)) --~ (X, Cx) such that the following universal 
property is satisfied I f  Z is an adic space and 2:(Z, (9 +) ---+ (X, Cx) is a 
morphism of locally and topologically ringed spaces then there exists a unique 
morphism between adic space f :  Z --~ t(X) such that the diagram 

(z, ( 9 + ) . ~  

(t(x), (9~x)) ,"~(x, (gx) 

commutes, where p is the morphism induced by f .  
I f  f :X -+ Y is a morphism between locally noetherian formal schemes 

then by the universal property there exists a unique morphism between adic 
spaces t ( f ) :  t ( X ) ~  t(Y) such that the diagram 

(t(X), + ~x (gt(X)) ~ ( X~(9X ) 
~,+ +f 

(t(r), + Ct(r)) - -~  (Y,(gr) ~y 

commutes, where # is the morphism induced by t( f ). So we have a functor 
t from the category of  locally noetherian formal schemes to the category of  
adic spaces. 

Proof We may assume that X -- SpfA is affine. Then we put t (X) := 
Spa(A, A). By the following point (1), the identity A --, A induces a mor- 
phism of locally and topologically tinged spaces zt: (t(X), + O,(x)) ~ (x, (gx). 
By (2.1.ii) and (1), t (X)  and 7z satisfy the universal property. 

(1) Let Y be an adic space. Then the morphisms of locally and topologically 
ringed spaces (Y, (9+) ~ (X, (fix) correspond bijectively to the continuous ring 
homomorphisms (gx(X) ~ (9~(Y). 

Proof We may assume that Y -- Spa(B, B +) is the adic space associated 
with a complete affinoid ring (B, B+). Let a continuous ring homomorphism 
qg: Cx(X) ~ C~(Y) be given. We will construct a morphism of locally and 
topologically ringed spaces f : (Y ,  C +) ~ (X, (gx) such that f* : (gx(X)  
(r is equal to ~o. For every y E Y put g(y)  = {a E (gx(S)[vy(Cp(a)) < 1}. 
Then 9(Y) is an open prime ideal of Cx(X) = A. Hence we have a mapping 
9: Y --~ X. This mapping is continuous, since, for every s c (gx(X),g-l({x E 
X[s (x ) .O} )  = {y E Y[I =<Vy(~O(a))}. 
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Let s E Cx(X)  be given. Put U = (x E X[s(x):#O}. Then Cx(U) = A(~) 
and C + ( g - I ( u ) )  = B+(~-~5~)). Hence by (1.2.i) there exists a unique continuous 

ring homomorphism q~t}: Cx(U) ~ C+(9-1(U)) such that the diagram 

(~+(g-~(u)) ~ (gx(U) 

T T 
~+(r) ~-- ~x(X) 

~o 

commutes. The ~0u define a morphism of sheaves ~: (gx --~ 9.(9 +. It remains to 
show that, for every y E Y, the ring homomorphism ~by: (~x,g(y) ~ (9~,y induced 

by ~ is local. Let my and rag(y) be the maximal ideals of (9~,y and Cx, g(y), and 
let h: (gx(X) ~ (gx, g(y) be the natural ring homomorphism. Then by definition 
of g we have h-l(m~(y)) = h- l ( t~y l (my) )  which implies ms(y ) = Oyl(my).  
[] 

We call a subcategory cg of the category d of adic spaces saturated if it 
satisfies the following properties. If X E ~ and U C_ X is an open subspace 
then U E oK; if X E ~r has an open coveting (Ui)iE1 with Ui E ~g for every 
i E I  t henX E ~ ;  i f X E  d is isomorphic to a Y E cg thenX Ecg; ~ is a 
full subcategory of ~r 

Proposition 4.2 (i) The functor t: ~ ~ ~r from the category ~ o f  locally 
noetherian formal schemes to the category of  adic spaces is fully faithful. 
A morphism f :  X ~ Y in ~ is adic [EGA*, 1.10.12] resp. locally of  finite 
type [EGA*, 1.10.13] if  and only / f  t ( f ) :  t (X)  --+ t (Y)  is adic resp. locally 
of  finite type. 
(ii) Let r be the smallest subcategory of  ~r such that t ( ~ )  C_ cg and cg is 
saturated. Then the objects of  cg are the adic spaces X with the property that 
every x E X has an open affinoid neighbourhood U such that (gx(U) has a 
noetherian ring of  definition A such that Cx(U) is finitely generated over A 
and (9+(U) is the integral closure of  A in (gx(U). 

Proof (i) For every locally noetherian formal scheme Z we have the lo- 
cally ringed space Z0 := (Zt, (gt~z)iZt) with Zt = {z E t(Z)ivz is a trivial 
valuation} C t(Z). The morphism of locally ringed spaces jz:  Z0 --* Z induced 
by 7rz is an isomorphism. Let X, Y be locally noethetian formal schemes. Let 
f : t ( X )  ~ t (Y)  be a morphism of adic spaces. Yl'len f ( X t )  C_ Yt, and hence 
f induces a morphism of locally ringed spaces f0:X0 ~ Y0. Let g:X --+ Y 
be the morphism of locally ringed spaces with g o j x  = j r  o fo.  Then g 
is a morphism of formal schemes (since X is locally noetherian), and it 
is easily seen that f = t(g). Let 91, 92:X --~ Y be morphisms of formal 
schemes with t(gl) -- t(g2) = : f .  We have gl o j x  = j r  o fo  and 92 o j x  = 
j r  o fo  which implies gl = 92. Hence the functor t is fully faithful. 

