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0 Introduction 

In this paper we study, for a certain type of topological rings A, the topological 
space Cont A of all equivalence classes of continuous valuations of A. The space 
Con tA is defined as follows. Let v: A--+Fw{0} be a valuation of A, where 
F is an ordered multiplicative group generated by im(v)\{0}. On F w  [0} we 
introduce the topology such that U _~ F ~ {0} is open iff 0 q~ U or { x e F l x  < 7} c_ U 
for some yeF.  We call v continuous if the mapping v: A-~Fw{0}  is contin- 
uous with respect to the ring topology on A and the topology on F w  {0} just 
defined. Two continuous valuations v: A ~ F w  {0} and w: A ~ A u {0} are called 
equivalent if there exists an isomorphism f :  r ~ { 0 I ~ A ~ { 0 }  of ordered 
monoids such that w = f o v .  Then Cont A is the set of all equivalence classes of 
continuous valuations of A equipped with the topology generated by the sets 
{veCont A [ v(a) < v(b) + O} (a, be  A). 

Our study of the topological spaces Cont A is motivated by the following 
result. Let A be a Tate algebra over a complete, non-archimedean, valued field 
[2, 4, 13]. One can associate with A a topological space X A which is uniquely 
determined up to homeomorphism. Namely, let , ~  be the Grothendieck topolo- 
gy of the rigid analytic variety Sp A associated with A [4, III.2.1]. Then it 
is easily seen that the topos Shv(JA) of JA is spatial, i.e. there exists a sober 
topological space X A such that Shv(.~)  is equivalent to the topos Shv(XA) 
of XA. By [6, IV.4.2.4] XA is uniquely determined up to homeomorphism. In 
this paper we will show that XA is homeomorphic to the topological subspace 
Spa(A, A ~ = { v e Cont A I v(a) < 1 for every a e A ~ } of Cont A (A ~ denotes the set 
of power bounded elements of A). We will even show that Shv(,~A) is canonically 
equivalent to Shy (Spa (A, A~ 

Having seen that, for Tate algebras A, the topological space Cont A occurs 
very naturally in rigid analytic geometry, one can ask for applications of Cont A 
for more general topological rings A. In this paper we restrict ourselves to 
a class of topological rings which I call f-adic rings: A topological ring is f-adic 
if it contains an open subring which is adic and has a finitely generated ideal 
of definition. Then Tate algebras and adic rings with finitely generated ideals 
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of definition are f-adic. The main result of this paper is that, for every f-adic 
ring A, the topological space Cont A is spectral. Moreover, we will give a rather 
explicit description of the boolean algebra of constructible subsets of Cont A. 
We will see that there is a good notion of rational subsets of Cont A, similar 
to the rational subsets of affinoid rigid analytic varieties. Our main application 
of the topological spaces Cont A will be given in a second paper [81, where 
we will show that there exists a natural structure sheaf CA on Cont A such 
that, glueing together locally ringed spaces of the form (Cont A, 6)), one obtains 
a category of locally ringed spaces which generalizes both the category of rigid 
analytic varieties and the category of locally noetherian formal schemes. 

The paper is organized as follows. In w we discuss the notion of a f-adic 
ring. In w we consider Cont A in the special case that the topology of A is 
discrete (every discrete topological ring is f-adic), and in w we study Cont A 
for arbitrary f-adic rings A. In w we prove the result mentioned above that 
S h v ( ~ )  is canonically equivalent to Shy(Spa(A, A~ for every Tate algebra A. 

1 F-adie rings 

All rings are tacitly assumed to be commutative with unit element. 
We recall some notations. Let A be a topological ring. A subset B of A 

is called bounded if, for every neighbourhood U of 0 in A, there exists a neigh- 
bourhood V o f  0 in A with v . b e U  for every veV, beB. An element a of A 
is called power-bounded if the set {a"lneN} is bounded. A ~ denotes the set 
of all power-bounded elements of A. An element a of A is called topologically 
nilpotent if (a"l~ ~N) is a zero sequence. A ~176 denotes the set of all topologically 
nilpotent elements of A. The ring A is called adic if there exists an ideal I 
of A such that { l" lneN} is a fundamental system of neighbourhoods of 0, 
and such an ideal is called an ideal of definition of A. For  subsets S and T 
of A, let S . T  be the subgroup of A generated by the elements s . t  with soS 
and te  T 

Definition. (i) A topological ring A is called f-adic if there exist a subset U 
of A and a finite subset T of U such that {U"lneN} is a fundamental system 
of neighbourhoods of 0 in A and T- U = U 2 ~ U. 
(ii) A topological ring A is called Tare (or A is called a Tate ring) if A is f-adic 
and has a topologically nilpotent unit. 

Examples 1.1 (i} Every adic ring with a finitely generated ideal of definition 
is f-adic. 

(ii) Let A be a ring and I a finitely generated ideal of A. We equip the polynomial 
ring A IX] with the group topology such that { U, IneN} is a fundamental system 
of neighbourhoods of 0 where Un:={ZakXkEALX]lakeI  n+k for all k}. Then 
A[X]  is a f-adic ring. But A[X]  is not an adic ring if I " + I  "+1 for every 
meN.  
(iii) Let (k, I I) be a non-trivial non-archimedean value field and (A, I] II) a normed 
algebra over (k, I l) [2, 3.1.1]. Then A equipped with the topology induced by 
PI II is a Tate ring. (Indeed, if Ao,-={aeAlllalt<l} and r is an element of k 
with 0< l r l  < 1 then {r" .AolneN} is a fundamental system of neighbourhoods 
of 0 in A.) 
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(iv) Let B be a ring, s an element of B and r B ~ B ~  the localization of B 
by s. We equip B~ with the group topology such that {~ols"B)JneN} is a funda- 
mental system of neighbourhoods of 0. Then it is easily seen that B~ is a Tate 
ring. 

Definition. A subring A o of a f-adic ring A is called a ring of definition of 
A if Ao is open in A and if the subspace topology of A on A 0 is adic. 

Proposition 1. Let A be a f-adic ring. Then 

(i) A has a ring of definition. 

(ii) A subring Ao of A is a ring of definition of A if and only if Ao is open 
and bounded in A. 

(iii) Every ring of definition of A has a finitely generated ideal of definition. 

Proof Obviously, an open and adic subring of A is bounded. Let U be a subset 
of A and T a finite subset of U such that T.U=U2~_U and {U"lnelN} is 
a fundamental system of neighourhoods of 0. For every n e l q  put T(n) 
= { t l - . . . . t ,  It1 . . . . .  t ,e  T}. Let A o be an open and bounded subring of A. Choose 
a k e n  with T(k)~_Ao, and put l = T ( k ) . A o .  In order to prove (ii) and 
(iii) we show that {I" lneN} is a fundamental system of neighbourhoods of 0. 
Let g be a natural number with Ue~_Ao. Then we have for every h e N ,  
I"= T(nk).Ao ~_ T(nk). Ut= U t+"k. Hence I n is a neighbourhood of 0. Let Vbe 
a neighbourhood of 0. Since A0 is bounded, there exists a m e n  with Um. Ao ~_ V. 
Then I " ~  V. 

Let W be the subgroup of A generated by U. Then •. I + W  is an open 
and bounded subring of A. Hence A has a ring of definition. 

Corollary 1.3 Let A be a f-adic ring and A ~ the set of all power-bounded elements 
of A. Then 

(i) I f  A o and A1 are rings of definition of A then also Ao~A1 and Ao.A 1 are 
rings of definition of A. 

(ii) Let B be a bounded subring of A and C an open subring of A with B ~ C. 
Then there exists a ring of definition Ao of A with B~_A o ~_ C. 

(iii) A ~ is a subring of A and A ~ is the union of all rings of definition of A. 

Corollary 1.4 (i) An adic ring is f-adie if and only if it has a finitely generated 
ideal of definition. 

(ii) A f-adic ring is adic if and only if it is bounded. 

(iii) Let A be a topological ring and B an open subring of A. Then A is f-adic 
if and only if B is f-adic. 

The following proposit ion says that every Tate ring is of the form described 
in (1.1.iv). 

Proposition 1.5 Let A be a Tate ring and B a ring of definition of A. Then 

(i) B contains a topologically nilpotent unit of A. 
(ii) Lets seB be a topologically nilpotent unit of A. Then A=B~ and sB is an 
ideal of definition of B. 
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Proof (i) Let t be a topologically nilpotent unit of A. Then t"eB for some 
n s N .  
(ii) For every aeA there exists a nEN with s"a~B. Hence A=B~. For every 
n~N,  the mapping A ~ A ,  a~-+s"a is a homeomorphism of A. Hence s"B is 
open. Since B is bounded, there exists, for every neighbourhood V of 0, a n e N  
with s"B~_ V. 

In this note complete always means hausdorff and complete. 

Lemma 1.6 Let A be a f-adic ring, B a ring of definition of A and I an ideal 
of definition of B. Let A and B be the completions of A and B. We consider 

as an open subring of A. Then 
(i) /] is f-adic, B is a ring of definition of A and I .B  is an ideal of definition 
of~. 
(ii) The canonical diagram 

7t, A 

l l 
is cocartesian in the category of rings. 

Proof (i) By [3, III.2.12 Corollary 2] /3 is adic with ideal of definition I./3. 
Hence A is f-adic. 

(ii) We consider the canonical commutative diagram 

fi~c i A 

2 
B@BA 

/ 
B, B. 

