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0 Introduction

In this paper we study, for a certain type of topological rings A, the topological
space Cont A4 of all equivalence classes of continuous valuations of A. The space
Cont A4 is defined as follows. Let v: A >T'w {0} be a valuation of A, where
I" is an ordered multiplicative group generated by im(v)\ {0}. On I'u {0} we
introduce the topology such that U= {0} is open iff 0¢ U or {xel|x<y}cU
for some yeI'. We call v continuous if the mapping v: A - I"'u {0} is contin-
uous with respect to the ring topology on 4 and the topology on I'u {0} just
defined. Two continuous valuations v: 4 —I'u {0} and w: 4 — 4 U {0} are called
equivalent if there exists an isomorphism f: I'u{0} - 40 {0} of ordered
monoids such that w=fo0. Then Cont A4 is the set of all equivalence classes of
continuous valuations of 4 equipped with the topology generated by the sets
{veCont A|v(a)<v(b)%0} (a, be A).

Our study of the topological spaces Cont 4 is motivated by the following
result. Let A be a Tate algebra over a complete, non-archimedean, valued field
[2, 4, 13]. One can associate with 4 a topological space X , which is uniquely
determined up to homeomorphism. Namely, let 7, be the Grothendieck topolo-
gy of the rigid analytic variety Sp 4 associated with A [4, IT1.2.1]. Then it
is casily scen that the topos Shv(%,) of 7, is spatial, i.e. there exists a sober
topological space X, such that Shv(Z,) is equivalent to the topos Shv(X,)
of X 4. By [6,1V.42.4] X, is uniquely determined up to homeomorphism. In
this paper we will show that X, is homeomorphic to the topological subspace
Spa(A4, A°%)={veCont A]v{a) <1 for every ac A°} of Cont A (A° denotes the set
of power bounded elements of A). We will even show that Shv(7,) is canonically
equivalent to Shv(Spa(4, A°)).

Having seen that, for Tate algebras A, the topological space Cont A occurs
very naturally in rigid analytic geometry, one can ask for applications of Cont 4
for more general topological rings 4. In this paper we restrict ourselves to
a class of topological rings which I call f-adic rings: A topological ring is f-adic
if it contains an open subring which is adic and has a finitely generated ideal
of definition. Then Tate algebras and adic rings with finitely generated ideals
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of definition are f-adic. The main result of this paper is that, for every f-adic
ring A, the topological space Cont A4 is spectral. Moreover, we will give a rather
explicit description of the boolean algebra of constructible subsets of Cont A.
We will see that there is a good notion of rational subsets of Cont A, similar
to the rational subsets of affinoid rigid analytic varieties. Our main application
of the topological spaces Cont A will be given in a second paper [8], where
we will show that there exists a natural structure sheaf ¢, on Cont A such
that, glueing together locally ringed spaces of the form (Cont 4, ¢/,), one obtains
a category of locally ringed spaces which generalizes both the category of rigid
analytic varieties and the category of locally noetherian formal schemes.

The paper is organized as follows. In §1 we discuss the notion of a f-adic
ring. In §2 we consider Cont A in the special case that the topology of A4 is
discrete (every discrete topological ring is f-adic), and in §3 we study Cont A
for arbitrary f-adic rings 4. In §4 we prove the result mentioned above that
Shv(7,) is canonically equivalent to Shv(Spa(A4, 4°)) for every Tate algebra A.

1 F-adic rings

All rings are tacitly assumed to be commutative with unit element.

We recall some notations. Let 4 be a topological ring. A subset B of 4
is called bounded if, for every neighbourhood U of 0 in A, there exists a neigh-
bourhood V of 0 in A with v-beU for every veV, be B. An clement a of 4
is called power-bounded if the set {a"{neN} is bounded. 4° denotes the set
of all power-bounded elements of A. An element a of A is called topologically
nilpotent if (a"|neNN) is a zero sequence. A°° denotes the set of all topologically
nilpotent elements of 4. The ring A4 is called adic if there exists an ideal I
of A such that {I"|[neN} is a fundamental system of neighbourhoods of 0,
and such an ideal is called an ideal of definition of A. For subsets § and T
of A4, let S-T be the subgroup of A generated by the elements s-t with seS
and teT

Definition. (i) A topological ring A is called f-adic if there exist a subset U
of A and a finite subset T of U such that {U"|nelN} is a fundamental system
of neighbourhoods of 0in 4 and T-U=U?cU.

(ii) A topological ring A is called Tate (or A4 is called a Tate ring) if A is f-adic
and has a topologically nilpotent unit.

Examples 1.1 (i) Every adic ring with a finitely generated ideal of definition
is f-adic.

(ii) Let A be a ring and I a finitely generated ideal of 4. We equip the polynomial
ring A[X] with the group topology such that {U,|neIN} is a fundamental system
of neighbourhoods of 0 where U,:=={} a, X*e A[X]|a,eI"** for all k}. Then
A[X] is a f-adic ring. But A[X] is not an adic ring if I™+I™"" for every
melN.

(iii) Let (k,| }) be a non-trivial non-archimedean value field and (4, | ||) a normed
algebra over (k, | |) [2, 3.1.1]. Then A equipped with the topology induced by
| {| is a Tate ring. (Indeed, if Ag={aecA||a <1} and r is an element of k
with O<|r|<1 then {r"-A4q|neN} is a fundamental system of neighbourhoods
of 0in A4.)
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(iv) Let B be a ring, s an element of B and ¢: B— B, the localization of B
by s. We equip B, with the group topology such that {@(s"B)|neN} is a funda-
mental system of neighbourhoods of 0. Then it is easily seen that B, is a Tate
ring.

Definition. A subring A, of a f-adic ring A is called a ring of definition of
A if A, is open in A and if the subspace topology of 4 on A, is adic.

Proposition 1. Let A be a f-adic ring. Then

(i) A has a ring of definition.

(ii) A subring A, of A is a ring of definition of A if and only if Ay is open
and bounded in A.

(iii) Every ring of definition of A has a finitely generated ideal of definition.

Proof. Obviously, an open and adic subring of A is bounded. Let U be a subset
of A and T a finite subset of U such that T-U=U?<U and {U"|neN} is
a fundamental system of neighourhoods of 0. For every nelN put T(n)
={t; ... t,lty,...,t,€ T} Let A, be an open and bounded subring of A. Choose
a keN with T(kysA,, and put I=T(k)-A,. In order to prove (ii) and
(iii) we show that {I*|neNN} is a fundamental system of neighbourhoods of O.
Let / be a natural number with U‘= A4,. Then we have for every nelN,
I"=Tnk)-Ao2T(nk)- U’=U?""* Hence I" is a neighbourhood of 0. Let V be
a neighbourhood of 0. Since A, is bounded, there exists a meIN with U™ - A, V.
Then I V.

Let W be the subgroup of A generated by U. Then Z-1+ W is an open
and bounded subring of A. Hence A has a ring of definition.

Corollary 1.3 Let A be a f-adic ring and A° the set of all power-bounded elements
of A. Then

(i) If Ay and A, are rings of definition of A then also Agn A, and Ay-A, are
rings of definition of A.

(ii) Let B be a bounded subring of A and C an open subring of A with B&C.
Then there exists a ring of definition Ay of A with B A,< C.

(iii) A° is a subring of A and A° is the union of all rings of definition of A.

Corollary 1.4 (1) An adic ring is f-adic if and only if it has a finitely generated
ideal of definition.

(ii) A f-adic ring is adic if and only if it is bounded.