Let f : X  ~ Y be a morphism between locally noetherian formal schemes. 
(3.3.ii) shows that a ring homomorphism g: A ~ B between noetherian com- 
plete adic tings is of  topologically finite type (in the sense as defined in 
Sect. 3) if and only if g factors through a continuous and open mapping 
A(X  1 . . . . .  Xn) --* B. Then (3.2.i) and (3.6) imply that f is adic (resp. lo- 
cally of finite type) if and only if t( f ) is adic (resp. locally of finite type). 
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(A more detailed proof would show that one can avoid the use of  (3.2.i) and 
(3.6)). 

(ii) Let @ be the full subcategory of  ~r consisting of  the objects with 
the property described in (ii). Then t ( f f )  C_ ~ and ~ is saturated. Let 
be a subcategory of  d such that t ( f f )  c_ 8 and r is saturated. We have to 
show ~ C_ ~. Let A be an affinoid ring such that there exist a noetherian 
ring of  definition B of  A ~ and a finite subset E = {el , . . . ,en} o f  A ~ such that 
A ~ = B[E] and A + is the integral closure of  B in A% We show that every 
point x o f  SpaA has an open neighbourhood U in SpaA with U E ~. We 
assume that Vx(ei) > 1 for i = 1 . . . . .  s and Vx(ei)<l for i --- s + 1 . . . . .  n. 
We choose bl, . . . ,br  c B such that {bl , . . . ,br}"  B is an ideal of  definition 
of  B and vx(biej)<l for all i = 1, . . . , r , j  = 1, . . . , s .  Let C be the subring 

B[es+~ . . . . .  en] 1 . . . .  , ~ of  the localization Ae~ ,...,es" We equip C with the adic 

topology such that {bt . . . . .  br}" C is an ideal of  definition. Let U be the rational 
subset { y  E SpaA]l <=Vy(ei) for i = 1 . . . . .  s and Vy(ei)<=l for i = s + 1 . . . . .  n 
and vy(biej)<=l for i = 1 , . . . , r , j  = 1 , . . . , s}  o f  SpaA. Then x E U and U is 

i somorph ic to thera t iona l subspace{yESpa(C ,C)[vy (b i )<Vy(~)~eOfor  

i = 1 . . . . .  r , j  -- 1 . . . . .  s} of  Spa(C, C). [] 

Let k be a field equipped with the complete topology of  a rank 1 valuation 
of  k. Let ~k be the category of  rigid analytic varieties over k as defined in 
[BGR, 9.3.1]. Let ~r be the category of  adic spaces over Spa(k, k~ (Every 
object o f  d k  is analytic in the sense of  Sect. 3). We will construct a natural 
functor rk: ~k ~ ~'k. For every X E ~k let IX[ be the Grothendieck topology 
of  X. Then (tXl, C;x) is a ringed site ]SGA, IV.13.1], and every morphism 
f : X  --~ Y in ~k induces a morphism of  ringed sites j~: (IXl, ~x) ~ (IYI, ~r)  
[SGA, IV.13.3]. Similarly, for every X E ~r let IX I be the topology underlying 
X. Then ([X[, Cx) is a ringed site, and every morphism f : X  --* Y in ~r in- 
duces a morphism of  ringed sites jT: (IX[, Cx) ~ ([Y[, Oy). I f X  = Spa(k, k ~ 
and Y = Spk then ([XI, Cx) = (IYI, cr) ,  and we denote this ringed site by S. 
I f X  is an object of  ~k or ~r then ([XI, (gx) is a ringed site over S, and if  f 
is a morphism in ~k or ~r then j7 is a morphism of  ringed sites over S, i.e, 
we have functors from the categories ~k and ~r to the category of  ringed sites 
over S. In the following proposition we construct the functor rk: ~k  --* d k .  

Proposition 4.3 To every X E ~ there exist a rk(X) E ~ k  and a morphism 
p = px: (Irk(X)l, 0~k(x)) -- '  (IX[, ~x)  of ringed sites over S such that rk(X) is 
locally of  finite type over Spa(k, k~ p is locally coherent [SGA, VI.3.7] and 
the following universal property is satisfied. I f  Z is an adic space locally of  
finite type over Spa(k, k ~ and ,~: (IZ[, Cz) ~ ([X], (gx) is a locally coherent 
morphism between ringed sites over S then there exists a unique morphism 
f :  Z -+ rk(X) in S4k such that the diagram of ringed sites 

(IzI, O z ) ~  

(Ir~(X)[, er~(x)) ,~ (IXl, r;x) 
P 

commutes. 
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l f  f :X --~ Y is a morphism in ~k then f :  (Ixl, ~0x) --+ (IYI, o r )  is locally 
coherent, and hence by the universal property there exists a unique morphism 
rk( f ):rk(X)--~ rk(Y) in sCk such that the diagram 

(Irk(X)l,  (;rk(x)) px (IxI, (;x) 
rk( f )  I ~ f 

([rk(Y)[, (grk(r)) pr' (IYI' (;r)  

commutes. Thus we have a functor rk : ~k ~ slk. 