We have to show that j is an isomorphism. For  every ~ A  we choose a~A 
and /~/3 with c~=i(a)+S, and put h(gO:=f(a)+g(~B|  This definition 
of h(d) is independent of the representation c7 = i(a) + 6, since i-  1 (/~) = B. Hence 
the mapping h: A ~ /~  |  A has the properties 

(1) h is additive 
(2) f=hoi  
(3) g=hlB. 
Next we show that h is a ring homomorphism. For that it suffices to show 
that there exists a complete ring topology on 13| A such that f and h are 
continuous (by (2)). In order to construct this topology we remark that g is 
injective (since j o g is injective). We equip/3 | A with the group topology such 
that g is an open embedding. Then by (3) h is continuous at 0. Also f is continu- 
ous at 0. Since h and f are additive, we obtain that h and f are continuous. 
It remains to show that /~|  is a topological ring. Let 6 |  be an ele- 
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ment of /~| and U a neighbourhood of 0 in /~| We have to show 
that there exists a neighbourhood V of 0 in /3 |  with (B.| Let 
S be an open ideal of /3 with g(S)~_U, and let T be a neighbourhood of 
0 in B with T. ac_i I(S)~B.  Then V,=g(i(T).IB) is a neighbourhood of 0 in 
/~| with (~|  V=(~|174174  ra).g(B) 
=(f;. i(Ta)|  1).g(/~)___(S| 1).g(/3)=g(S)_~U. Thus we have proved that h is 
a ring homomorphism. 

We have j o h = i d a  (by construction of h). Furthermore, (hoj)(x)=x for all 
x e f ( A ) w g ( B )  (by (2) and (3)). Since h~j is a ring homomorphism, we obtain 
that hoj is the identity of /3 |  A. Hence j is an isomorphism. 

Corollary 1.7 Let A be a f-adic ring and 71 the completion of A. 
(i) I f  A has a noetherian ring of definition then the canonical ring hornornorphism 
A ~ , 4  is JTat. 
(ii) If  A is finitely generated over a noetherian ring of definition then .4 is noether- 
ian. 

Let A and B be f-adic rings. Analogously to the adic situation one can 
define adic ring homomorphisms and ring homomorphisms of topologically 
finite type from A to B. (One has {continuous ring homomorphism A ~ B}__ 
{adic ring homomorphism A ~ B} _~ {ring homomorphism of topologically finite 
type A ~ B } . )  In this note we need only adic ring homomorphisms: A ring 
homomorphism f :  A ~ B  is called adic if there exist rings of definition A0, 
B0 of A, B and an ideal of definition I of A 0 such that f(Ao)C_ Bo and f ( I ) .  Bo 
is an ideal of definition of Bo. 

Lemma 1.8 Let f :  A ~ B be an adic ring homornorphisrn between f-adic rings. 
Then 
(i) f is bounded (i.e. if To_ A is bounded in A then f ( T )  is bounded in B). 

(ii) If  Ao, Bo are rings of definition of A, B with f(Ao)C_B o and if I is an 
ideal of definition of Ao then f (I). Bo is an ideal of definition of Bo. 
(iii) To every ring of definition Ao of A and every open subring B' of B with 
f(Ao) c_ B' there exists a ring of d4~nition B o of B with f (Ao) c_ B o c B'. 

Proof. (i) obvious. 
(ii) Let A t ,  B 1 be rings of definition of A, B and let J, K be ideals of definition 
of A1, B1 with f(Al)c_B1 and f ( d ) . B l = K .  Put A 2 = A o . A  t and B2=Bo.B 1. 
Then A2, B2 are rings of definition of A, B with .f(Az)c_B2. Now I.A2 and 
J-A2 are ideals of definition of A2, and K.B2 is an ideal of definition of B2. 
Since f ( d .  A2). B 2 = K.  B 2, we obtain that L ,=f( I .  A2). B2 is an ideal of definition 
of B 2. We have L=(f ( I ) .Bo) .B2,  and hence f ( I ) .Bo  is an ideal of definition 
of B o. 
(iii) follows from (i) and (l.3.ii). 

Corollary 1.9 Let f:  A ~ B and g: B --* C be ring hornornorphism between f-adic 
rings. 

(i) f f ' f  and g are adic then g of  is adic. 
(ii) l f  f and g are continuous and if go f  is adic then g is adic. 
(iii) Let A', B' be open subrings of A, B with f(A')~_ B' and let f ' :  A'--+ B' be 
the restriction o f f  Then f is adic if and only if f '  is adie. 
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Proposition 1.10 Let f :  A ~ B be a continuous ring homomorphism between f-adic 
rings. Assume that A is a Tate ring. Then B is a Tare ring and f is adic. 

Proof  We use (1.5). Let Ao be a ring of definition of A and let seAo  be a 
topologically nilpotent unit of A. Then f ( s )  is a topologically nilpotent unit 
of B, and hence B is a Tate ring. By (1.3.iii) there exists a ring of definition 
B 1 of B with f ( s )~B~.  Then f ( s )  B~ is an ideal of definition of B 1. The set 
f (Ao)  is bounded in B, since there exists a nEN with f ( s ) " f ( A o ) = f ( s " A o ) ~ B  1 . 
Hence by (1.3. ii) there exists a ring of definition Bo of B with f(Ao)C_B o. We 
know that sAo and f ( s )Bo  are ideals of definition of A0 and Bo. Hence f 
is adic. 

2 Valuation spectrum 

First we recall some notations about spectral spaces. A topological space X 
is called spectral if X is quasi-compact and has a basis of quasi-compact open 
sets stable under finite intersections arid if every irreducible closed subset is 
the closure of a unique point [7]. For  example, if A is a ring then the Zariski- 
spectrum SpecA is a spectral space. It can be shown (but will not be used 
here) that every spectral space is homeomorphic to the Zariski-spectrum of 
some ring [7]. Let X be a spectral space. A subset T of X is constructible 
[5, 0.2.3.10] if and only if T is contained in the boolean algebra of subsets 
of X generated by the quasi-compact open subsets, and a subset T of X is 
pro-constructible [5, 1.7.2.2] if and only if T is an intersection of constructible 
subsets. A point x E X  is called a specialization of a point y e X  or y is called 
a generalization of x if x is contained in the closure of {y} in X. A point 
x e X  which has no proper  generalization is called maximal. The topology of 
X generated by the constructible subsets is called the constructible topology, 
and X together with the constructible topology is denoted by X . . . .  . A mapping 
f :  X --, Y between spectral spaces is called spectral if/': X --, Y and f :  X . . . .  - '*"  Ycons 
are continuous. In the following remark we note some important properties 
of spectral spaces (cf. [7]). 

Remark 2.1 Let X be a spectral space and T a pro-constructible subset of 
X. Then 

(i) T is quasi-compact in the topology of X and in the topology of X . . . .  . An 
open subset of X is constructible if and only if it is quasi-compact. 
(ii) Tis constructible iff X \ T i s  pro-constructible 

(iii) The closure of T in X is the set of the specializations of the points of T. 

(iv) T(equipped with the subspace topology of X) is a spectral space and the 
inclusion T--, X is spectral. A subset U of T is constructible (resp. constructible 
and open) iff there exists a constructible (resp. constructible and open) subset 
Vof X with U = V~ T. 
(v) Let Y be a spectral space and f :  X ~ Y be a continuous mapping. Then 
f is spectral iff the preimage of an open quasi-compact subset is quasi-compact 
iff the preimage of a constructible subset is constructible iff the preimage of 
a pro-constructible subset is pro-constructible. If f is spectral then the image 
of a pro-constructible subset is pro-constructible and if, moreover, f is surjective 
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then S_~ Y is constructible (resp. pro-constructible) i f f f -  1 (S)_~ X is construclible 
(resp. pro-constructible). 

(vi) Let Z be a set, ~ a quasi-compact topology on Z and 50 the set of open 
and closed subsets of (Z, 5P). Let .Y- be a To-topology of Z generated by a 
subset of 5 ~ Then (Z, Y)  is a spectral space and 50 is the set of constuctible 
subsets of (Z, .7). 

The Zariski-spectrum, A~---,Spec A, is a contravariant functor from the cate- 
gory of rings to the category of spectral spaces. Also the real spectrum, 
A~-~ Spec RA, is a contravariant further from the category of rings to the category 
of spectral spaces [1, 7.1.1 7]. Similarly, using valuations of rings we will construct 
in this paragraph a contravariant functor from the category of rings to the 
category of spectral spaces which we call the valuation spectrum. 

We begin with the definition of a valuation of a ring A. Let F be a totally 
ordered commutative group written multiplicatively. We add an element 0 to 
F and extend the multiplication and the ordering of F to F w {0} by ~. 0 = 0. a = 0 
and 0<:~ for all c~eFw {0}. 

Definition [3, VI.3.1] A valuation of A with values in F u { 0 }  is a mapping 
v: A ~ F ~ { 0 }  such that 

(i) v(x+y)<max{v(x), v(y)} for all x, yeA 
(ii) v(x.y)=v(x).v(y) for all x, yeA  
(iii) v(0)=0 and v(1)= 1. 

Let v: Ft3 {0} be a valuation. The subgroup of F generated by im(v)\{0} 
is called the value group of v and is denoted by F~,. The convex subgroup of 
F generated by {v(a)laeA, v(a)__>l} is called the characteristic subgroup of 
v and is denoted by cF. The set supp(v):=v-l(0)  is a prime ideal of A and 
is called the support of v. The valuation v factorizes uniquely in 

A ~ ,qf(A/supp(v)) ~' ,Fw{0},  where g is the canonical mapping and /~ is 

a valuation of the quotient field K =qf(A/supp(v)) of A/supp(v). The valuation 
ring of 17 is denoted by A(v), i.e. A(v)= {xeKIf~,(x)< 1}. 