(iii) Let A be a topological ring and B an open subring of A. Then A is f-adic
if and only if B is f-adic.

The following proposition says that every Tate ring is of the form described
in (1.1.1v).

Proposition 1.5 Let A be a Tate ring and B a ring of definition of A. Then

(i) B contains a topologically nilpotent unit of A.
(ii) Lets se B be a topologically nilpotent unit of A. Then A=B, and sB is an
ideal of definition of B.
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Proof. (i) Let ¢t be a topologically nilpotent unit of A. Then t"eB for some
nelN.
(ii) For every ae A there exists a nelN with s"aeB. Hence A=B,. For every
neN, the mapping 4 — A, a—s"a is a homeomorphism of A. Hence s"B is
open. Since B is bounded, there exists, for every neighbourhood V of 0, a nelN
with s"BS V.

In this note complete always means hausdorff” and complete.

Lemma 1.6 Lei A be a f-adic ring, B a ring of definition of A and I an ideal
of definition of B. Let A and B be the completions of A and B. We consider
B as an open subring of A. Then

(i) A is f-adic, B is a ring of definition of A and I-B is an ideal of definition
of B.

(ii) The canonical diagram

o ——> Iy
o A

—

is cocartesian in the category of rings.

Proof. (i) By [3, 111212 Corollary 2] B is adic with ideal of definition I-B.
Hence A is f-adic.
(i1)) We consider the canonical commutative diagram

N/

B®B

W

A

B B.

We have to show that j is an isomorphism. For every de A we choose ae A
and beB with d=i(a)+5, and put h(@):=f(a)+g(h)esB®yz A. This definition
of h(4) is independent of the representation @ =i(a)+b, since i~ ! (B)=B. Hence
the mapping h: A - B® A has the properties

(1) his additive

(2) f=hoi

(3) g=hIB.

Next we show that h is a ring homomorphism. For that it suffices to show
that there exists a complete ring topology on B®j, A such that f and h are
continuous (by (2)). In order to construct this topology we remark that g is
injective (since jog is injective). We equip B® 5 A with the group topology such
that g is an open embedding. Then by (3) 4 is continuous at 0. Also f is continu-
ous at 0. Since h and [ are additive, we obtain that & and f are continuous.
It remains to show that B® A is a topological ring. Let h®a be an ele-
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ment of B®,z A and U a neighbourhood of 0 in B® z A. We have to show
that there exists a neighbourhood V of 0 in B®, 4 with (h®a)- V< U. Let
S be an open ideal of B with g(S)cU, and let T be a neighbourhood of
0 in B with T-aci '(S)=B. Then V::gLi(T)-B) is a neighbourhood of 0 in
B®p A with (b®a)- V=(b®a)-g(i(T))-g(B)=(b®a)-f(T)-g(B)=(b ® Ta)-g(B)
= i(Ta)®1)-g(B)=(S® 1)-g(B)=g(S)c U. Thus we have proved that h is
a ring homomorphism.

We have joh=idy (by construction of h). Furthermore, (hoj)(x)=x for all
xef(A)ug(B) (by (2) and (3)). Since h-j is a ring homomorphism, we obtain
that hoj is the identity of B® 3 A. Hence j is an isomorphism.

Corollary 1.7 Let A be a f-adic ring and A the completion of A.

(1) If A has a noetherian ring of definition then the canonical ring homomorphism
A—Ais flat.

(i) If A is finitely generated over a noetherian ring of definition then A is noether-
ian.

Let 4 and B be f-adic rings. Analogously to the adic situation one can
define adic ring homomorphisms and ring homomorphisms of topologically
finite type from A to B. (One has {continuous ring homomorphism 4 - B} 2
{adic ring homomorphism 4 — B} = {ring homomorphism of topologically finite
type 4 — B}.) In this note we need only adic ring homomorphisms: A ring
homomorphism f: 4 — B is called adic if there exist rings of definition A,,
B, of A, B and an ideal of definition I of A, such that f(44)< B, and f(I)- B,
is an ideal of definition of B,.

Lemma 1.8 Let f: A— B be an adic ring homomorphism between f-adic rings.
Then

(i) fis bounded (i.e.if TS A is bounded in A then f(T) is bounded in B).

(i) If Ay, B, are rings of definition of A, B with f(Ay)EB, and if I is an
ideal of definition of A, then f(I)- By is an ideal of definition of B,.

(i) To every ring of definition Ay of A and every open subring B’ of B with
f(Ay) S B’ there exists a ring of definition B, of B with f(A;)=B,< B

Proof. (i) obvious.

(i1) Let A, B, be rings of definition of A, B and let J, K be ideals of definition
of 4,, B, with f(4,)=B, and f(J)-B;=K. Put A,=4,-A, and B,=B,-B,.
Then A4,, B, are rings of definition of A, B with f(4,)=B,. Now I-A4, and
J-A, are ideals of definition of 4,, and K-B, is an ideal of definition of B,.
Since f(J - 4,)- B,=K-B,, we obtain that L:={(I- 4,)- B, is an ideal of definition
of B,. We have L=(f(I)-By)-B,, and hence f(I)-B, is an ideal of definition
of B,.

(iii) follows from (i) and (1.3.ii).

Corollary 1.9 Let f: A— B and g: B— C be ring homomorphism between f-adic
rings.

(i) If f and g are adic then g f is adic.

(ii) If f and g are continuous and if go f is adic then g is adic.

(iii) Let A', B' be open subrings of A, B with f(AY<B and let f': A'— B’ be
the restriction of f. Then f is adic if and only if f” is adic.
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Proposition 1.10 Let f: A — B be a continuous ring homomorphism between f-adic
rings. Assume that A is a Tate ring. Then B is a Tate ring and f is adic.

Proof. We use (1.5). Let A, be a ring of definition of A and let seAd, be a
topologically nilpotent unit of 4. Then f(s) is a topologically nilpotent unit
of B, and hence B is a Tate ring. By (1.3.iii) there exists a ring of definition
B, of B with f(s)eB,. Then f(s) B, is an ideal of definition of B;. The set
f(A4,) is bounded in B, since there exists a nelN with f(s)"f(Adg)=/(s"Ay) < B, .
Hence by (1.3. 1i) there exists a ring of definition By of B with f(4,)=B,. We
know that sA, and f(s) B, are ideals of definition of 4, and B,. Hence f
is adic.

2 Valuation spectrum

First we recall some notations about spectral spaces. A topological space X
is called spectral if X is quasi-compact and has a basis of quasi-compact open
sets stable under finite intersections and if every irreducible closed subset is
the closure of a unique point [7]. For example, if 4 is a ring then the Zariski-
spectrum Spec 4 is a spectral space. It can be shown (but will not be used
here) that every spectral space is homeomorphic to the Zariski-spectrum of
some ring [7]. Let X be a spectral space. A subset T of X is constructible
[5, 0.2.3.10] if and only if T is contained in the boolean algebra of subsets
of X generated by the quasi-compact open subsets, and a subset T of X is
pro-constructible [5, 1.7.2.2] if and only if T is an intersection of constructible
subsets. A point xe X is called a specialization of a point ye X or y is called
a generalization of x if x is contained in the closure of {y} in X. A point
xe X which has no proper generalization is called maximal. The topology of
X generated by the constructible subsets is called the constructible topology,
and X together with the constructible topology is denoted by X ... A mapping
f: X — Y between spectral spaces is called spectral if /: X — Yand [ X _,.s = Yeons
are continuous. In the following remark we note some important properties
of spectral spaces (cf. [7]).