Proof  We may assume that X = SpA is the affinoid rigid analytic variety 
associated with a Tate ring A of topologically finite type over k. We put 
rk(X) := Spa(A, A~ By the subsequent lemma rk(X) is of finite type over 
Spa(k, k~ By [HI, 4.3] there is a natural one-to-one correspondence between 
the rational subsets of SpA and the rational subsets of Spa(A, A~ This corre- 
spondence extends in a unique way to a morphism of  sites m: Irk(X)l --+ IXI. m 
is coherent. For every rational subset U of X and corresponding rational sub- 
set V of rk(X) there exists a unique A-algebra homomorphism Ou: Cx(U)  
(grk(x)(V), and Ou is bijective. The Ou 's  induce an isomorphism of sheaves 
O:Cx ~ m.(9~k(x ). Then p = (m,O):(Irk(X)l ,  (~rk(X)) ~ (IXl, (~X) is a 
morphism of ringed sites over S. We check the universal property. Let Z 
be an adic space locally of finite type over Spa(k, k ~ and 2:([Z[, Cz) --* 
(IX[, 60x) a locally coherent morphism between ringed sites over S. There ex- 
ists a unique morphism of ringed sites #: (IZI, (gz) -+ (Irk(X)l, (grk(x)) with 
2 = p o p. Let g: (Z, (gz) ~ (rk(X), C,k(x )) be the morphism of ringed spaces 
whose associated morphism of ringed sites is # (cf. [SGA, IV.4.2.3]). We 
have to show that g is a morphism in dk .  We know that g is a morphism 
of ringed spaces over k and that for every open quasi-compact subset U of Z 
the restriction g: U --+ rk(X) is a quasi-compact mapping. Since the k-algebra 
homomorphisms between Tate rings of topologically finite type over k are con- 
tinuous [BGR, 6.1.3], we see that C~k(x ) --+ g.Cz is a morphism of topological 
sheaves. It remains to show that, for every z E Z, the ring homomorphism 
9*: (9~k(x),g(z) ~ (gz,~ is compatible with the valuations Vg(z) and vz. For that 
we note the following property 

(1) Let U C_ rk(X) be open, f E (grk(x)(U), a E k*. We consider the sets 
U1 : {x E V i v a ( f )  < Vx(a)},U2 = {x E U [ v x ( f )  <__ vx(a)},Vl = {x E 
g - l ( U ) [ v x ( g * ( f ) )  < v~(a)},V2 : {x E g - l (U)[~x (g*( f ) )  <= v~(a)}. Then 
111 : g- l(U1) and V2 = g - l ( U 2 ) .  

Proof  Let M be the set of points z E Z such that the residue class field of 
(gz,~ is finite over k. For every z E M the ring homomorphism g~': (~k(x),g(z) --' 
(gz,~ is compatible with the valuations v0(~ ) and Vz, since g~ is local and the 
valuation ring k ~ of k extends uniquely to every finite extension field of k. 
Hence Vi N M  = g - l ( U l ) n M  and V2fqM = g - I ( U 2 ) A M .  Then [H1, 4.3] 
and the subsequent lemma imply V1 = g-I(U1) and V2 = g-t(U2). 

Let z E Z be given. We consider the ring homomorphism g*: (~k(X),g(z) -+ 
(PZ, z. Let mg(~) and mz be the maximal ideals of Crk(X),o(~) and CZ, z. Then 
by (1), gz(mg(z)) = g*(~a~k*{ f  C C~k(x),g(~)lVo(z)(f) <= vg(~)(a)}) C 
["]~ek* { f E (~Z, zlVz( f ) <= Vz(a)} = mz, i.e., g~ is a local ring homomorphism. 
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Furthermore, (1) implies that if f is an element of Crk~x),g~z) with Vg(z)( f )< 1 
(resp. vg~z)(f) < 1) then vz * < v * (gz ( f ) )  = 1 (resp. z(gz ( f ) )  < 1). This shows 
that 9~ is compatible with the valuations vg~z) and vz. [] 

Lemma 4.4 Let A be a Tate ring of  topologically fn i te  type over k. Then 
there exists a unique ring A + of  integral elements of  A such that k ~ C A + and 
the ring homomorphism of  affinoid rings (k, k ~ ~ (A, A +) is of  topologically 
finite type, namely A + = A ~ 

Proof Let A + be a ring of integral elements of A such that f : ( k ,  k ~ --~ 
(A, A § is of topologically finite type. By (3.5.iii) f factors through a quo- 
tient mapping g: ( k, k~ )(Xl . . . . .  Xn) ~ (A, A+ ). We have ( k, k~ )(Xl, . . . ,Xn) + = 
k~ . . . . .  Xn) = k (Xl . . . . .  Xn) ~ Since 9: k(X1,.. . ,X~) --~ A is surjective, A ~ is 
the integral closure of 9(k(X1 . . . . .  Xn) ~ in A [BGR, 6.4.3]. Hence A + = A ~ 
This also shows that (k, k ~ --+ (A, A ~ is of topologically finite type. [] 

For an object X of d k  or ~k let Shv(X) denote the topos of the site IX[. 
Before (4.2) we defined the saturated subcategories of ~r Analogously we 
define the saturated subcategories of ~k.  