Two valuations v and w of A are called equivalent if the following equivalent 
conditions are satisfied 
(i) There is an isomorphism of ordered monoids f :  F~ u {0} --* Fw u {0} with 
w = f o  v. 
(ii) supp(v) = supp (w) and A (v) = A (w). 
(iii) For all a, baA, v(a)> v(b) iff w(a)> w(b). 
Let S(A) denote the set of equivalence classes of valuations of A. In the follow- 
ing we often do not distinguish between a valuation and its equivalence class. 
Let T be the topology of S(A) generated by the sets of the form 
{veS(A)lv(a)<v(b)~O} with a, beA. We call the topological space Spv A:= 
(S(A), T) the valuation spectrum of A. 

Proposition 2.2 Spv A is a spectral space. The boolean algebra of constructible 
subsets of Spv A is generated by the sets of form {veSpv A[v(a)<v(b)} with 
a, beA. 

Proof Every valuation v of A defines a binary relation [~ on A by 

alvb: c~v(a)>=v(b). 
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Two valuations v and w of A are equivalent if and only if I,=l~,. There- 
fore we have an injective mapping q~: S(A)--,~(A xA), v~--'lv. ( ~ ( A x A )  de- 
notes the power set of A x A.) We equip {0, 1} with the discrete topology and 
~ ( A  x A)={0, 1} A• with the product topology. Then ~ ( A  x A) is a compact  
Hausdorff  space. The image im(to) of tO is closed in ~ (A  x A) since im(to) is 
the set of all binary relations I on A which satisfy for all a, b, ceA the following 
conditions. 

(1) alb or bla. 
(2) I f a l b  and blc then a Fc. 
(3) I f a l b  and alc then alb+c. 
(4) I f a l b  then aclbc. 
(5) Ifaclbc and 0, (c  then alb. 
(6) 0Z  1. 

Let T1 be the topology of S(A) such that qo: (S(A), Tt)~ ~(A x A)is a topological 
embedding and let K be the boolean algebra of subsets of S(A) generated by 
the sets of the form {wS(A)lv(a)<=v(b)} with a, beA. Then (S(A), T1) is compact  
and K is the set of open and closed subsets of (S(A), TI). Now (2.2) follows 
from (2.1.vi). 

Let f :  A-o  B be a ring homomorph i sm and v: B--* F u {0} a valuation of 
B. Then vlA=Spv(f)(v):=vof is a valuation of A. The mapping Spy(f ) :  
Spy B-o Spv A is spectral. So we have a contravariant  functor Spy from the 
category of rings to the category of spectral spaces. 

The specializations of the valuation spectrum Spy A of a ring A can be 
described as follows: Let v: A ~Fv~:{0} be a valuation of A. To every convex 
subgroup H of F~ we have the mappings 

u/u:  A --, r 2 u  ~ {0}, 

vIH:A~H~{O},  

a~__,fb,[a) mod H if v(a)#0 
if v (a) = 0 

a~_~Sv(a) if v(a)eH 
if v(a)r 

It  is easily seen that 

(i) v/H is a valuation of A, and v/H is a generalization of v in Spv A. 

(ii) v lH is a valuation of A iff cF~,~ H, and in that case v[H is a specialization 
of v in Spv A. 

A valuation w of A is called a primary specialization of v if there exists a convex 
subgroup H of F~ such that cF~_H and w=vIH, and a valuation w of A is 
called a secondary specialization of v if there exists a convex subgroup H of 
Fw with v = w/H. One can show [10, 1.2.4] that every specialization of v is a 
combinat ion of a pr imary and a secondary specialization i.e. 

Lemma 2.3 Every specialization of v in Spy A is a primary specialization of 
a secondary specialization of v. 

In the next paragraph we will show that, for a f-adic ring A, the subspace 
of Spv A consisting of all continuous valuations of A is spectral. For  that we 
need some preparat ions which we present here. 
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Let  A be a ring and I an ideal of A such that  there exists a finitely generated 

ideal J of A with ~ I = ] / J .  Let v: A--*Fw{O} be a valuat ion of A. We say 
that an element 7 of Fw{0}  is cofinal in a subgroup H of  F if for every h e l l  
there exists a h e N  with 7" < h. 

Lemma 2.4 I f  v ( l )c~cF=~ then there exists a greatest convex subgroup H 
of F such that v(i) is cofinal in H for every ieI.  I f  fi~rthermore v(1)4:{0} then 
v(l) c~ H + ~. 

eroof. If v(1)={0} then of course H=F.  Now assume v(l)4={0}. Let T be a 
finite set of generators  of J and let H be the convex subgroup of F generated 
by h,=max{v(t) l teT}.  Then v(i) is cofinal in H for every i e l  (since h<cF) 
and H is the greatest convex subgroup of F with this property.  

With  (2.4) we can define for every valuation v of A 

cr~U) = 

c ~  

greatest convex 
subgroup H of F~ 

such that  v(i) is 
cofinal in H for 
every ieI. 

if v(I)r~cF,,:# gY 

if v ( l )ncF~=~ 

Then we have 

Lem ma  2.5 For every valuation v of A the following conditions are equivalent. 

(i) F~,=cF~(I). 
(ii) F~=cF~ or v(i) is cofinal in F~ ,]'or every iel .  
(iii) F~=cF~ or v(i) is cofinal in F~ for every element i of a set of generators 
of I. 

Proof The equivalence of (i) and (ii) follows from the definition of cF~(I), and 
the equivalence of (ii) and (iii) follows from the fact that  if Y~ :t: e F,, then {a e Air  (a) 
is cofinal in F~} is an ideal of A. 

We put Spv(A, I ) =  {veSpv AIF~=cF~(I)} and equip Spy(A, I) with the sub- 
space topology of Spv A. Fo r  every veSpv  A we put  r(v)=vleF~(1). Then 
r(v)~Spv(A, 1), and r(v)=v for every veSpv(A,  I). Thus we have a retract ion 
r: Spv A -~ Spv(A, I). Let ~ be the set of all subsets U of Spy(A, I) of the form 

U = {v E Spy (A, l) l v ( f 0 =  < v(g) + 0 . . . . .  v (f.) =< v(g) + 0}, 

where g, f l  . . . . .  f .  are elements of A 

with I _ [/(-)] . . . . .  f.). 

Then we have 

Proposition 2.6 (i) Spy(A, I) is a spectral space. 
(ii) ~ is a basis of the topology of Spy(A, I) that is closed under finite intersections, 
and every element of ~ is constructible in Spy(A, I). 

Off) The retraction r: Spy A --+ Spy(A, 1) is spectral. 
(iv) I f  v is a point of Spv A with v(I)~: {0} then also r(v)(1)* {0}. 
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Proof. Let fo . . . . .  f,, ,  go . . . . .  g, be elements of A. Then 

( (~ {veSpvAlv(f~)<=v(fo),O})~( (~ {veSpvAIv(gj)<v(go)+O}) 
i=O,.. . ,m j = O  . . . . .  n 

= ~ {v~SpvAlv(f~gj)<V(fogo)4=O}, 
i=O,... ,m 
j = O  . . . . .  n 

and if 

Ic_]//(fi[i=O . . . . .  m) and I c  (~jJj=O . . . . .  n) 

then 1 ~_ ~iX gjl i= 0 . . . . .  m,j = 0 . . . . .  n). Hence the intersection of two elements 
of ~ is an element of ~ .  Next we prove the following two points. 

(a) ,,~ is a basis of the topology of Spv(A, I). 

(b) Let g, f l  . . . . .  fn be elements of A w i t h  i~V(fl . . . . .  fn) and put U 
={vsSpv(A,I)lv(j])<v(g)+O . . . . .  v(f,)<v(g)OeO} and W={veSpv a l v iL )  
<v(g)+O . . . . .  v(f,)<v(g):~0}. Then W=r-I(U).  

Proof of (a). Let v be an element of Spy(A, I) and U neighbourhood of v in 
Spv A. We choose go . . . . .  g ,~A such that v~W:={w~Spv A [w(gi)<w(go)#:O for 
i=  1 . . . .  , n} _~ U. We distinguish two cases. 

First case: F~ = cF~. 
Then there exists a d~A with v(g od)>  1. Hence ve W' :={w~SpvAIw(g id  ) 

<w(god) :#0  for i = 1  . . . . .  n and w(1)<w(god):#:O}~_W. We have W ' ~  
Spv(A, I ) 6 ~ .  

Second case: F~:~cF,,.. 
Let {s~ . . . . .  s,~} be a set of generators of the ideal J. By (2.5) there 

exists a k~IN with v(s~)<v(go) for i=1  . . . . .  m. Then veW':={w~SpvAIw(gz) 
< w ( g o ) + 0  for i = 1  . . . .  ,n and w(s~)<w(go)+O for i=1  . . . . .  m}_cW. We have 
W' ca Spv(A, I ) ~ .  

Proof of(b). Since U_c W and since every point of r-~(U) specializes to a point 
of U we have r-l(U)c_W. Let w ~ W b e  given. We have to show w~r-~(U), 
i.e. r(w)EW. If w(I )={0)  then r(w)=w. Now assume w[I):l:{0}. Since r(w) is 
a pr imary specialization of wEW, we have r(w)(fi)<r(w)(g) for i= l  . . . . .  n. it 
remains to show r (w)(g)=4= 0. Assume to the contrary r(w)(g)= 0. Then r(w)(fi)= 0 
for i=1  . . . . .  n and hence r(w)(i)=O for every ieI  (since l_c (]/(f~, .... f,)). But 
by (2.4) and the definition of cY,,(l) we have w(1)c~cF,(I)#:Cs, i.e. there exists 
a i~1 with r(w)(i):4:0, contradiction. 