Remark 2.1 let X be a spectral space and T a pro-constructible subset of
X. Then

() T is quasi-compact in the topology of X and in the topology of X ... An
open subset of X is constructible if and only if it is quasi-compact.

(ii) Tis constructible iff X\ T is pro-constructible

(iii) The closure of Tin X is the set of the specializations of the points of T.

(iv) T (equipped with the subspace topology of X) is a spectral space and the
inclusion T— X is spectral. A subset U of T is constructible (resp. constructible
and open) iff there exists a constructible (resp. constructible and open) subset
Vof X with U=VnNT

(v) Let Y be a spectral space and f: X — Y be a continuous mapping. Then
S is spectral iff the preimage of an open quasi-compact subset is quasi-compact
iff the preimage of a constructible subset is constructible iff the preimage of
a pro-constructible subset is pro-constructible. If f is spectral then the image
of a pro-constructible subset is pro-constructible and if, moreover, f is surjective
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then S < Y is constructible (resp. pro-constructible) iff £ ~!(S)< X is constructible
(resp. pro-constructible).

(vi) Let Z be a set, & a quasi-compact topology on Z and ¥ the set of open
and closed subsets of (Z, &). Let J be a Ty-topology of Z generated by a
subset of . Then (Z, 7) is a spectral space and & is the set of constuctible
subsets of (Z, 7).

The Zariski-spectrum, 41— Spec 4, is a contravariant functor from the cate-
gory of rings to the category of spectral spaces. Also the real spectrum,
A Spec A, is a contravariant further from the category of rings to the category
of spectral spaces [ 1, 7.1.17]. Similarly, using valuations of rings we will construct
in this paragraph a contravariant functor from the category of rings to the
category of spectral spaces which we call the valuation spectrum.

We begin with the definition of a valuation of a ring 4. Let I be a totally
ordered commutative group written multiplicatively. We add an element 0 to
I and extend the multiplication and the ordering of I'to I'u {0} by 2-0=0-2=0
and 0<« for all ael" U {0}.

Definition [3, VI.3.1] A valuation of A with values in I"U {0} is a mapping
v: A— ' {0} such that

(i) v(x+y)Smax{v(x), v(y)} forall x, ye 4

(i) v(x-y)=v(x) v(y) forall x, yeA4

(i) v(0)=0and v(1)=1.

Let v: I'u {0} be a valuation. The subgroup of I' generated by im(v)\{0}
is called the value group of v and is denoted by I. The convex subgroup of
I generated by {v(a)lacA, v(a)=1} is called the characteristic subgroup of
v and is denoted by cI'. The set supp(v):==v '(0) is a prime ideal of 4 and
is called the support of v». The valuation v factorizes uniquely in
A—2,5qf(A/supp(v)—">T U {0}, where g is the canonical mapping and # is
a valuation of the quotient field K=qf(A/supp(v)) of A/supp(v). The valuation
ring of 7 is denoted by A(v), i.e. A(v)={xeK|i(x)=Z1}.

Two valuations v and w of A are called equivalent if the following equivalent
conditions are satisfied
(i) There is an isomorphism of ordered monoids f: Iu {0} - I, U {0} with
w=fop,

(i) supp{v)=supp(w) and A(v)=A(w).

(iii) For all a, be 4, v(a)Zv(b) iff w(a)Z w(b).

Let S(A4) denote the set of equivalence classes of valuations of A. In the follow-
ing we often do not distinguish between a valuation and its equivalence class.
Let T be the topology of S(A) generated by the sets of the form
{veS(A)|v(a)Lv(b)+0} with a, beA. We call the topological space Spv A:=
(S(A), T) the valuation spectrum of A.

Proposition 2.2 Spv A is a spectral space. The boolean algebra of constructible
subsets of Spv A is generated by the sets of form {veSpv A|v(a)Su(b)} with
a, beA.

Proof. Every valuation v of A defines a binary relation |, on 4 by

al, br<>v(a)2v(b).
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Two valuations v and w of 4 are equivalent if and only if |,=|,. There-
fore we have an injective mapping ¢: S(4A)— P(4 x A), v—|,. (P(A x A) de-
notes the power set of 4 x 4.) We equip {0, 1} with the discrete topology and
P(Ax A)={0,1}4*4 with the product topology. Then £(4 x A) is a compact
Hausdorff space. The image im(¢) of ¢ is closed in Z(4 x A) since im(¢) is
the set of all binary relations | on A which satisfy for all a, b, ce 4 the following
conditions.

(1) a|b or b|a.
(2) If a]b and b|c then alc.
(3) If a|b and a|c then a|b+c.
(4)If a|b then ac|bc.
(5) Ifac|bc and O ¢ then a|b.
6)0.41.
Let T be the topology of S(A4) such that ¢: (S(A4), T;) > Z(A x A) is a topological
embedding and let K be the boolean algebra of subsets of S(4) generated by
the sets of the form {veS(4)|v(a) Zv(b)}] with a, be A. Then (S(4), T;) is compact
and K is the set of open and closed subsets of (S(A4), T;). Now (2.2) follows
from (2.1.vi).

Let f: A— B be a ring homomorphism and v: B—7"U{0} a valuation of
B. Then v|A=Spv(f)(v):=vof is a valuation of A. The mapping Spv(f):
Spv B Spv A4 is spectral. So we have a contravariant functor Spv from the
category of rings to the category of spectral spaces.

The specializations of the valuation spectrum Spv A of a ring A4 can be
described as follows: Let v: 4 — I, U {0} be a valuation of 4. To every convex
subgroup H of I, we have the mappings

v(@mod H if v(a)+0
ar— .
0 if v(a)=0

vla) if v(@)eH
0 if v(a)¢H.

v/H: A-I/HU{0},
v|H:A—- Hu{0}, aH{

It is easily seen that

(i) v/H is a valuation of A4, and v/H is a generalization of v in Spv A.

(i) v|H is a valuation of A iff ¢c[; < H, and in that case v|H is a specialization
of v in Spv A.

A valuation w of A is called a primary specialization of v if there exists a convex
subgroup H of I, such that ¢[,<H and w=v|H, and a valuation w of A4 is
called a secondary specialization of v if there exists a convex subgroup H of
I, with v=w/H. One can show [10, 1.2.4] that every specialization of v is a
combination of a primary and a secondary specialization i.e.

Lemma 2.3 Every specialization of v in Spv A is a primary specialization of
a secondary specialization of v.

In the next paragraph we will show that, for a f-adic ring A, the subspace
of Spv A4 consisting of all continuous valuations of A4 is spectral. For that we
need some preparations which we present here.
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Let A be a ring and I an ideal of A such that there exists a finitely generated
ideal J of 4 with VI:VJ' Let v: A>T'u{0} be a valuation of A. We say
that an element y of I'u {0} is cofinal in a subgroup H of I' if for every he H
there exists a neIN with y" < h.

Lemma 2.4 If v(I)ncl'=& then there exists a greatest convex subgroup H
of I such that v(i) is cofinal in H for every iel. If furthermore v(I)# {0} then
v()nH+&.

Proof. If v(I)={0} then of course H=T. Now assume ¢(I}+{0}. Let T be a
finite set of generators of J and let H be the convex subgroup of I' generated
by h:=max{v(t)|teT}. Then v(i) is cofinal in H for every iel (since h<cI)
and H is the greatest convex subgroup of I with this property.

With (2.4) we can define for every valuation v of 4

cl, if v(Dnel, =&

greatest convex  if v()ncl,=&
I (I)= {subgroup H of I

such that v(i) is

cofinal in H for

everyiel.