Proposition 4.5 (i) For every X C ~ ,  the morphism of  ringed toposes 
(Shv(rk(X)), (grk(x)) ~ (Shv(X), Cx ) induced by the morphism of  ringed sites 
Px : (Irk(X)l, Cry(x)) ~ (IXI, Ck ) is an equivalence of  ringed toposes. 
(ii) The functor rk:~k -+ ~r is fully faithful. 
(iii) Let cg be the smallest subcategory o f  ~ k  sueh that rk(~tk) C_ q~ and cg 
is saturated. Then the objects of  cg are the adic spaces locally of  finite type 
over Spa(k, k~ 
(iv) The functor rk:~k ~ ~zr restricts to an equivalence between the cat- 
egory of  quasi-separated rigid analytic varieties over k and the category of  
quasi-separated adic spaces locally of  finite type over Spa(k, k ~ 
(v) For every X E ~ ,  the adic space rk(X) is affinoid i f  and only i f  X is an 
affinoid rigid analytic variety over k. 

Proof (i)-(iv) follow from the proof of (4.3) (cf. [HI, 4.6] for (i)). Let 
X C ~k such that Y := rk(X) is an affinoid adic space. By (3.6) the mor- 
phism of affinoid rings (k, k ~ ~ (Cy(Y), C+(Y)) is of topologically finite 
type. Then by (4.4) (9+(Y) = C(Y) ~ The adic space rk(X) is isomorphic 
to Spa(Cy(Y), Cr(Y)  ~ = rk(Sp(gr(Y)) (over Spa(k, k~ Then by (ii) Y is 
isomorphic to SpCy(Y). [] 

Remark 4.6 (i) Let X be a scheme locally of finite type over k. One asso- 
ciates with X a rigid analytic variety X an [BGR, 9.3.4]. The identity k --+ k 
induces a morphism of locally ringed spaces Spa(k, k~ ---* Speck. Then by 
(3.8) we have the adic space X )<Speck Spa(k, k ~ over Spa(k, k~ It follows 
from our construction of the functor rk and of X • Sp~ k Spa(k, k ~ that 

r k ( S  an) ~ X )<Speck Spa(k, k~  

where the isomorphism is an isomorphism over Spa(k, k ~ 
(ii) Let V be a complete discrete valuation ring of  rank 1, and let k be the 
quotient field of V. In [R] there is constructed a functor s: ~ ~ ~k from the 
category ~ of formal schemes locally of finite type over SpfV to the category 
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~k of  rigid analytic varieties over k. Let G be the category whose objects 
are the locally noetherian formal schemes and whose morphisms are the adic 
morphisms between formal schemes. By (3.2.ii) and (4.2.i) we have the functor 
ta: e --~ d , X  ~ t(X)a which assigns to every X c 8 the open subspace t(X)~ 
of analytic points of  the adic space t(X). Let u: ~ ~ g be the natural functor. 
Then the diagram 

8 ~ z t  
ta 

commutes up to isomorphism, i.e., the functors rk o s and t~ o u are isomorphic. 
(iii) We use the notations of  (ii). Let f : X  ~ Y := SpfV be a formal scheme 
locally of finite type over SpfY. We consider the morphism of adic spaces 
t( f ): t (X) ~ t(Y). The topological space Z underlying t (Y)  is the Sierpinski 
space, i.e., Z has an open generic point ~/ (i.e., {r/} is open and {~/} = Z) and 
Z consists of two points. We have {r/} = t(Y)~, and the fibre t ( f ) - l ( q )  is 
the open subspace of  analytic points of t(X). Raynaud calls the rigid analytic 
variety s(X) the generic fibre of f .  So the diagram in (ii) says that the functor 
rk transforms the generic fibre s(X) of f into the generic fibre t( f )-I(r/) of 
t( f ), i.e., rk(s(X)) ~ t( f )-l(rl). 
(iv) IfA is an adic noetherian ring then the identity A ~ A induces a morphism 
of locally ringed spaces Spa(A, A)_ ---+ SpecA. More general, if 3( is the formal 
completion of a locally noetherian scheme X along a closed subset X ~ C_ X 
then there is a natural morphism of locally ringed spaces p = p;?: tO~) ~ X. 

Namely, if (X~Ii C I )  is an open affine covering of X and Xi denotes the formal 
completion of Xi along X' NX/ then (t(Xi)[i E I)  is an open covering of t(,~) 
and the morphisms t(Xi) --* Xi just described glue together to a morphism 

p: t (2 )  ~ X.  
f : X  --~ Y be a morphism between locally noetherian schemes, and let 

X t C X and Y' C_ Y be closed subsets with f (X t) c_ Y'. Then f induces a 
morphism f : ) (  ~ I ~ between the formal completions of X and Y along X ~ 
and Y~. The diagram 

(*) 
t(2) Px, x 

t~/) 1 I s 
t(~') > r 

pf, 

is commutative. If  f is locally of finite type then, by (3.8), (*) induces a 
morphism of adic spaces 

r t()() --~X x r  t(I~). 

i f  X ~ = f - l ( y t )  then the following holds. 