Let ~ be the boolean algebra of subsets of Spv(A, I) generated by ~.  Let 
T be the set Spv(A, I) equipped with the topology generated by ~ .  By b) and 
(2.2) the mapping r: (Spv A) . . . .  -~ T is continuous. Since (Spv A) . . . .  is quasi- 
compact  (by (2.1.i)) and r is surjective, we obtain that T is quasi-compact.  Now 
(a) and (2.1.vi) imply that Spv(A, I) is a spectral space and that every element 
of ~ is constructible in Spv(A,l).  We conclude from (a) and (b) that r: 
Spy A -* Spv(A, 1) is spectral. (iv) follows from the proof  of (b). 

Remark 2.7 Let us consider the special case I=A.  We have cF~(A)=cF~ for 
every valuation v of A. Hence Spv(A, A)= {v~Spv A [~=cF~} is the set of all 
points of Spv A which have no proper pr imary specializations. Let r: Spy A--* 
Spv(A,A) be the retraction. For  every subset M of Spv(A,A), the set 
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r -  1 (M)_~ Spv A is closed under pr imary specializations and primary generaliza- 
tions. Hence M~--~r-I(M) is a bijection from the set of subsets of Spv(A,A) 
to the set of subsets of Spv A which are closed under primary specializatians 
and pr imary generalizations. Let M be a subset of Spv(A,A). By (2.1.v) and 
(2.6.iiii M is constructible (resp. pro-constructible) in Spv(A, A) if and only if 
r - l ( M)  is constructible (resp. pro-constructible) in Spy A, and by (2.6.ii) M is 
constructible in Spv(A,A) if and only if M is a finite boolean combination 
of sets of the type {vsSpv(A,A) lv( f l )<v(g)  . . . . .  v(f.)<=v(g)}, where g, f l  . . . . .  f .  
are elements of A with A = f l  A + ... + f ,  A. 

3 Continuous valuations of f-adic rings 

Let A be a f-adic ring. We call a valuation v of A continuous if for every 7sF,, 
there exists a neighbourhood U of 0 in A such that v(u)<7 for every usU. 
We put Cont A = {v~Spv Air  is continuous} and equip Cont A with the subspace 
topology of Spv A. If f :  A-*  B is a continuous ring homomorphism between 
f-adic rings and v: B --* F w {0} a continuous valuation of B then vof: A ~ F w {0} 
is a continuous valuation of A. Hence Spv(f ) :  Spv B ~ S p v A  restricts to a 
continuous mapping Cont ( f ) :  Cont B-~ Cont A. If  the topology of A is discrete 
then Cont A = S p v  A. (Hence the functor Cont is a generalization of the functor 
Spv.) In this paragraph we want to study the functor Cont. Our first important  
result is 

Theorem 3.1 Let A ~176 be the set of topologically nilpotent elements of" A. Then 
Cont A = {vESpv(A, A ~176 A)[v(a) < 1 for every a~A~176 

Proof If  w is a continuous valuation of A then w(a) is cofinal in Fw for every 
aeA ~176 and hence by (2.5) w ~ { w S p v ( A ,  A~176 1 for every a~A~176 Now 
let v be an element of Spv(A,A~176 with v ( a ) < l  for every a6A ~176 We have 
to show that v is continuous. For that we need 

(1) v(a) is cofinal in F~ for every a s A  ~176 

Proof of (1). If F~:I:eF~ then (1) follows from (2.5). So we assume F~=cF~. Let 
aEA ~176 and 7eFv be given. There exists a t e a  with v(t)+O and v( t ) - l<7.  We 
choose a nslN with ta"eA ~176 Then v(ta")< 1 and hence v(a)"<7 which proves 
(1). 

Let U be a subset of A and T a finite subset of U such that {U"ln~N} 
is a fundamental system of neighbourhoods of 0 in A and T. U = U 2_c U. Let 
7sF~ be given. Since U~_A ~176 we have v(u)< 1 for every us  U. By (1) there exists 
a n ~ N with (max { v(t) l t ~ T})" < 7. Then v(a) < 7 for every a ~ T". U = U" + 1. Hence 
v is continuous. 

Corollary 3.2 Cont A is a closed (and hence pro-constructible) subset of the 
spectral space Spy(A, A ~176 A). In particular, Cont A is a spectral space. 

For  every a s A  the set {v ~Cont  A [ v(a~ < 1 } is constructible in Cont A (by 
(3.2), (2.1.iv) and (2.6.ii)). Let o~ be the set of pro-constructible subsets of Cont A 
which are intersections of sets of the form {vsCont  Alv(a)< 1}(aeA). Let NA 
be the set subrings of A which are open and integrally closed in A. (For example, 
the ring A ~ of power-bounded elements of A is an element of NA.) There is 
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a natural one-to-one correspondence between ~A and fgA which we describe 
in the following lemma. 

Lemma 3.3 (i) The mapping a: ( # A ~ a ,  G~--~{v~ContAIv(g)< l for all g~G} 
is bijective. The inverse mapping is ~: ~ - - *  c~a, F~-+{a~A Iv(a)< 1 for all vEF}. 
(ii) Let G be an element of (r with G ~_A ~ Then ever), point of Cont A is a 
secondary specialization of  a point of  o(G). In particular, or(G) is dense in Cont A. 

(iii) I f  A is a Tare ring and has a noetherian ring of definition then also the 
converse of (ii) holds: I f  G is an element of HA such that a(G) is dense in Cont A 
then G ~ A ~ 

Proof (i) Let G be an element of (r We have to show r(~r(G))= G. Obviously, 
G~_v(a(G)). Assume by way of contradiction that there exists a aez(a(G)) \G.  
Then we consider in the localization A, the subring G[a 1]. The element 
a -  1 ~ G [ a -  1] is not a unit of G [ a -  1] (since otherwise aE G [a 1] which implies 
that a is integral over G and hence acG). Hence there exists a prime ideal 
p of G[a -1] with a - l e p .  Let q be a minimal prime ideal of G[a -1] with 
q___p. Choosing a valuation ring of qf (G[a-1] /q )  which dominates the local 
ring (G[a-t]/q)p/q we obtain a valuation s of G[a-1] with q=supp(s) ,  s(g)< 1 
for all geG,  and s ( x ) < l  for all xEp, in particular s ( a - 1 ) <  1. Since there exists 
a prime ideal of Aa lying over q, there exists a valuation t of A, lying over 
s. Put u =  t lAeSpv  A and v=ulcF,  eSpv  A. Then 

(a) v (a) > 1 
(b) v(g)< 1 for all g~G 
(c) v(x)< 1 for all x e A  ~176 
(d) veSpv(A, A ~176 A). 

Proof (a) and (b) follow from the fact that s ( a - 1 ) < l  and s (g )< l  for all g~G. 
Let x e A  ~176 be given. Since G is open, there exists a n e N  with x"aeG. Further- 
more we remark that x e G  (since G is open and integrally closed in A). Hence 
in Gl-a -1]  we have x~=ga -1 with some g~G. Since a - lEp ,  we obtain xep .  
Hence s(x)< 1 which implies v(x)< 1. By definition we have v=ul cF, and hence 
veSpv(A, A~176 

We conclude from (3.1) and (c), (d) that v is a continuous valuation, and 
with (b) we obtain veolG). Now (a) implies aq~z(o(G)) which is a contradiction 
to our assumption ae~(c;(G)). 
(ii) Let v be a point of ContA.  If supp(v) is open in A then v/F~eo(G). So 
we assume that supp(vl is not open in A. Then there exists a ae A  ~176 with v(a):#O. 
Let H be the greatest convex subgroup of F~ with v(a)r We claim that 
w ,=v/H ~ a (G). Obviously, w is a continuous valuation of A. Let g be an element 
of G. We have to show w(g)<_ 1. Assume to the contrary that w(g)> 1. Since 
F~ has rank 1 and w(a)~eO, there exists a n e N  with w(g"a)> 1. Since a~A ~176 
and g e A  ~ we have g"aeA ~176 Furthermore,  w is continuous. Hence w(g"a)< 1, 
contradiction. 
(iii) Let G be an element of fr such that o(G) is dense in Cont A. We have 
to show G~_A ~ Assume to the contrary that there exists a g e G \ A  ~ Then 
by (i) the set T:={vecr(A~ 1} is non empty. Let L be the set of the subse- 
quent Lemma  3.4, and put S= {veLlv(g)> l}. Then T~_S and hence SOe~. 
Now (3.4) implies S~(ContA)m,~+g~,  i.e. there exists a maximal point w of 
Cont  A with w(g)> 1. Since wr and w is maximal, w is not a specialization 
of a point of a(G). Hence by (2.1.iii) a(G) is not dense in Cont  A, contradiction. 
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Lemma 3.4 Let A be a Tote ring which has a noetherian ring of definition. 
Put L = { v e S p v A [ v ( a ) < l  for all a eA  ~ and v(a )< l  for all aeA  ~176 and 
(ContA)~ax={veContAIv  is maximal in ContA}. Then L is the closure of 
(Cont A)max in the constructible topology of Spy A. 