Then we have

Lemma 2.5 For every valuation v of A the following conditions are equivalent.

W) L=cl{I).

(i) I=cl, orv(i)is cofinal in I, for every iel.

(i) I=cI, or v(i) is cofinal in I, for every element i of a set of generators
of 1.

Proof. The equivalence of (i} and (i) follows from the definition of c¢I {I), and
the equivalence of (ii) and (iii) follows from the fact that if I, + ¢ I, then {ac A|v(a)
is cofinal in I,} is an ideal of A.

We put Spv(4, I)={veSpv A|I,=cI;(I)} and equip Spv(4, I) with the sub-
space topology of Spv A. For every veSpv A we put r(v)=v|cl,(I). Then
r(v)eSpv(A, I), and r(v)=v for every veSpv(4, I). Thus we have a retraction
r: Spv A - Spv(4, I). Let % be the set of all subsets U of Spv(4, I) of the form

U={veSpv(4, I)|v(f)=v(g)*0, ..., v(f) Sv(g)*0},
where g, /i, ..., f, are elements of 4

with ISy, - -

Then we have

Proposition 2.6 (i) Spv(4, I) is a spectral space.

(ii) £ is a basis of the topology of Spv(A, I) that is closed under finite intersections,
and every element of R is constructible in Spv(A4, I).

(iii) The retraction r: Spv A — Spv(A4, I) is spectral.

(iv) If v is a point of Spv A with v(I)=% {0} then also r(v)(I)+ {0}.
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Proof. Let fo, ..o fu> €0, ---» 2, De elements of A. Then

( () {eeSpvAlp(fHSv(f)+0)n( () {veSpv A|v(g)<v(ge)+0})
i=0 m

,,,,, Jj=0,...,n

= [} {veSpvAlv(fig)=<v(fsgo)*0},

i=0,....,m

and if

I=)(fili=0,...,m) and I<}/(glj=0,....n)

then IE[/(ﬁ g;li=0,...,m,j=0,...,n). Hence the intersection of two elements
of # is an element of #Z. Next we prove the following two points.

(a) Z is a basis of the topology of Spv(4, I).

(b) Let g fi,....f, be elements of A with Igl/(fl, -»Jo and put U
= {0eSpv(A, D[o(f)S0(@)+0, ... 0(f)Sv(@+0} and  W={veSpv Alv(f)
<v(g)+0, ..., v(f) Sv(g)*0}. Then W=r"1(U).

Proof of (a). Let v be an element of Spv(4, I) and U neighbourhood of ¢ in
Spv A. We choose g, ..., g,€ 4 such that ve W:={weSpv A |w(g,) S w(g,) =0 for
i=1,...,n} cU. We distinguish two cases.

First case: I, =cI,.

Then there exists a ded with v(gyd)=1. Hence ve W ={weSpv A|w(g; d)
Sw(ged)+0 for i=1,...,n and w(l)SEw(ged)=0}=W. We have W'n
Spv(4, e A.

Second case: {,+cl,.

Let {sy,....s,; be a set of generators of the ideal J. By (2.5) there
exists a keIN with v(s})<v(g,) for i=1,...,m Then ve W :={weSpv A|w(g)
<w(ge)#0 for i=1,...,n and w(sH ) <w(go)+0 for i=1,...,m}=W We have
W nSpv(4, Ne4.

Proof of (b). Since U =W and since every point of r~ ! (U) specializes to a point
of U we have r""(U)SW. Let weW be given. We have to show wer ' (U),
ie. r(weW. If w(I)={0} then r(w)=w. Now assume w(l)+{0}. Since r(w) is
a primary specialization of weW, we have r(w)(f)<r(w)(g) for i=1,...,n It
remains to show r(w)(g)=0. Assume to the contrary r(w)(g)=0. Then r(w)(f)=0

for i=1,...,n and hence r(w)(i)=0 for every iel (since I<}/(f,....£,)). But
by (2.4) and the definition of ¢I,,(I) we have w(I)ncI {I)=+, ie. there exists
a iel with r(w)(i)*+0, contradiction.

Let # be the boolean algebra of subsets of Spv(4, I) generated by #. Let
T be the set Spv(4, I) equipped with the topology generated by Z. By b) and
(2.2) the mapping r: (Spv A)eons — T 1s continuous. Since (Spv A).,.. IS quasi-
compact (by (2.1.1)) and r is surjective, we obtain that T is quasi-compact. Now
(a) and (2.1.vi) imply that Spv(4, I) is a spectral space and that every element
of # is constructible in Spv(4,I). We conclude from (a) and (b) that r:
Spv A — Spv(4, I) is spectral. (iv) follows from the proof of (b).

Remark 2.7 Let us consider the special case I=A4. We have cI,(4)=cI, for
every valuation v of A. Hence Spv(4, 4)={veSpv A|l,=cI}} is the set of all
points of Spv 4 which have no proper primary specializations. Let r: Spv A —
Spv(4, A) be the retraction. For every subset M of Spv(A4, 4), the set
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r~'(M)<=Spv 4 is closed under primary specializations and primary generaliza-
tions. Hence M+—r~'(M) is a bijection from the set of subsets of Spv(4, 4)
to the set of subsets of Spv 4 which are closed under primary specializatians
and primary generalizations. Let M be a subset of Spv(4, 4). By (2.1.v) and
(2.6.111) M is constructible (resp. pro-constructible) in Spv(A4, 4) if and only if
r~ (M) is constructible (resp. pro-constructible) in Spv 4, and by (2.6.ii) M is
constructible in Spv(A4, A) if and only if M is a finite boolean combination
of sets of the type {veSpv(4, A)|v(f1)Sv(g), ..., v( f)<r(g)}, where g, f1, .../,
are elements of A with A=/, A+ ...+, 4.

3 Continuous valuations of f-adic rings

Let A be a f-adic ring. We call a valuation v of A continuous if for every yel,
there exists a neighbourhood U of 0 in 4 such that v(u)<y for every ueU.
We put Cont 4 = {veSpv A|v is continuous} and equip Cont A with the subspace
topology of Spv 4. If f: A— B is a continuous ring homomorphism between
f-adic rings and v: B—I" U {0} a continuous valuation of B then ve f: 4 > I'u {0}
is a continuous valuation of 4. Hence Spv(f): Spv B— Spv A restricts to a
continuous mapping Cont(f): Cont B— Cont A. If the topology of A4 is discrete
then Cont 4A=Spv A. (Hence the functor Cont is a generalization of the functor
Spv.) In this paragraph we want to study the functor Cont. Our first important
result is

Theorem 3.1 Let A°° be the set of topologically nilpotent elements of A. Then
Cont A={veSpv(4, A°°- A)|v(a)<1 for every ac A°°}.

Proof. If w is a continuous valuation of A then w(a) is cofinal in I, for every
ae A°°, and hence by (2.5) we {veSpv(4, A%°- A)|v(a)<1 for every ae A°°}. Now
let v be an element of Spv(A4, A°°- A) with v(a)<1 for every ae 4°°. We have
to show that v is continuous. For that we need

(1) v(a) is cofinal in I, for every ae A°°.

Proof of (1). If I%cI, then (1) follows from (2.5). So we assume I, =cI,. Let
acA® and vyel, be given. There exists a te A with v(f)#0 and v(1) "' <y. We
choose a nelN with ra"e A°°. Then v(ta") <1 and hence v(a)" <y which proves
(1).