(a) im(~o) = {x E X x r  t(I~)lx has a specialization y in X •  t(I?) such that 
Vy is a trivial valuation }. 
(b) r is a local isomorphism. 
(c) If  f is separated then qo is an open embedding. 
(d) If f is proper then r is an isomorphism. 



A generalization of formal schemes and rigid analytic varieties 545 

5 Mumford's construction of semi-abelian schemes 

Starting from a lattice Y in the generic fibre of  a split torus G over an adic 
noetherian integral domain A, Mumford constructs in [M] a semi-abelian group 
scheme G over A. In this paragraph we interpretate this construction in the 
category of  adic spaces over Spa(A, A). The adic geometry has two advantages. 
First, G is not a quotient of  G in the category of  schemes over SpecA, whereas 
Y induces in a natural way a closed adic subgroup L of  the adic group G ad 

associated with G and the adic group G ad associated with G is the quotient 
of  G ad by L in the category of  adic spaces over Spa(A, A). Secondly, the 
construction o f  G is rather complicated, whereas the construction of  G aa as the 
quotient o f  G ad by L is very easy. 

First we recall the construction of  rigid analytic toil in our context o f  adic 
spaces. Let R be an adic space. Let Y be an abelian group, and for every 
y c Y, let Uy be an open subspace of  R such that Uo = R,U_y = Uy and 
Uy f'~ Uyt C_ Uy+y, for all y, y~ E Y. Then the direct sum 

L:= llUy 
yEY 

is in a natural way an adic group over R. Let ~3~ be the torus Spec Z[T~, 
T1-1 . . . .  , T~, TZ1]. Then according to (3.8). 

r . r 
~J m,R " : ~J m X S p e c Z  R 

is an adic group over R. The images o f  T1 . . . . .  Tr C C~,  (l13~n) under the ring 
homomorphism (9~r (~3~) --" ( 9 ~ , R ( ~ , R )  are also denoted by T1 . . . . .  Tr. Let 

f :  L --- ~3rR be a homomorphism of  adic groups over R. If/z: a3r,R • --~ 
~ , e  denotes the multiplication of  ~3r, R then # o ( f  • i d ~ . R ) : L  • ~ , R  -~ 

r F ~3m, R is an action o f  L on r R. 

Proposition 5,1 Assume that for every quasi-compact open subset U of 113~m,~ 
the set { y  E YlUy n f - l ( U ) ~ 0 }  is fn i te  (for example, this is satisfied i f  
f is quasi-compact) and that Y is torsion-free. Then in the category of  adic 
spaces over R the quotient rt: r R ---- Z of  ~rm, R by L exists. ~z is surjective 
and a local isomorphism. (Hence Z is locally of  finite type over R). There 
exists a unique adic group structure on Z such that z is a homomorphism of 
adic groups over R. 

Proof Let p: ~3~, R --- R be the structure morphism. For every y E Y, f ]Uy is 
a section o f  p over Uy. Let Sy: p - l (Uy)  --~ p- l (Uy)  be the translation induced 
by f lUy. Assume 

(1) There exists an open covering {Vtlt c T} of ~3~, R such that Vt Nsy(Vt n 
p- l (Uy))  : ~ for every t E T and every y E Y - {0}. 

Then one can construct the quotient o f  r R by L as follows. For t, t t C T and 

y E Y put Vt, t,,y :=  Vt MSyl(Vt , fq p - l ( U y ) ) .  Then by (1), Vt, t,,y M Vt, tt,y, : 0 
for y #  y'. We put Vt, t, :=  Uyry Vt, tt,y ~ Vt. Since sy(Vt ,  tt,y ) -~- Vtt , t ,_y,  the 
Sy( y C Y) define an isomorphism st, tt: Vt, tt .---> Vtt t. Let Z be the adic space 
obtained by gtueing together the Vt, t E T along the isomorphisms st, ft. Since 
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T r the Vt cover ~r~,R, we have a natural morphism n :  ~m,R ~ Z. It is easily seen 
that n is the quotient o f  r by L and that n has the properties stated in 
(5.1). 

So it remains to show (1). Let U be an open affinoid subset of  R. Let 
H = {hi . . . . .  hn} be a finite set o f  topologically nilpotent elements of  C~(U) 
such that H.(gg(U) is open in CR(U). Put L = {1 . . . . .  n) • {1 . . . . .  r) .  The open 
subset W : =  {x E p-l(u)]vx(hiTj)<l  and vx(hiTf l )<l  for every (i,j) c L} 
of  r is quasi-compact. Hence the set K: = { y E YlUy n f-l(W)~:0} is 

finite. Put k :-- Igl and V : =  {x ~ p- l (U)[vx(hiTf)<l  and vx(hiTf-k)<l for 
every (i,j) E L}. Then we have 

(2) Uy N f - l ( V )  = 0 for every y C Y -  {0}.  