Proof First we observe 
(1) (ContA)max={veContAlrank(Fg=l} .  (Indeed, every vEContA has no 
proper primary specialization (since A is a Tate ring). Hence (2.3) implies that 
every specialization in Cont A is secondary. Now (1) is obvious.) (1) and the 
computation in the proof of (3.3.ii) show (Cont A)max_ L. Let T be a constructible 
subset of Spy A with Tc~L#gr We have to show that Tc~(Cont A)max#~. We 
may assume T = { w e S p v A l w ( a i ) < w ( b i )  for i=1  . . . .  ,m and w(q)<w(di)  for 
i=1  . . . . .  n} with ai, bi, ci, diEA. Let B be a noetherian ring of definition of 
A and let I be an ideal of definition of B. We choose an element t e T n L .  
Let K = q f ( A / s u p p ( t ) )  he the residue field of A at supp(t) and let f :  A ~ K  
be the natural ring homomorphism. We may assume that f(bl)+-0 for i=  1 . . . . .  k 

CtB" If  (al) and f (b i )=O for i = k + l  . . . . .  m. Let C be the subring _ ,  j j f~) / ) ,  i=1  . . . .  ,k; 

f(c~) i = l  . . . .  n] of K. The valuation ring A(t) of K contains C, and the 
f (di)' 

~ f (ci) l " } 
maximal ideal m of A(t) contains f ( 1 ) w ~ f ( d g l l = l  . . . . .  n . The prime ideal 

mr~C of C is not the zero ideal, since f ( I )# { 0 } .  Hence by [5, 0.6.5.8] there 
exists a (discrete) rank 1 valuation ring D of K which dominates the local 
ring Cm~c. Let v be the valuation of A with supp(v)=supp(0 and A(v)=D. 
Then ve(Cont A)max (by (1)) and ve T. 

In many applications it is necessary to work with a subspace F_~Cont A 
which is an element of WA instead of the whole space Cont A (cf. [8]). But 
of course we should not lose too much information by the transition from 
Cont A to F, in particular F should be dense in Cont A. So (3.3) motivates 
the following definition. 

Definition. (i) A subring of a f-adic ring A which is open and integrally closed 
in A and contained in A ~ is called a ring of integral elements of A. 

(ii) An affinoid ring A is a pair A=(A >, A +) where A > is a f-adic ring and 
A + is a ring of integral elements of A ~>. An affinoid ring A is called adic (resp. 
Tote, resp. complete) if A ~ is adic (resp. Tate, resp. complete). A ring homo- 
morphism f :  A --* B between affinoid rings is a ring homomorphism f :  At> --* Bt> 
with f ( A  +)~_B +. The ring homomorphism f :  A-~ B is called continuous (resp. 
adic) if f :  A ~> --* B C> is continuous (resp. adic). 

(iii) For  an affinoid ring A, Spa A denotes the subspace { v e C o n t A  ~ [v(a)< 1 
for all a e A  +} of ContA c>. If f :  A ~ B  is a continuous ring homomorphism 
between affinoid rings then Cont ( f ) :  Cont BE>~ Cont A t> indudes per restric- 
tion a continuous mapping Spa(f) :  Spa B ~ Spa A. 

If A is a f-adic ring then the integral closure B of the subring Z.  1 + A  ~ 1 7 6  

in A is the smallest ring of integral elements of A and Cont A = Spa(A, B). 
Let A be an affinoid ring. The subsets of Spa A of the form 

. . . .  , {veSpa AIv( t )<v(s i )#O forall  teT~}, R T~ '=i 
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where s~ . . . . .  s, are elements of At> and T1, ..., T, are finite subsets of A ~" such 
that T~.A > is open in At> for i=  1 . . . . .  n are called rational. 

If  T i s  a finite subset of A c> then T .A  ~> is open in A t> if and only if 

(AE>)~176 ~ . A  t>. By (2.6.ii) and (3.1) Spa A is a pro-constructible subset 
of Spv(A >, (A~') ~176 At>}. Hence (2.1.iv) and (2.6) imply our first main theorem. 

Theorem 3.5 (i) Spa A is a spectral space. 
(ii) The rational subsets form a basis of Spa A and every rational subset is con- 
structible in Spa A. 
(iii) To every rational subset U of SpaA there exist an element s of At> and 

af ini tesubset  T o f A  c> suchthat T .A  ~ i s o p e n i n A  > a n d U = R ( t s ) .  

Notice that if A is Tate then the rational subsets of Spa A are the sets 
of the form {vs Spa A[v(t~)<= v(s) for i=  1 . . . .  , n}, where s, t l . . . . .  t. are elements 
of A :> with At> = t t A ~ + . . .  + t, At>. 

By (3.5.ii) a subset L of Spa A is constructible if and only if L is a finite 
boolean combination of rational subsets, 

A point x~Spa  A is called analytic if the support  supp(x)_~A > is not open 
in A >. (Note that every valuation of At> with open support  is continuous.) 
We put (Spa A) . ,={xeSpa  AIx  is analytic} and (Spa A),~.-=Spa A\ (Spa  A),. The 
sets (Spa A), and (Spa A),, are constructible in Spa A. Indeed, if T is a finite 
subset of(A~>) ~176 such that T- A ~> is open in At> then (Spa A)~ = {x ~ Spa A lx(t) ~ 0 

for some t ~ T } =  U R(J~I.  We see that (Spa A)a is open in Spa A. I f A  is Tate 
t ~ T  

then Spa A = (Spa A),, and if the topology of At> is discrete then SpaA 
= (Spa A),~. In (Spa A}~ there are no proper  pr imary specializations, and hence 
by (2.3) every specialization in (Spa A), is a secondary specialization. For  every 
xE(Spa A), we have rank(F~)> 1, and rank(F~)= 1 if and only if x is a maximal 
point of (Spa A).. 

The Zariski-spectrum Spec B of a ring B is empty if and only if B is the 
zero ring. Similarly we have for Spa A 

Proposition 3.6 Let A be an affinoid ring. Then 
(i) S p a A = ~  if and only if the Hausdorff ring A:>/{0} associated with At> is 
the zero ring. 
(ii) (Spa A ) , = ~  /f and only if the topology of the Hausdorff ring At>/{0} is dis- 
crete. 

Proof. (ii) Assume that ( S p a A ) , = ~ .  Let B be a ring of definition of At> and 
I a finitely generated ideal of definition of B. Then we have 

(1) Let p be a prime ideal of B such that there exists a prime ideal q of B 
with p __ q and I ~_ q. Then I__ p. 

Proof. Assume that I ~ p .  Let u be a valuation of B such that p = s u p p ( u )  
and B(u) dominates the local ring (B/p),!w Let r: Spy B ~ Spv(B, I) be the retrac- 
tion from (2.6.iii). Then r(u) is a continuous valuation of B with l~supp(r (u) )  
(by (3.1) and (2.6.iv)). By the subsequent Lemma 3.7 there exists a continuous 
valuation v of A ~ with r(u)=vjB.  The secondary generalization w of v with 
rank (F~)= 1 is an element of (Spa A), (cf. proof  of (3.3.ii)), contradiction. 
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Let q~: B --, C be the localization of B by the multiplicative system S = 1 + I. 
Since in Spec C every prime ideal specializes to a prime ideal containing q~(1) C, 
(1) implies that qg(I)C is contained in every prime ideal of C. Therefore there 
exists a h e n  with qg(I") C =  {0}, i.e. there exists a i e l  with (1+i)  I~={0} in 
B. Then I" = I k for every k > n, and hence the topology of A~/{0} is discrete. 

(i) Assume Spa A =~a. Then the ideal {0) is open in A ~> (by (ii)). Hence every 
trivial valuation v of A ~> with {0} _csupp(v)is an element of Spa A. This shows 
that no prime ideal of A ~> contains {0}, i.e. {0} = A >. 

Lemma 3.7 Let B be an open subring of a f-adic ring A. Let f :  Spec A --+ Spec B 
be the morphism of schemes induced by the inclusion B ~ A .  Let T be the closed 
subset {peSpecBlp  is open) of SpecB. Then f - l ( T ) = { p e S p e c  AI~ is open} 
and the restriction Spec A \ \ ( -  1 ( T )  ~ Spec B \  T o f f  is an isomorphism. 

Proof Let peSpec B \ T  be given. We choose a seB ~176 with sCp. For every aeA 
there exists a h e n  with s"aeB (since B is open in A). Hence the ring homo- 
morphism B~ ~ A~ is bijective. 

Proposition 3.8 Let f:  A --* B be a continuous ring homomorphism between afl~noid 
rings, and let g: X :=Spa B-+ Y:=Spa A be the mapping induced by f Then 
(i) g(X..)__ Y... 
(ii) If  f is adic then g(X,)~_ Y~. 
(iii) f f  B is complete and g(X~)c Y~ then f is adic. 
(iv) I f  f is adic then g is spectral (more precisely, the preimage under g of a 
rational subset is rational). 