Let U be a subset of 4 and T a finite subset of U such that {U"|neN}
is a fundamental system of neighbourhoods of 0 in 4 and T-U=U?<cU. Let
yel, be given. Since U < A°°, we have v(u) <1 for every ue U. By (1) there exists
aneN with (max {v(f)|te T})" <. Then v(a)<y for every ae T"- U =U"*!. Hence
v is continuous.

Corollary 3.2 Cont A is a closed (and hence pro-constructible) subset of the
spectral space Spv(A, A°°- A). In particular, Cont A is a spectral space.

For every ac A the set {veCont A|v(a)<1} is constructible in Cont 4 (by
(3.2), (2.1.iv) and (2.6.i1)). Let #, be the set of pro-constructible subsets of Cont A
which are intersections of sets of the form {veCont A|v(a)<1}(acA). Let ¥,
be the set subrings of 4 which are open and integrally closed in 4. (For example,
the ring A° of power-bounded elements of 4 is an element of ¢,.) There is
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a natural one-to-one correspondence between %, and ¥, which we describe
in the following lemma.

Lemma 3.3 (i) The mapping o: 9,— %,, G {veCont Alv(g)<1 for all geG}
is bijective. The inverse mapping is 1: #,— %,, Fr—>{acA|v(@) =1 for all veF}.

(i) Let G be an element of 4, with G= A°. Then every point of ContA4 is a
secondary specialization of a point of o(G). In particular, ¢(G) is dense in Cont A.

(iil) If A is a Tate ring and has a noetherian ring of definition then also the
converse of (ii) holds: If G is an element of 4, such that ¢(G) is dense in Cont 4
then G A°.

Proof. (i) Let G be an clement of %,. We have to show t(a(G))=G. Obviously,
G <=1(c(G)). Assume by way of contradiction that there exists a aet(s{G)\G.
Then we consider in the localization A, the subring G[a ']. The element
a 'eG[a '] is not a unit of G[a~ '] (since otherwise ac G[a~ '] which implies
that a is integral over G and hence ac(). Hence there exists a prime ideal
p of G[a '] with a 'ep. Let q be a minimal prime ideal of G[a™'] with
q<p. Choosing a valuation ring of ¢q f(G[a™']/q) which dominates the local
ring (G[a~ ]/q),,, We obtain a valuation s of G[a™'] with q=supp(s), s(g)=1
for all geG, and s(x)<1 for all xep, in particular s(a”')< 1. Since there exists
a prime ideal of A4, lying over q, there cxists a valuation t of A, lying over
s. Put u=t|AeSpv 4 and v=u|cI,eSpv A. Then

(a) v(a)>1

(b) v(g)<1forall geG

(c) v(x)<1 for all xe A°°

(d) veSpv(4, A°°- A).

Proof. (a) and (b) follow from the fact that s(a™')<1 and s(g)<1 for all geG.
Let xe A°° be given. Since G is open, there exists a neN with x"ae G. Further-
more we remark that xeG (since G is open and integrally closed in 4). Hence
in G[a~!] we have x"=ga~' with some geG. Since a~'ep, we obtain xep.
Hence s(x) <1 which implies v(x) < 1. By definition we have v=u|cI, and hence
veSpv(4, A°°- A).

We conclude from (3.1) and (c¢), (d) that v is a continuous valuation, and
with (b) we obtain vea(G). Now (a) implies a¢1(c(G)) which is a contradiction
to our assumption aet(o(G)).

(i) Let v be a point of Cont A. If supp(v) is open in A then v/ es(G). So
we assume that supp(v) is not open in A. Then there exists a ae A°° with v(a)=+0.
Let H be the greatest convex subgroup of I, with v(a)¢ H. We claim that
w:=v/H ea(G). Obviously, w is a continuous valuation of 4. Let g be an element
of G. We have to show w(g)<1. Assume to the contrary that w(g)> 1. Since
I, has rank 1 and w(a)+0, there exists a neIN with w(g"a)>1. Since ae4A*°
and ge A°, we have g"ae A°°. Furthermore, w is continuous. Hence w(g"a)<1,
contradiction.

(iii) Let G be an element of 4, such that ¢(G) is dense in Cont A. We have
to show G< A4° Assume to the contrary that there exists a geG\A°. Then
by (i) the set T=={ves(A4°)|v(g)>1} is non empty. Let L be the set of the subse-
quent Lemma 3.4, and put S={veL|v(g)>1}. Then T<S and hence S+&.
Now (3.4) implies S ~(Cont A4),,,*+ &, i.e. there exists a maximal point w of
Cont 4 with w(g)> 1. Since wé¢{G) and w is maximal, w is not a specialization
of a point of ¢(G). Hence by (2.1.iii) ¢(G) is not dense in Cont A, contradiction.
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Lemma 3.4 Let A be a Tate ring which has a noetherian ring of definition.
Put L={veSpvAlv(@)S1 for all acA®° and v(ad)<1 for all aeA°°} and
(Cont A) ., ={veContAlv is maximal in Cont A}. Then L is the closure of
(Cont A) ., in the constructible topology of Spv A.

Proof. First we observe

(1) (Cont A)y,,={veCont A|rank(I;)=1}. (Indeed, every veContA has no
proper primary specialization (since A is a Tate ring). Hence (2.3) implies that
every specialization in Cont A is secondary. Now (1) is obvious.) (1) and the
computation in the proof of (3.3.ii) show (Cont A),,,, < L. Let T be a constructible
subset of Spv A with T L+ 2. We have to show that Tn(Cont 4),,,+ 2. We
may assume T={weSpvA|w{g)<w(b) for i=1,...,m and w(c)<w(d;) for
i=1,...,n} with a;, b;, ¢;, d;eA. Let B be a noetherian ring of definition of
A and let I be an ideal of definition of B. We choose an element te T L.
Let K=qf(A/supp(t)) be the residue field of A at supp(s) and let /2 A—-K
be the natural ring homomorphism. We may assume that f(b) =0 fori=1,...,k

and f(b)=0 for i=k+1,...,m. Let C be the subring f(B)[;E:‘;, i=1,...,k;
;E;‘;, i=1, ...,n] of K. The valuation ring A(t) of K contains C, and the
maximal ideal m of A(t) contains f(I)u{JJ:;‘C;;

mnC of C is not the zero ideal, since f(I)+{0}. Hence by [5, 0.6.5.8] there
exists a (discrete) rank 1 valuation ring D of K which dominates the local
ring C,~c. Let v be the valuation of 4 with supp(v)=supp(t) and A(v)=D.
Then ve(Cont A),,,, (by (1)) and veT.

In many applications it is necessary to work with a subspace F<=Cont A4
which is an element of %, instead of the whole space Cont A (cf. [8]). But
of course we should not lose too much information by the transition from
Cont A to F, in particular F should be dense in Cont A. So (3.3) motivates
the following definition.

i=1, n} The prime ideal

Definition. (i) A subring of a f-adic ring 4 which is open and integrally closed
in 4 and contained in A4° is called a ring of integral elements of A.
(ii) An gffinoid ring A is a pair A=(A", A*) where A" is a f-adic ring and
A% is a ring of integral elements of A™. An affinoid ring A4 is called adic (resp.
Tate, resp. complete) if A™ is adic (resp. Tate, resp. complete). A ring homo-
morphism f: A — B between affinoid rings is a ring homomorphism f: 4> — B*
with f(4*)= B™. The ring homomorphism f: 4 — B is called continuous (resp.
adic) if f: A® — B™ is continuous (resp. adic).
(ili) For an affinoid ring A, Spa A denotes the subspace {veCont A™ |v(a)=1
for all aeA*} of Cont A™. If f: A—> B is a continuous ring homomorphism
between affinoid rings then Cont(f): Cont B — Cont 4 indudes per restric-
tion a continuous mapping Spa(f): Spa B— Spa A.