Indeed, assume Uy Nf -~(V) :#O for some y C Y - {0). Choose a x c Uy n 
f - l ( V ) .  Then for i --- 0 . . . .  , k , f ( i x )  = i f ( x )  C W and ix C Uiy. Since Y is 
torsion-free, we obtain IKI > k  + 1, contradiction. 

For every family A = ((aij, bij, cij, dij)i(i,j) E L) with aij, bij, cij, dij E ]No 
and aij + cij = bij +d i j  + 2  for every (i,j) c L we put VA = {x E 

p-l(U)ivx(haiJT2k)<vx(h~iJ)*o and vx(h~iJT~2k)<vx(haiiJ)4=O for every 
(i,j) C L}. Now (1) follows from the following point 

(3) Va N sy(VA N p- l (Uy))  = 0 for every y C Y - {0) and the VA's cover 
p - l ( u ) .  

Proof of(3)  Assume there exists a y E Y - { O )  with VAASy(VANp-1(Uy))~-O. 
Let f l , . . .  , f~  be the units of  (gR(U-y) with S*_y(Tj) = f jT j  for j = 1 . . . . .  r. 

Then VA Nsy(VA n p- l (Uy))  = V.4 Ns-ly(vA fq p - l ( U - y ) )  = {x C p - l ( U  n 

U_y)lvx(ha'JTj2. k)<vx(h~ 'j ) :4 = O, Vx[n i''c'j'v-2k~j ) <vx(haigJ):4 =n ~x,'.i(t'aa ~,r T2k ~ < j  - j  , = 

vx(h~J)*O, vx(h~Jff2kTf-2k)<vx(hd~J)*o for every ( i , j )  E L}. Let z be an 

element o f  VA M Sy(VA M p-l(Uy)) .  Since aij + cij = bij + dij + 2 for every 

( i , j )  E L, we conclude vz(hi f~)<l  and vz (h i f f k )< l  for every ( i , j )  c L 
which means p(z) E U_y A f - I(V) ,  in contradiction to (2). 

Let x E p - I ( u )  be given. We look for a family A with x C VA. 
Let i E {1 , . . . , n}  be fixed. I f  vx(hi) = 0 then we put aij = cij = 1 
and bij = dij = 0 for j E {1 , . . . , r} .  I f  vx(hi):~O then we choose, for 
every j E {1 , . . . , r} ,  such aij, bij, cij, dij E ]No" that aij + cij = bij + dij 
+ 2 and v~(hi)Cij-a~J<vx(T2~)<vx(hi)bis-a~J. (This is possible since vx(T~ ~) 
4=0 and vx(hi) is cofinal in the value group of  Vx.) Then for this A = 
((aij, bij, cij, dij)i(i,j) ~ L) we have x ~ VA. [] 

Now we specify R, Y,L, f .  Let A be a noetherian normal integral domain 
which is complete with respect to an adic topology,.and let K be the quotient 
field of  A. S denotes the affine scheme SpecA and G the torus r •  S --- 
SpecA[T~, T~ -~ . . . . .  Tr, T ~ ] .  Let Y C (~(K) = (K*) ~ be a torsion-free finitely 
generated subgroup of  rank r which admits a polarization in the sense o f  [M, 
1.2]. To G and Y Mumford constructs in [M] a semi-abelian scheme G over 
SpecA. 
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For every y = (y l  . . . . .  yr)  E Y we put Vy = {p E SpecA[y/ c (A~)* for 
i = 1 . . . . .  r}. Then Vy is an open subset of  SpecA, and Vo = S, Vy = V_y and 
Vy N Vy, C Vy+y, for all, y, y~ c Y. Hence the direct sum 

H : =  I I V y  
yEY 

is in a natural way a group over S. For every y = (Yl . . . . .  Yr) C Y, let 
gy: Vy --. G be the S-morphism with gy(Ti) = Yi E (gs(Vy) for i = 1 . . . . .  r. 
Then 

g : =  I I  gy:H --o G 
yEY 

is a homomorphism of  groups over S. 
Let R denote the adic space Spa(A, A). The identity A --~ A induces a 

morphism of  locally ring spaces ~p: R ---+ S. By (3.8), ~o induces the functor 
X H X Xs R from the category of  schemes locally of  finite type over S to the 
category o f  adic spaces locally of  finite type over R. According to (4.6.i) this 
functor corresponds to the functor "associated rigid analytic variety" from the 
category o f  schemes locally o f  finite type over a non-archimedean field k to 
the category o f  rigid analytic varieties over k. So we call, for every scheme X 
locally of  finite type over S ,X  Xs R the associated adic space and denote it by 
X ad ' 

&d := ~ •  R = ~;~,,R 

G ad :=  G • R 

H ad :=  H • R = ] [  ~p-l(Vy) 
yEY 

gad : =  g(R):Had __+ Gad . 

By the universal property in (3.8), ~ad, Gad and H ad are adic groups over R 
and gad is a homomorphism of  adic groups over R. Although one considers G 
as the 'quotient' of  G by Y, G is not a quotient o f  G in the category o f  schemes 
over S, nor does there exist a nontrivial morphism G ~ G of  schemes over S. 
But in the category of  adic spaces the situation is much better. We have the 
following result. 