Proof (iii) Assume that B is complete and that f is not adic. We will show 
that g(X,)~  Y~. We choose rings of definition A o and B o of A > and B t> and 
finitely generated ideals of definition I a and IB of Ao and Bo with f ( A o ) c  Bo 
and f(Ia)c_ln. Since f is not adic, there exists a prime ideal p of B o with 
f(IA)C__ p and IB~ p. Since B o is complete in the In-adic topology, there exists 
a prime ideal cl of Bo with p c q  and l~___q [-3, III.2.13 Lemma 3~. Now we 
repeat the arguments of the proof of (3.6.ii). Let u be a valuation of B o such 
that supp(u)=p and Bo(u ) dominates the local ring (Bo/p),/~, and let r: Spy B o 
--+ Spv(Bo, IR) be the retraction from (2.6.iii). Then r(u) is a continuous valuation 
of Bo with In~gsupp(r(u)). By (3.7) there exists a continuous valuation v of B r 
with r(u)=vlBo. Let w be the secondary generalization of v with rank (Fw)= 1. 
Then w, eX~ and g(w)r 
(iv) Let s be an element of A :> and T a finite subset of A ~> such that T.A ~> 

i s o p e n i n A  E>. l f f i s a d i c t h e n f ( T ) . B  ~> is open in BE>, and hence g-  ' (R ( T ) )  

is the rational subset R [f(T)~ of Spa B. 
\ f ( s )  J 

Let A=(B,  C) be an affinoid ring. Then the completion (~ of C is a ring 
of integral elements of the completion/3 of B.  We call the affinoid r ing/]  := (B, C) 
the completion of A. 

Proposition 3.9 The canonical mapping g: Spa A ~ Spa A is a homeomorphism, 
and it maps rational subsets to rational subsets. 

In order to prove (3.9) we need the following two lemmata. 
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Lemma 3.10 Let A be a complete affinoid ring and let s, t~ , . . . ,  t, be elements 
of  A E> such that the ideal I = tl A E>+... + t, A t> is open in A ~'. Then there exists 
a neighbourhood U of 0 in A E> such that, for s ' e s +  U, t '~ ta  + U, .. . ,  t ' ,~t ,+ U, 

t~ A E> +. . .+t 'n  A E> is open in A E> and R "7' = R  ""'  
s s' " 

Proof. Let B be a ring of  definition of  A t>. Let r~ . . . .  , r,~ be elements of  Bc~I  
such that J:=r~ B +  ... + r , B  is open. By [3, III.2.10 Corol lary  3] there exists 
a ne ighbourhood  V of  0 in B such that  J = r ' l B + . . . + r ' ~ B  for every r ' l ~ r  1 
+ V, .... r~,~rm+ V. (That is the only point  where we use that  A is complete.) 
Hence there exists a ne ighbourhood  U' of 0 in A c> such that  t'~ A ~ + . . .  + t', A E> 
is open in A ~" for every t'~ ~t~ + U', .... t ' ~ t ,  + U'. 

We put  to~=s. For  every i~{0 . . . . .  n} let Ri be the rat ional  subset 

R(to" . . . . .  t~)." Then R i is quas i -compact  (by (3.5.ii) and (2.1.i)) and x( t i )*O for 
ti 

every xeR~.  Hence by the subsequent  Lemma 3.11 there exists a ne ighbourhood  
U" of 0 in A ~" such that  x(u)<x( t i )  for every ueU" ,  ie{0 . . . .  ,n} and x~R~. 
We will show that (3.10) holds for U=  U'c~ U"~(AE>) ~176 

First we show R o c R (t'~, . . . ,  t', 1 to ]. Let x ~ R  o be given. Since t ~ - t ~ U "  for 

i = 0  . . . .  ,n, we have x ( t ' i - t l )<x( to )  for i = 0  . . . . .  n. Th~s implies for every 
i = 1 ,  . . . , n  

X (tl) = x (t i + (t I -- ti) ) =< max {x (tl) , x (tr -- ti) } ___ x (to) = x (t o + (t~3 -- to) ) = x (t~3). 

H e n c e x ~ R ( t ' l  . . . . .  t'n) 
t 

to 

N o w  let x be an e/ement of S p a A  with x(ER o. We have to show 

xf~R(t'l" . . . . .  t~]." First we consider the case that x( t~)=0 for i = 0 ,  . . ,n.  Then 
t~ ] 

supp(x) is open (since the ideal I is open). Hence t~- - to~supp(x)  (since to 

- - t o e ( A > )  ~176 which implies t0~supp(x ). Hence x ~ R  "(t'l . . . . .  t',)- 
t~ , \ 

N o w  assume that  x(ti)=~O for some i~{0 . . . .  ,n}. We choose a j e { 0  . . . . .  n} 
with x( t i )= max {x (to),.. . ,  x (t,)}. We have x (to)< x (t j-), since otherwise we would 
have x ~ R  o. As t ' i - t i ~ U "  for i = 0  . . . . .  n and  x e R j ,  we have x ( t ' i - t i )<x ( t j )  for 
i = 0 . . . . .  n. Then 

x (t~) = x (t o + (t~ -- to) ) =< max {x (to), x (t~ -- to) } < x (t~) = x (tj + (t)-- t j)) = x (t~). 

t l ,  . . . ,  
Hence x , . 

to 

L e m m a  3.11 Let A be an affinoid ring, X a quasi-compact subset of  Spa A 
and s an element of  A ~> with x(s)=~ 0 for every x ~ X .  Then there exists a neighbour- 
hood U of  O in A E> such that x (u )<x(s )  for  every x E X ,  u e U .  

Proof  Let T be a finite subset of  (A~>) ~176 such that  T.(A~>) ~176 is open. Fo r  every 
n~]N put X , = { x ~ S p a A l x ( t ) < x ( s ) # O  for every t~T"} .  Then X ,  is open in 
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SpaA, and X_c U x , .  Hence X~_X~ for some m~N. Put U =  Tm.(AC>) ~176 Then 
h E N  

U is a neighbourhood of 0 in A c> and xltt) < x(s) for every x~X ,  ue U. 
Now we prove (3.9). Clearly g is bijective. Let U be a rational subset of 

Spa/]. We have to show that g(U) is rational in SpaA. Let i: A L> ~ ( A > )  " 
be the natural mapping. By (3.10) there exist an element sEA c> and a finite 

( i (T) t  Since U is quasi-compact by ((3.5.ii) and subset T of A c> with U = R ~  
i(s) )" \ 

(2.1.i)) and since x(i(s))+O for every xEU, there exists a neighbourhood G of 
0 in A m such that x(i(g))<x(i(s)) for every xEU and every g~G (by (3.11)). 
Let D be a finite subset of G such that D.A c> is open. Then we have the 

rational subset V:=R( tU-u~  of Spa A and V=g(U). 
k s /  

4 Tate rings of topologically finite type over a field 

In this section we consider a special type of Tate rings. Let k be a field which 
is complete with respect to a rank 1 valuation l I: k ~ l R >  w{0}. We put 
k(X~ . . . . .  X , ) = { ~ a v X " e k ~ X 1  .. . .  ,X,~l(a~)v~N~ is a zero sequence in k} and 
equip k(X~ . . . . .  X , )  with the topology induced by the norm [[ I] with 
]] ~ avXV[]=max{[a,.l[v~N"o}. Then k ( X  1 . . . . .  X , )  is a complete Tare ring. 

veN~ 
We call a complete topological k-algebra A a Tate algebra over k (more precisely, 
a "`fate ring of topologically finite type over k) if there exists a continuous, 
open and surjective k-algebra homomorphism k(X~ . . . .  , X , ) - - , A  for some 
n o n  0 (cf. [13, 4, 2]). Every Tate algebra over k is noetherian [2, 6.1.1 Proposi- 
tion 3] and every k-algebra homomorphism between Tate algebras over k is 
continuous [2, 6.1.3 Theorem I]. 

In this paragraph we show that, for every Tate algebra A over k, the category 
of sheaves of the rigid analytic variety Sp A is canonically isomorphic to the 
category of sheaves of the topological space Spa(A, A~ We give two proofs. 
In the first proof we use the subsequent Theorem 4.1 which is useful also for 
other applications (cf. [9J). In order to prove (4.1) we use the model theoretic 
result that the theory of algebraically closed fields with non trivial valuation- 
divisibility relation has elimination of quantifiers. For the second proof we use 
some standard facts on Tate algebras. 

We fix a "fate algebra A over k. Let Max A be the set of all maximal ideals 
of A. For  every x e M a x  A, the residue field A/x is finite over k [2, 6.1.2 Corollary 
3]. Hence the valuation ] [ of k extends uniquely to a valuation [ [~ of A with 
support x. Since x is closed in A [2, 6.1.1 Proposition 3J, it is easily seen that 
[ [~ is a continuous valuation of A, and then even [ [~eSpa(A, A~ So we have 
an injective mapping MaxA--+Spa(A, A~ xv--*[ [~. We consider MaxA as a 
subset of Spa(A, A ~ via this mapping. We put LA={V~SpvA[v(a)<=l for all 
aeA ~ and v(a)< 1 for all aeA~176 Then 

Max A _~ Spa(A, A ~ ~_ L A ~ Spv A. 

(Remark. If r: Spv A ~Spv(A,  A) is the retraction from (2.6.iii) then L a =  
r - l (Spa(A,  A~ Every k-algebra homornorphism A ~ B from A to a Tate alge- 
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bra B over k induces mappings Spy B - ,  Spv A, L B -~ La, Spa(B, B ~ --* Spa(A, A~ 
Max B --+ Max A. 

Theorem 4.1 L A iS the closure of Max A in the constructible topology of Spy A. 