If 4 is a f-adic ring then the integral closure B of the subring Z-1+ A4°°
in A is the smallest ring of integral elements of 4 and Cont A=Spa(A4, B).

Let A be an affinoid ring. The subsets of Spa 4 of the form

R(;Ti’---s%‘:ﬂ {veSpa A|v(t)Sv(s)*0 forall teT},
1 n i=1
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where s, ..., s, are elements of 4™ and T, ..., T, are finite subsets of A™ such
that T;- A™ is open in A for i=1, ..., n are called rational.

If T is a finite subset of A™ then T-A" is open in A™ if and only if
(A%)°°- A% <}/ T-A". By (2.6i) and (3.1) Spa 4 is a pro-constructible subset
of Spv{A4A™, (A% )°°- A™). Hence (2.1.iv) and (2.6) imply our first main theorem.

Theorem 3.5 (i) Spa A is a spectral space.

(ii) The rational subsets form a basis of Spa A and every rational subset is con-
structible in Spa A.

(iii) To every rational subset U of Spa A there exist an element s of A® and

T
a finite subset T of A™ such that T- A% is open in A¥ and U=R (5)

Notice that if A is Tate then the rational subsets of Spa A are the sets
of the form {veSpa A|v(t)<uv(s) for i=1,...,n}, where s, t,, ..., 1, are elements
of A™ with A” =1, A" +... +1, AP

By (3.5.i) a subset L of Spa A is constructible if and only if L is a finite
boolean combination of rational subsets.

A point xeSpa A is called analytic if the support supp(x)<= A™ is not open
in A”. (Note that every valuation of 4™ with open support is continuous.)
We put (Spa A),:={xeSpa A|x is analytic} and (Spa A),,:=Spa A\(Spa A4),. The
sets (Spa A), and (Spa A),, are constructible in Spa A. Indeed, if T is a finite
subset of (4%)°° such that T- A™ is open in 4™ then (Spa A),={xeSpa 4| x(t)%0

for some te T} = U R(-?) We see that (Spa 4), is open in Spa A. If A4 is Tate
teT

then Spa A=(Spa 4),, and if the topology of A" is discrete then Spa A4
=(Spa A),,. In (Spa A), there are no proper primary specializations, and hence
by (2.3) every specialization in (Spa A), is a secondary specialization. For every
xe(Spa A), we have rank(I;)=1, and rank([,)=1 if and only if x is a maximal
point of (Spa A4),.

The Zariski-spectrum Spec B of a ring B is empty if and only if B is the
zero ring. Similarly we have for Spa 4

Proposition 3.6 Let A be an affinoid ring. Then

(i) Spa A= if and only if the Hausdorff ring A®/{0} associated with A™ is
the zero ring.

(i) (Spa A), =@ if and only if the topology of the Hausdorff ring A™ {0} is dis-
crete.

Proof. (ii) Assume that (Spa 4),=#. Let B be a ring of definition of A® and
I a finitely generated ideal of definition of B. Then we have

(1) Let p be a prime ideal of B such that there exists a prime ideal q of B
withpcqand Icq. Then I<p.

Proof. Assume that I'€p. Let u be a valuation of B such that p=supp(u)
and B(u) dominates the local ring (B/p),,. Let r: Spv B — Spv(B, I) be the retrac-
tion from (2.6.iii). Then r(u) is a continuous valuation of B with I ¢ supp(r(u))
(by (3.1) and (2.6.iv)). By the subsequent Lemma 3.7 there exists a continuous
valuation v of A™ with r(u)=v|B. The secondary generalization w of v with
rank (I;)=1 is an element of (Spa A), (cf. proof of (3.3.ii)), contradiction.
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Let ¢: B— C be the localization of B by the multiplicative system S=1+1.
Since in Spec C every prime ideal specializes to a prime ideal containing ¢(I) C,
(1) implies that ¢(I) C is contained in every prime ideal of C. Therefore there
exists a nelN with ¢(I") C={0}, i.c. there exists a iel with (1+i)I"={0} in
B. Then I"=1I* for every k=n, and hence the topology of 4™ /{0} is discrete.

(i) Assume Spa A=g. Then the ideal {0} is open in A® (by (ii)). Hence every
trivial valuation v of 4% with {0} =supp(») is an element of Spa A. This shows

that no prime ideal of A™ contains {0}, i.c. {0} =A".

Lemma 3.7 Let B be an open subring of a f-adic ring A. Let f: Spec A — Spec B
be the morphism of schemes induced by the inclusion BS A. Let T be the closed
subset {peSpec B|p is open} of Spec B. Then f '(T)={peSpec Aip is open}
and the restriction Spec A\f 1 (T)— Spec B\ T of f is an isomorphism.

Proof. Let peSpec B\T be given. We choose a se B°® with s¢p. For every ae A4
there exists a nelN with s"aeB (since B is open in A). Hence the ring homo-
morphism B, — A4 is bijective.

Proposition 3.8 Let f: A — B be a continuous ring homomorphism between affinoid
rings, and let g: X :==Spa B — Y:=Spa A be the mapping induced by f. Then

(i) g(Xna) g Yna'

() If fis adic then g(X,)<Y,.

(i) If B is complete and g(X,) < Y, then f is adic.

(iv) If f is adic then g is spectral (more precisely, the preimage under g of a
rational subset is rational ).

Proof. (1) Assume that B is complete and that f is not adic. We will show
that g(X,)<£Y,. We choose rings of definition 4, and B, of A® and B® and
finitely generated ideals of definition I, and Iz of A, and B, with f(4,)< B,
and f(I,)€Igz. Since f is not adic, there exists a prime ideal p of B, with
fU )<y and Iz<Ep. Since By is complete in the [g-adic topology, there exists
a prime ideal g of By, with p=q and [z<q [3, 111.2.13 Lemma 3]. Now we
repeat the arguments of the proof of (3.6.ii). Let u be a valuation of B, such
that supp(u)=p and By(u) dominates the local ring (By/p),,, and let r: Spv B,
— Spv(B,, I) be the retraction from (2.6.1ii). Then r(u) is a continuous valuation
of B, with Iz&supp(r(u)). By (3.7) there exists a continuous valuation v of B¥
with r(u)=v|B,. Let w be the secondary generalization of v with rank (1},)= 1.
Then we X, and g(w)¢ Y,.
(iv) Let s be an element of A™ and T a finite subset of A® such that T 4%
is open in A”. If f is adic then f(T)-B™ is open in B”, and hence g ' (R (ET—))
is the rational subset R (i;(—(éT)—)> of Spa B.

Let A=(B, C) be an affinoid ring. Then the completion C of C is a ring
of integral elements of the completion B of B . We call the affinoid ring A:= (B, C)
the completion of 4.

Proposition 3.9 The canonical mapping g: Spa A — Spa A is a homeomorphism,
and it maps rational subsets to rational subsets.