Theorem 5.2 (i) There is a natural homomorphism 2 : 0  ad --~ G ad of  adic 
groups over R. 
(ii) gad is quasi-compact. Hence by (5.1), in the category of  adic spaces over 

ad ad ad R the quotient ~:G - , Z  o f  G b y H  exists, a n d Z  is in a natural way 
an adic group over R. 
(iii) There exists a unique morphism of  adic spaces #: Z -~ G ad such that the 
diagram 

~ad 

Z ----+ G ad 
# 

commutes. # is an isomorphism of adic groups over R. 
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Remark 5.3 (i) Let p: (~ad)_ = (G x S R)_ ~ G be the projection, and, for 
every y E Y C G ( K )  C G, let {y} be the closure of  {y} in G. Then Uy~r-{y} 
is not closed in G but p- l (Uyer{y} )  is closed in ~ad, and p - l ( U y e r ( y } )  is 
the image of  the mapping gad:Had --~ dad. 
(ii) Using sheaves o f  ideals o f  the structure sheaves, one can define in the usual 
way closed subspaces of  adic spaces (cf. [H2]). In the situation of  (5.1), the 
morphism f : L  ~ ~r,R is a locally closed embedding, i.e., f factors through 
an isomorphism onto a closed subspace of  an open subspace of  G~,,R. Then by 

(i) and (5.2.ii), 9ad: H ad ~ d ad is a closed embedding, and so we can consider 
H ad as a closed adic subgroup of ~ad. Then (5.2) says that G ad is the quotient 
o f  ~ad by a closed adic subgroups of  dad. 

Proof Let X be the character group of G. Since we have already introduced 
the coordinates TI . . . . .  Tr of  G, we identify X with 7/r. For y = (Yl . . . . .  Yr) E 

nl K* Y C ( K * f  and n = (hi . . . . .  n~) E 7/~ we put yn = Yl " ' ' ' 'Ynr  E and 
T" := T~ 1 . . . . .  T nr E d~d((~). Let ~b: Y ~ X be a polarization of  Y. 

(ii) and (5.3.i) follow from the following two points. 

(a) For every y E Y, gy: Vy ~ G is a closed embedding. 
(b) For every quasi-compact set U of ~ad, the set {y  E Y ] ~-l (Vy)  N 
(9ad)- l (U)#: r  is finite. 

to (a): Let y E Y be given. By definition o f  qS, we have h: = yt(Y) E A. By 
[M, 1.4], y~ E Ah for every �9 E 7/~. In particular, for cr = ei = (0 . . . . .  1 . . . . .  O) 
we obtain yi = yei E Ah and y/-1 = y-ei E Ah, hence Yi C (Ah)*. This 
shows D(h) C Vy. As a section o f  the structure morphism l: G --~ S over 
Vy, Oy is a closed embedding into l-l(Vy). It remains to show that 9y(Vy) 
is closed in (~. As D(y  (~(y)) C Vy, the zero set V(T r -yC~(y)) C G of  
the global function T da(y) - y ( ~ ( Y )  @ (9~(G) is contained in l-l(Vy). Since 

Oy(Vy ) Q_ V(T(o(y)  _ y4~(y)), we conclude that 9y(Vy) is closed in G. 

to (b): Let U be a quasi-compact subset o f  ~ad. Let al .... ,an be a set o f  gen- 
erators of  the ideal A ~176 of  A. We choose a k E 1N such that U _ V := {x E 
GadlVx(a~Tj)<l and Vx(akiTfl)<l for every ( i , j )  E {1 , . . . , n}  • {1 . . . .  , r ) ) ,  
and for every y E Y we choose a n y  E IN with ny > t �9 r ~  k ,  where 
t is the maximum of  the absolute values of  the components of  q~(y) E 
7I r. By [M, 1.3] there exists a finite subset Q o f  Y such that for every 
z E Y - Q there is a y E Y - {0) with Z ~p(y) E (y(a(y))ny . A. Since 
y~(Y) E A ~176 for every y E Y - {0),  we obtain, for every z E Y - Q and 
every x E ~o-1(V~), vx(z r < (max{vx(al),.. . ,  Vx(ak)}) ny which implies min 

f % 

~ V x ( Z j ) , ~ }  <(max{vx(al)  . . . . .  V x ( a n ) } ) k f o r s o m e j E { 1 , . . . , r } . H e n c e  

q~-l(Vz) M (9ad) - l (V)  = ~ for every z E Y - Q. 
We sketch the proof  o f  (i) and (iii). First we introduce a notation. I f  