Proof First we show by induction on n that (4.1) is true for A=k(n) 
,=k(X~ ..... X,). For  A=k(O)=k we have L A = M a x A .  Assume that (4.1) is 
true for A=k(n). We will show that (4.1) is true for A=k(n+l). Let T be a 
non empty constructible subset of Lk~,+ ~). We have to show that Tc~ Max k(n 
+ 1) +.e'. We may assume 

T={veLk(,+l)[v(a~)<v(bi) and v(ci)<t)(di) for i =  1 . . . .  , m} 

with a~, b~, % diek(n+l), By the Weierstrass preparat ion theorem [-2, 5.2.2 
and 5.2.4] there exists a k-algebra au tomorphism a of k(n+ 1) such that o-(a~) 
=ai.A~ ..... a(di)=~i.Di, where ai . . . . .  b~ are units of k ( n + l )  of the form l + x  
with x~k(n+l) ~176 (cf. [-2, 5.1.3 Proposit ion 1]) and Ai, ...,Oi~k(n)[X,+l]. Let 
f :  Spy k(n+ 1 ) ~ S p v  k(n+ 1) be the mapping induced by ~r. By definition of 
Lk(,+1) we have v ( l + x ) = l  and v ( X , + l ) < l  for every xek(n+l) ~176 and every 
r)fsLk(n+ 1). Hence 

f -  l(T)= {VeLk<,+ l)]v(Ai)<v(Bi) and v(C~)<v(Di) 
for i = 1  . . . .  ,m and v ( X , + 0 < l  }. 

Let g: Lk~,+ 1)~ Spv k(n)[X,+ 1] and h: Spv k(n)[X.+ 1] ~ Spy k(n) be the map-  
pings induced by the inclusions k(n)[_X.+L]~_k(n+l) and k(n)~_k(n)[-X.+l]. 
We put 

S= {v~Spv k(n)[_X,+ l]4v(Ai)<v(Bi) and v(Ci)<v(Di) 
for i = 1  . . . .  ,m and v ( X , + l ) < l  }. 

Since T4=~ and g ( f -  ~(T))c_S and im(hog)~_Lk~,), we have h(S) c~Lk~,)4=~. The 
model theoretic result that the theory of algebraically closed fields with non 
trivial valuation-divisibility relation has elimination of quantifiers [11, 4.17] 
implies that h(S) is a constructible subset of Spy k(n). So by induction hypothesis 
we have h(S)c~ Max k(n):#~. We choose a x~h(S)~Maxk(n). Applying again 
that the theory of algebraically closed fields with non trivial valuation-divisibility 
relation has elimination of quantifiers, we obtain that there exists a 
y e S p v  k(n)[X,+~] such that yeS, x=h(y) and qf(k(n)[X,+ 1]/supp(y))is alge- 
braic over qf(k(n)/supp(x)). Then supp(y) is a maximal ideal of k(n)[X,+l] 
and y is continuous with respect to the subspace topology of k ( n + l )  on 
k(n)[X,+~] (here we use that y ( X , + 0 < l ) .  Hence y extends to a continuous 
valuation z of the completion (k(n)[-X,+ 1]) ~ = k(n + I) with z e M a x  k(n+ 1). 
Since f - l ( r )=g- t (S ) ,  we obtain z e f - l ( r ) ~ M a x k ( n + l ) = f - l ( r c ~ M a x k ( n  
+ 1)). Hence Tc~ Max k(n+ 1 ) + ~ .  

Now let A be an arbitrary Tate algebra over k. We choose a surjective 
k-algebra homomorph i sm p: k(n)~A for some n e N o .  Let q: (SpvA) .. . .  

(Spv k(n)) . . . .  be the mapping induced by p. We know that Lk~,)is the closure 
of Max k(n) in (Spy k(n)) . . . .  . Since q is open, we obtain that q-l(Lk(,) ) is the 
closure of q -  1 (Max k(n)) = Max A in (Spv A) . . . .  . But Max A _~ LA ~ q -  1 (Lk(,)) 
and L A is closed in (Spv A) . . . .  . Hence L A is the closure of Max A in (Spy A) . . . .  - 
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Corollary 4.2 Max A is dense in the constructible topology of Spa(A, A~ 

Proof Let T be a non empty constructible subset of Spa(A, A~ By (3.5.ii) T 
is a finite boolean combination of rational subsets of Spa(A, A~ Hence there 
exists a construetible subset M of Spv A with T =  M c~ Spa(A, A~ Consequently 
M ~ L A =~ .~ (since Spa (A, A o) ___ La). Then by (4.1) T c~ Max A = M n Max A + ~.  

Corollary 4.3 Let X1, X z be constuctible subsets of Spa(A, A ~ with X ~ n M a x  A 
=X2c~Max A. 7hen X I = X 2 .  

Proof X : = ( X ~ \ X z ) u ( X 2 \ X I )  is a constructible subset of Spa(A, A ~ with X c~ 
Max A = g .  Then by (4.2) X = ~ , i . e .  X~=X2.  

A subset R of Max A is called rational if there exist J'~ . . . . .  f , ,  g~A such 
that R = {xeMax A llf~l~< Igl~ for i=  1 . . . . .  n} and A =7"1 A + . . .  + L  A [-4, III.l.1]. 
The intersection of two rational subsets of Max A is rational. If U is a rational 
subset of Spa(A, A ~ then U n Max A is a rational subset of Max A. (4.3) implies 
that U~-+ U n Max A is a bijection from the set of rational subsets of Spa(A, A ~ 
to the set of rational subsets of Max A. 

In rigid analytic geometry one associates with A a Grothendieck topol- 
ogy JA [-4, III.2.]]: The objects of the category o~ are the rational subsets of 
Max A. If U, V are rational subsets of Max A then Horn(U, V)= ~ if U ~ V and 
IHom(U, V)I=I if U_~V. A family (U~)i~ of rational subsets of MaxA is a 
covering of a rational subset U if there exists a finite subset J of I with 
U = U u~ = U L). From (3.5) and (4.31 we can deduce 

i~l j~J  

Corollary 4.4 The category of sheaves of the Grothendieck topology ~ is canoni- 
cally isomorphic to the category of sheaves of the topological space Spa(A, A~ 

Proof Let F be a sheaf on W a. For  every open subset U of Spa(A, A ~ we 
put F(U) lira ='~V-- F(Vc~ Max A), where the projective limit is taken over all ratio- 

nal subsets V of Spa(A,A ~ with V_ U. By (3.5.ii) and (2.1.i) every rational 
subset of Spa(A, A ~ is quasi-compact. Then we can conclude from [-5, 0.3.2.2] 
that U~-+P(U) is a sheaf on Spa(A, A~ Thus we have a functor i: S ~ S  from 
the category S of sheaves on ~ to the category S of sheaves on Spa(A, A~ 
Now let (~ be a sheaf on Spa(A, A~ For every rational subset U of Max A 
let U be the rational subset of Spa(A,A ~ with U = 0 c ~ M a x A .  Then U~-+ 
G(U),=(~(U) is a sheaf on ~ (by (4.3)). So we have a functor j: ~-~S which 
is quasi-inverse to i. 

A set ~ of rational subsets of Max A is called a prime filter if (i) Max Ae~ 
and ~ r  (ii) if X1, X2~~ then X 1 c ~ X z ~ ;  (iii) if X ~ W  and if X2 is 
a rational subset of MaxA with X1c_X2 then X z ~ ;  (iv) if X~ . . . . .  X,  are 
rational subsets of Max A with X~ 
ie{1 . . . . .  n}. Let (Max A)~ denote the 
of MaxA. We equip (Max A)- with 
{.~-~(Max A ) - I F ~ Y }  with F a rational 

w . . . w X , e ~  then X~e~- for some 
set of prime filters of rational subsets 
the topology generated by the sets 

subset of Max A. 

Corollary 4.5 If  x is a point of Spa(A, A ~ then s(x):={U n Max A IU rational 
subset of Spa(A, A ~ with xe  U} is a prime filter of rational subsets of Max A. 
The mapping s: Spa(A, A ~ ~ (Max A) ~, xw-,s(x) is a homeomorphism. 
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Proof By (4.3), s(x)e(Max A)-. Let x, y be different points of Spa(A, A~ Since 
Spa(A, A ~ is a To-space and the set of rational subsets of Spa(A,A ~ form 
a basis (3.5.ii), there exists a rational subset U of Spa(A, A ~ such that xaU,  
yCU or xr  yeU.  Hence s(x)4:s(y). 

Let ~-e (Max A) ~ be given. Put ~/V=o~-u {(Max A ) \ R [ R  rational subset of 
Max A with RqL~-}, and for every WeYr ~ let W- be the constructible subset 
of Spa(A, A ~ with W~ ~ M a x A =  W. For  every finite subset 6 ~ of ~#~ we have 
(]  W ~ 4 :~  (since (~ W4:N). As Spa(A, A ~ . . . .  is compact ((2.1.i) and (3.5.i)), 

W e g  W e d '  

we obtain that D..= (~ W-  is non empty. For  every xeD we have s(x)=~, ~.  
W e ~  ~ 

Hence s is bijective. Since the rational subsets of Spa(A, A ~ form a basis, s 
is a homeomorphism. 

Remark 4.6 We define a re la t ion<on (MaxA)-  by Yl < ~ z  iff ,~-1-~.~-z. Then 
o~1 <,~-z if and only if s 1(~1) is a specialization of s-~(~z) in Spa(A, A~ Hence 
the mapping s induces a bijection from the set Spa(A, A~ of maximal points 
of Spa(A, A ~ to the set of maximal elements of (Max A) ~. Since Spa(A, A~ 
consists of the continuous rank 1 valuations of A, we obtain the following result 
of van der Put [-12, 1.3.3 Corollary]" There is a natural one-to-one correspon- 
dence between the continuous rank 1 valuations of A and the maximal prime 
filters of rational subsets of Max A. 