In order to prove (3.9) we need the following two lemmata.
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Lemma 3.10 Let A be a complete affinoid ring and let s, t,,...,t, be elements
of A% such that the ideal I=t, A® + ...+, A™ is open in A™. Then there exists
a neighbourhood U of 0 in A™ such that, for ses+ U, tiet,; + U, ..., t,et,+ U,
the ideal I'=t) A¥ + ...+, A™ is open in A¥ and R (I"Si"):R (tl’s—,’t")
Proof. Let B be a ring of definition of 4. Let r,,...,r, be elements of BN/
such that J:=r, B+...+r,B is open. By [3, I11.2.10 Corollary 3] there exists
a neighbourhood V of 0 in B such that J=r); B+...+r, B for every rjer,
+ V..., rm€r,+ V. (That is the only point where we use that 4 is complete.)
Hence there exists a neighbourhood U’ of 0 in A™ such that )} A” + ...+, A®
is open in A® for every tet, + U, ..., thet, + U".

We put ty,:=s. For every i€{0,...,n} let R, be the rational subset

R(“’fi) Then R, is quasi-compact (by (3.5.i) and (2.1.0) and x(,)<0 for

every xeR;. Hence by the subsequent Lemma 3.11 there exists a neighbourhood
U” of 0 in A™ such that x(u)<x(t) for every ueU”, i€{0,...,n} and xeR,.
We will show that (3.10) holds for U=U’"nU" n (A7)

First we show ROER(I—t,—i). Let xeR, be given. Since t;—t,eU” for
0
i=0,...,n, we have x(tj—t)<x(ty) for i=0,...,n. This implies for every
i=1,...,n

x(ti)=x(t;+ (t;— 1) S max {x(t), x (t;— t))} Lx(to) =2 (to +(to— to)) = x(25).

thests
Hence xcR (1’%)
to
Now let x be an element of Spad with x¢R,. We have to show

’

’

x¢R<M). First we consider the case that x(t;)=0 for i=0,...,n. Then
supp(x) is open (since the ideal I is open). Hence i, —tqoesupp(x) (since t,
—to€(A™)°°) which implies tyesupp(x). Hence x¢ R <t,1’f’tlf)

Now assume that x(t;)=+0 for some ie{0, ..., n}. Weochoose a je{0,...,n}
with x(t) =max {x(to), ..., x(t,)}. We have x(1,) <x(t;), since otherwise we would

have xeR,. As t;—t,eU" for i=0,...,n and xeR;, we have x(t;—t)<x(t;) for
i=0,...,n Then

x(to)=x(to +(to —to)) Smax {x(to), x(to — to)} <x(t)=x(t;+ {t;~1;)=x(t)).
Hence x¢ R (Lﬂ_ﬁ) .
0

Lemma 3.11 Let A be an affinoid ring, X a quasi-compact subset of Spa A
and s an element of A with x(s)=0 for every xe X. Then there exists a neighbour-
hood U of O in A such that x(u) < x(s) for every xe X, ueU.

Proof. Let T be a finite subset of (47)°° such that T-(4%)°° is open. For every
nelN put X,={xeSpa A|x(t)<x(s)+0 for every teT"}. Then X, is open in
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Spa 4, and X = { ] X,. Hence X < X,, for some meN. Put U=T"-(4%)°°. Then
nelN
U is a neighbourhood of 0 in A™ and x(u) <x(s) for every xe X, ueU.

Now we prove (3.9). Clearly g is bijective. Let U be a rational subset of
Spa A. We have to show that g(U) is rational in Spa A. Let i: A® —(47)"
be the natural mapping. By (3.10) there exist an element se A® and a finite

i(T . . . ..
subset T of A with U=R(%;)~)>. Since U is quasi-compact by ((3.5.11) and
(2.1.1)) and since x(i(s))+0 for every xeU, there exists a neighbourhood G of
0 in A™ such that x(i{g)) < x(i(s)) for every xeU and every geG (by (3.11)).
Let D be a finite subset of G such that D-A" is open. Then we have the

D
rational subset V:=R (z?~) of Spa A and V=g(U).

4 Tate rings of topologically finite type over a field

In this section we consider a special type of Tate rings. Let k be a ficld which

is complete with respect to a rank 1 valuation |{: k>R~ u{0}. We put
k<X, ....Xp>=a,X"ek][X,,.... X, ]l(a,),en; Is a zero sequence in k} and
equip k{(X,,...,X,> with the topology induced by the norm | | with

Iy a,X’|=max{|a,|[veNg}. Then k{X,,...,X,> is a complete Tate ring.
veNg

We call a complete topological k-algebra A a Tate algebra over k (more precisely,
a Tate ring of topologically finite type over k) if there exists a continuous,
open and surjective k-algebra homomorphism k<{X,,...,X,>—> A4 for some
nelN, (cf. {13, 4, 2]). Every Tate algebra over k is noetherian [2, 6.1.1 Proposi-
tion 3] and every k-algebra homomorphism between Tate algebras over k is
continuous [2, 6.1.3 Theorem 1].

In this paragraph we show that, for every Tate algebra 4 over k, the category
of sheaves of the rigid analytic variety Sp 4 is canonically isomorphic to the
category of sheaves of the topological space Spa(4, 4°). We give two proofs.
In the first proof we use the subsequent Theorem 4.1 which is useful also for
other applications (cf. [9]). In order to prove (4.1) we use the model theoretic
result that the theory of algebraically closed fields with non trivial valuation-
divisibility relation has elimination of quantifiers. For the second proof we use
some standard facts on Tate algebras.

We fix a Tate algebra A over k. Let Max A be the set of all maximal ideals
of A. For every xe Max 4, the residue field 4/x is finite over & [2, 6.1.2 Corollary
3]. Hence the valuation | | of k extends uniquely to a valuation | |, of A with
support x. Since x is closed in 4 [2, 6.1.1 Proposition 3], it is easily seen that
| |, is a continuous valuation of A, and then even | |,eSpa(A4, 4°). So we have
an injective mapping Max A — Spa(4, 4°), x+—| |,. We consider Max 4 as a
subset of Spa(A4, 4°) via this mapping. We put L,={veSpv A|v(a)=<1 for all
ae A° and v(a)< 1 for all ae A4°°}. Then

Max A< Spa(4, A°)y= L, <Spv A.

(Remark. If r: Spv A —Spv(4, A) is the retraction from (2.6.iii) then L,=
r~1(Spa(A, A°)). Every k-algebra homomorphism 4 — B from 4 to a Tate alge-
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bra B over k induces mappings Spv B— Spv 4, Ly — L4, Spa(B, B°) - Spa(4, A°),
Max B - Max A.

Theorem 4.1 L, is the closure of Max A in the constructible topology of Spv A.

Proof. First we show by induction on n that (4.1) is true for A=k(n)
=k{X,...,X,». For A=k(0)=k we have L,=Max A. Assume that (4.1) is
true for A=k{n). We will show that (4.1) is true for A=k(n+1). Let T be a
non empty constructible subset of L;,.,. We have to show that TnMax k(n
+ 1)+ & We may assume

T={veL,p:+nlv(@)Lv() and v(c)<v(d) for i=1,...,m}

with a;, b;, ¢;, d;ek(n+1). By the Weierstrass preparation theorem [2, 5.2.2
and 5.2.4] there exists a k-algebra automorphism ¢ of k(n+ 1) such that &(a;)
=q;-A;,...,0(d)=D0;-D,, where q;,...,0; are units of k(n+1) of the form 1+ x
with xek(n+1)°° (cf. [2, 5.1.3 Proposition 1]) and A4,, ..., D;ek(n)[X,.,]. Let
f: Spvk(n+1)— Spv k(n+1) be the mapping induced by o. By definition of
Li+1) we have v(I1+x)=1 and v(X,,,)=1 for every xek(n+1)*° and every
vel, 41, Hence

f_1(T):{UeLk(n+l)|v(Ai)§U(Bi) and v(Cy)<v(D))
for i=1,...,m and v(X,,)S1}.