9 : M  ~ N is a morphism o f  ringed spaces and 1 c (gN is a sheaf of  ideals 
then we put ~(I)  :=  im(9*(I )  --~ (gM) and V(I) :=  {x E N I Ix+CN, x). We 
briefly remind of  the construction o f  G. Let /3 ~ S be a relatively complete 
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model of G with respect to the periods Y and the polarization q~ [M, 2.1]. 
We assume that /5 is separated. For every y E Y, one has a S-morphism, 
Sy:fi ~ P such that y H Sy is an action of Y on P. Let ~ be the formal 
completion of i3 along A ~176 The action of Y on/6 induces an action of Y on 
~.  Let h: ~ --~ ~3 be the quotient of ~ by Y in the category of formal schemes 
over Spf A as constructed in [M], and let P be the projective S-scheme whose 
formal completion along A ~176 is equal to ~3. Let a: ~ ~ / 5  and b: ~ ~ P be 
the natural morphisms of locally ringed spaces. G is an open subspace of/5. 
Let I C Ce be the coherent sheaf of ideals such that h(b(I)) = -6(J) C_ ~ ,  
where J C_ Cp is the sheaf of  functions which vanish on the closed subset 
P - UycrSy(G) of/5. Then G is the open subspa~e P - V(I)  of P. 

By (4.1), we have a morphism of locally ringed spaces 7z:(t(~3), + (gt(~)) -+ 
(~ ,C~) .  Composing 7r with the natural morphism of ringed spaces t(~3) : 

(tO3), (9,(~)) ( t (~) ,  + C/(~)), we obtain a morphism of ringed spaces e: t0B) 

~3. We put J := ~(b(I)) C_ Ct(~). By (4.6iv), we have natural morphisms 
c : t ( ~ )  ~ pad and d: t(~3) ~ pad of adic spaces over R. For every y E Y, 
the morphism Sy:P ~ P induces morphisms Ty: t ( ~ )  ~ t ( ~ )  and Uy:P ad 
pad. Then y ~ Ty and y ~ Uy are actions of Y on t ( ~ )  and /Sad. Since 

and G are open subspaces of /5  and P, we consider G ad and G ad as open 
subspaces of/sad and pad. One can show 

(1) (a) The morphism t (h ) : t (~ )  ~ tOB) is the quotient of t ( ~ )  by Y in the 
category of adic spaces. 

(b) The morphism c: t(~)---+/sa~ is Y-equivariant. 
(c) The morphism d: tOB) --~ pad induces by restriction an isomorphism d': 

t(~3) - V(~ )  ~ Gad. 

(d) The morphism c : t ( ~ )  --~ /sad induces by restriction an isomorphism 
ct: t ( ~ )  - t ( h ) - l ( v ( ~ ) )  ~ UyEyTy(aad). 

By (1.c) and (1.d) there exists a morphism a: UyEyTy(a ad) --+ G ad such that 
the diagram 

r 
t ( ~ ) - t ( h ) - l ( V ( j ) )  ~ UyEyTy(a ad ) 

t ( ~ 3 ) -  V ( y )  ~-~ G ad 
d t 

commutes. We put 2 := tr I Gad: G ad ---+ Gad. By (1.a) and (1.b), a is the 
quotient of UyEyTy(G ad) by Y. From this one can deduce that 2 is the quotient 
of G ad by Had. Hence there exists an isomorphism #: Z ~ G ad of adic spaces 
over R with 2 = p o ~. (Since ~ is a local isomorphism, there exists at most 
one morphism of adic spaces z: Z ~ G ad with 2 = z o n.) It remains to show 
that 2 is a homomorphism of adic groups over R. For that we have to analyze 

the construction of the,group structure of G in [M]. Let G^ and G A be the 
formal completions of G and G along A ~176 Mumford's construction of G gives 

a natural isomorphism of formal schemes p: ~A ~ GA" By (4.6.iv) we have 

open embeddings m: t((~ ̂ )  ---* (~ad and n: t(G A ) ~ Gad. One can show 
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(2) The diagram 

t(OA) m 0 .  d 

t(p) I .L 2 
t( G A ) ' G ad 

n 
commutes. 

Now let (Gi, Yi, f~i, P i ) , i  = 1,2 be two tori over S together with groups of 
periods, polarizations and relatively complete models. Let Gi be the associated 
semi-abelian schemes over S, and let ~-i: 0 ad --~ G~ d be the morphisms of 
adic spaces as constructed above. Let ~: G1 --~ G2 be a homomorphism of 
groups over S with ~(Yt) C_ Y2. Then by [M, 4.6] there exists a S-morphism 
~t: GI ~ G2 such that the diagram 

(3) 

commutes. This implies 
(4) The diagram 

0~ ~A ~ A 
G 2 

Olad ~ad ~ , G~ d 

)-1 -L ,L )-2 
G~ d , G~ d 

~ad 
com/nuteg. 

Proof We consider the diagram 

t(o ) 
)-1 [ ]  t(pl) 1 

t(G~) 

~ad 

t(~A) t ( 0 2  ) 

[] 1 ,(.2) [] 
t(~, ̂) t(G~) 
[] "-:< 

)-2 

> G~ d G~ d a~t �9 

The diagrams []  and [] commute by functoriality, [] and [] commute by 
(2), and []  commutes by (3). Then the identity principle for adic morphisms 
imply 22 o ~ad = o~ad O ,~l. 
(4) together with the construction of the group structure of G in [M, 4.8] 
shows that 2 : 0  "d ~ G ~ is a homomorphism of adic groups over R. [] 
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