Remark 4.7 We deduced (4.2)-(4.5) as consequences of (3.5,i, ii) and (4.1). In 
this remark we give new proofs of (4.2)--(4.5) without using (3.5.i, ii) and (4.1). 
Furthermore, we will give a new proof of (3.5.i, ii) in case that the affinoid 
ring A is of the form A = (B, B ~ where B is a Tate algebra over k. 

Let A be a Tate algebra over k, and let (~ be the structure sheaf of the 
rigid analytic variety associated with A E4, III.2.1]. If v is a continuous valuation 
of A and U is a rational subset of Max A then v can be extended in at most 
one way to a continuous valuation of (5(U), since (9(U) is the completion of 
a localization of A [2, 6.1.4]. 

(4.7.1) Let gi, f/l,-- ' ,  f~.(i)(i=1 . . . . .  k) be elements of A such that A=f/1 A + . . .  
k 

+ fi~i) A for i = l , . . . , k ,  let U be the rational subset (] {xEMaxAl[J~jl~<=]gi]~ 
i = 1  

for j = l  . . . . .  n(i)} of Max A, and let v be an element of Spa(A, A~ Then the 
following conditions are equivalent. 

(i) r extends to a continuous valuation w of (9(U) such that w(e)=<l for every 
e~(9(U) ~ (i.e., v lies in the image of the natural mapping Spa(C(U), C(UI~ 
Spa(A, A~ 

(ii) v(fij)<v(gi) for i= 1 . . . .  , k , j =  1 . . . .  , n(i). 

Proof gi is a unit in (~(U), and f ~  is power-bounded in e(U). Hence (i) implies 
gl 

(ii). Now we assume (ii), and we will show that (i) holds. Let B be the valuation 
ring of L.=qf(A/supp(v))  such that B has rank 1 and contains the valuation 
ring A(v)~_L associated with v. Then B c~ k = k  ~ and hence the valuation ] ] 
of k extends to a valuation [ [: L ~ R  with B={x~Lllxl<=l}.  Let (K, I 11 be 
the completion of (L, t D- Then (K, I I) is a k-Banach algebra, and the natural 
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ring homomorphism q~: A--+K is continuous. Furthermore, q~(gl) is a unit of 

K and ~ is power-bounded in K. Hence by the universal property [2, 6.1.4, 

Proposition 3] there is a continuous A-algebra homomorphism q/: (c,(U)--+ K. 
This implies that v extends to a continuous valuation w of C)(U). We have 

/ . ~  

w(JiJ]<=l. Let C b e  the integral closure of A ~  ~!! i=1 . . . . .  k , j = l  . . . . .  n(i)] in 
\ g l /  [gi l  J 

C(U). Then w(c)<l  for every ceC, and then, since w is continuous, w(c)<l  
for every element c of the closure C of C in C(U). One can show (7=(9(U) ~ 
(cf. [8, 4.4]). Hence (i) is satisfied. 

(4.7.2) Let ~ e ( M a x  A)- be a prime filter of rational subsets of Max A. We put 
p.~:= {aeAIfor  every F E ~  there exists a x e F  with a(x)=0} ={aeA]  for every 
eek* there exists a Fe ,N with lalx<lelx jbr every xeF}.  Then there exists (up 
to equivalence) a unique valuation v:, of A such that, for all a, bEA, v~(a)< v.~(b) 
if and only if aep.~ or there exists a Fe.~- with la]x<=lblx for every xeF.  We 
have v~ e Spa(A, A~ 

Pro(~ Let I~ be the binary relation of A with bl. ~ a if and only if a e p ~  or 
there exists a F e ~  with lalx < [bl~ for every xeF.  Then I~ satisfies the conditions 
(1)-(6) of the proof of (2.2). This says that there exists (up to equivalence) a 
unique valuation v~ of A such that, for all a, boA, v~(a)<v~(b) if and only 
if aep.~ or there exists a F e ~  with lal~__<lbl~ for every xeF.  It is easily seen 
that v ~ ( a ) < l  for all aeA ~ [4, ii.5.5], p.~=supp(v~) and, for every 
aeA\supp(v~) ,  there exist et ,  ezek* with c~(e,)<=v~(a)<v~(e:). Hence 
v~eSpa(A, A~ 

We call a subset X of (Max A)~ rational if there exists a rational subset 
U of Max A such that X =  U-.-={oY'-e(Max A ) ~ I U e ~ } .  By the definition of 
the topology of (Max A)~, the rational subsets of (Max A)- form a basis of 
the topology of (Max A) ~. For  every x e Max A, the set j(x) of all rational subsets 
U of Max A with x e U  is a prime filter. Via the injection j:  Max A--+(Max A) ~, 
x~-*j(x) we consider Max A as a subset of (Max A) ~. With (4.7.1) and (4.7.2) 
we obtain 

(4.7.3) For every veSpa(A, A~ the set d(v) of all rational subsets U of Max A 
such that r extends to a continuous valuation w of C(U) with w(e)< 1 for every 
e e (9 (U) ~ is a prime filter of rational subsets of Max A. The mapping d: Spa (A, A ~ 
--+(Max A)~, v~-+d(v) is a homeomorphism. I f  X is a rational subset of(Max A) ~ 
then d-~(X) is a rational subset of Spa(A, A~ and the mapping X~--,d- '(X) 
is a bijection from the set of rational subsets of (Max A)- onto the set of rational 
subsets of Spa(A, A~ Furthermore, d - t (Max A) = Max A. 

Proof. Let veSpa(A, A ~ be given. We show that d(v) is a prime filter. Obviously, 
d(v) satisfies the condition (i) and (iii) of the definition of a prime filter. Condition 
(ii) follows from (4.7.1). Let U be an element of d(v) and U, . . . . .  U, rational 
subsets of Max A with U =  U~ ~ . . .  vo U,. We have to show that U~ed(v) for 
some ie{1 . . . . .  n}. By [4, III.2.5] there exist f~ . . . . .  f , ,eC(U) such that (9(U) 
=fl (9(U)+. . .+f=(9(U)  and, for every ie{l . . . .  ,m}, the rational subset V i 
=={xeCllJ:Sl~<lf~lx for j = l  . . . . .  m} of MaxA is contained in some Uz. Let 
weSpa(C(U), 6(U) ~ be the continuous extension of v to (5(U). We choose a 
re{1 . . . . .  m} with w(fi)<w(f~) for i=  1, .. . ,m. Then (4.7.1) implies V, ed(v), and 
hence Uied(v)for some ie{1 . . . .  , n}. 
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Let .~- be a filter of rational subsets of Max A, and let v~ESpa(A, A ~ be 
the corresponding valuation as defined in (4.7.2). Then by (4.7.1), ~-=d(v.~). 
Hence d is surjective. 

The rational subsets of Spa(A, A ~ form a basis of the topology of Spa(A, A~ 
Indeed, let veSpa(A, A ~ be contained in an open subset U,={x~Spa(A, A~ 
x(a)<x(b)+O} (a, beA) of Spa(A, A~ Since v is continuous, there exists a cek* 
with v(c)<v(b). Then V,={x~Spa(A, A~ and x(c)<x(b)+O} is 
a rational subset of Spa(A, A ~ with v~ V_~ U. 

Let g, f~ . . . . .  f ,  be elements of A with A = f 1 A + . . . + f , A .  If we put U 
={xeMaxAIlf~Ix<lglx for i = 1  . . . . .  n} and V={veSpa(A,  A~ for i 
=1,  . . . ,n} then d - l ( U - ) =  V(by (4.7.1)). Since the topology of Spa(A, A ~ is 
To and the rational subsets form a basis, we can conclude that d: Spa(A, A ~ 
-~(Max A) ~ is a homeomorphism and X~--~d -1 (X) is a bijection from the set 
of rational subsets of (Max A)-  to the set of rational subsets of Spa (A, A~ 

(4.7.4) Let ~ be the boolean algebra of subsets of (Max A) ~ which is generated 
by the rational subsets of (Max A)-, and let .Y- be the topology o[" (Max A) ~ 
generated by ~. Then ((Max A)-,3--) is compact, and ~ is the set oJ subsets 
of (Max A)~ which are open and closed in ~ Max A is dense in ((Max A)-,  J-). 

Proof Let S be the set of rational subsets of Max A, and let ~(S)  be the power 
set of S. Then (Max A)-  is a subset of g)'(S). We equip [0, 1} with the discrete 
topology and ~ ( S ) =  {0, 1} s with the product  topology. Then ~(S)  is compact,  
and ((Max A)- ,  ~-) is a closed subspace of ~(S). [] 

The mapping X~--~Xc~MaxA is a bijection from the set of rational sub- 
sets of ( M a x A ) -  to the set of rational subsets of Max A. The inverse map-  
ping is U~--~U-. A family (Ui)i~ of rational subsets of M a x A  is a covering 
of a rational subset U of Max A in the Grothendieck topology of M a x A  if 
and only if U ~ = ~) U~ ~ , since U ~ is quasi-compact in the topology of (Max A)~ 

i e l  

(by (4.7.4)). Hence the category of sheaves of the Grothendieck topology of 
Max A is canonically equivalent to the category of sheaves of the topological 
space (Max A)~ (cf. [5, 0.3.2.2]). Now (4.7.3) implies (4.4). 

By (2.1.vi) and (4.7.4), (Max A) ~ is a spectral space and N is the set of 
constructible subsets of (Max A)- .  Hence with (4.7.3) we obtain (3.5.i, ii) for 
the affinoid ring (A, A~ By (4.7.4), Max A is dense in the constructible topology 
of (Max A)-.  Then again (4.7.3) implies (4.2). 
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