Let g: L+ 1y = Spvk(m)[X,+,] and h: Spvk(n)[X, . ] — Spv k(n) be the map-
pings induced by the inclusions k(n)[ X, , J<k(n+1) and k(n)Sk(n)[ X, ]
We put
S={veSpvk(m[X,, 1lv(4)<v(B;) and v(C)<u(D;)
for i=1,...,m and v(X,,)Z1}.

Since T+ & and g(f ~ (1)) =S and im(h-g) < Ly, we have h(S) L, + &. The
model theoretic result that the theory of algebraically closed ficlds with non
trivial valuation-divisibility relation has elimination of quantifiers [11, 4.17]
implies that h(S) is a constructible subset of Spv k(n). So by induction hypothesis
we have h(S)nMax k(n)+@&. We choose a xeh(S)~Maxk(n). Applying again
that the theory of algebraically closed fields with non trivial valuation-divisibility
relation has elimination of quantifiers, we obtain that there exists a
yeSpv k(n)[X,.,] such that yeS, x=h(y) and qf(k(n)[X,.,]/supp(y)) is alge-
braic over qf(k(n)/supp(x)). Then supp(y) is a maximal ideal of k(n)[ X, ]
and y is continuous with respect to the subspace topology of k(n+1) on
k(n)[X,+.] (here we use that y(X,.;)<1). Hence y extends to a continuous
valuation z of the completion (km)[X,, )" =k(n+1) with zeMax k(n+1).
Since f~Y(T)=g '(S), we obtain zef (T)nMaxk(n+1)=f"Y(TrnMax k(n
+1)). Hence TnMax kin+ 1)+ o.

Now let A be an arbitrary Tate algebra over k. We choose a surjective
k-algebra homomorphism p: k(n)— A for some nelN,. Let g: (Spv A)eons
— (Spvk(n)).ons be the mapping induced by p. We know that L, is the closure
of Max k(n) in (Spv k(n)).ens- Since g is open, we obtain that g~ (L, ,) is the
closure of ¢~ '(Max k(n))=Max A in (Spv A),pns. But Max A= L,=q™ (L)
and L, is closed in (Spv A)..ns- Hence L, is the closure of Max A4 in (Spv 4)cqps-
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Corollary 4.2 Max A is dense in the constructible topology of Spa(A, A°).

Proof. Let T be a non empty constructible subset of Spa(4, 4°). By (3.5.i)) T
is a finite boolean combination of rational subsets of Spa(A, A°). Hence there
exists a constructible subset M of Spv A with T=M nSpa(4, A°). Consequently
Mn L, #& (since Spa(A, A°)< L,). Then by (4.1) TnMax A=M nMax A+ &.

Corollary 4.3 et X, X, be constuctible subsets of Spa(A4, A°) with X, nMax A
=X,nMax A Then X, =X,.

Proof. X :=(X |\ X,)u{X,\X,) is a constructible subset of Spa(4, 4°) with X N
Max A=¢&. Then by (42) X=#,1e. X, =X,.

A subset R of Max A4 is called rational if there exist fi,..., f,, geA such
that R={xeMax A||f|.Zlgl fori=1,...,njand A=f, A+...+f, 4[4, TILL1].
The intersection of two rational subsets of Max A4 is rational. If U is a rational
subset of Spa(4, 4°) then U nMax 4 is a rational subset of Max A. (4.3) implies
that U— U nMax 4 is a bijection from the set of rational subsets of Spa(4, 4°)
to the set of rational subsets of Max A.

In rigid analytic geometry one associates with 4 a Grothendieck topol-
ogy 74 [4, 111.2.1]: The objects of the category 4, are the rational subsets of
Max A. If U, V are rational subsets of Max 4 then Hom(U, V)=@ if U4V and
[Hom(U, V)|=1 if U<V. A family (U),., of rational subsets of Max 4 is a
covering of a rational subset U if there exists a finite subset J of I with
U=|) U= U,. From (3.5) and (4.3) we can deduce

iel jed

Corollary 4.4 The category of sheaves of the Grothendieck topology 7, is canoni-
cally isomorphic to the category of sheaves of the topological space Spa(A4, A°).

Proof. Let F be a sheaf on 7,. For every open subset U of Spa(4, 4°) we
put F(U)= J‘;"—'— F(VnMax A), where the projective limit is taken over all ratio-

nal subsets V of Spa(4, 4°) with V< U. By (3.5.ii) and (2.1.i) every rational
subset of Spa(4, A4°) is quasi-compact. Then we can conclude from [5, 0.3.2.2]
that U F(U) is a sheaf on Spa(4, 4°). Thus we have a functor i: S —»§ from
the category S of sheaves on J, to the category S of sheaves on Spa(4, A4°).
Now let G be a sheaf on Spa(A, 4°). For every rational subset U of Max 4
let U be the rational subset of Spa(A, 4°) with U=0U~Max A. Then U
G(U):=G(0) is a sheaf on 7, (by (4.3)). So we have a functor j: §— § which
is quasi-inverse to i.

A set # of rational subsets of Max A is called a prime filter if (i) Max Ae #
and g¢F; () if X, X,eF then X, nX,e#; (i) if X, e and if X, is
a rational subset of Max A with X, <X, then X,e#; (iv) if X,,..., X, are
rational subsets of Max A with X, u...uX,€%# then X,e# for some
ie{l,...,n}. Let (Max 4)~ denote the set of prime filters of rational subsets
of Max A. We equip (Max A)~ with the topology generated by the sets
{#Fe(Max A)™ |Fe#} with F a rational subset of Max A.

Corollary 4.5 If x is a point of Spa(A4, A°) then s(x):={U ~Max A|U rational
subset of Spa(4, 4°) with xeU} is a prime filter of rational subsets of Max A.
The mapping s: Spa(4, A°) —» (Max A)"~, x+>5(x) is a homeomorphism.
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Proof. By (4.3), s(x)e(Max A)~. Let x, y be different points of Spa(A4, A°). Since
Spa(A4, A°) is a T,-space and the set of rational subsets of Spa(4,A°) form
a basis (3.5.1i), there exists a rational subset U of Spa(A4, A°) such that xeU,
y¢U or x¢ U, yeU. Hence s(x)=+s(y).

Let #e(Max A)~ be given. Put # =% u {(Max A)\R|R rational subset of
Max A with R¢.#}, and for every We# let W™ be the constructible subset
of Spa(4, A°) with W~ nMax A= W. For every finite subset & of ¥~ we have
() W™ +& (since () W2). As Spa(A, A°).on, 18 compact ((2.1.1) and (3.5.1)),
Wed Weé
we obtain that D:= () W~ is non empty. For every xeD we have s(x)=%.

Wew
Hence s is bijective. Since the rational subsets of Spa(A4, 4°) form a basis, s
is a homeomorphism.

Remark 4.6 We define a relation<on (Max 4)~ by # =%, iff # =.%,. Then
F, <%, if and only if s~ '(#,) is a specialization of s~ ' (%) in Spa(4, A°). Hence
the mapping s induces a bijection from the set Spa(A, A°),,,, of maximal points
of Spa(A4, A°) to the set of maximal elements of (Max 4)™~. Since Spa(A4, A%y,
consists of the continuous rank 1 valuations of A, we obtain the following result
of van der Put [12, 1.3.3 Corollary]: There is a natural one-to-one correspon-
dence between the continuous rank 1 valuations of A and the maximal prime
filters of rational subsets of Max A.

Remark 4.7 We deduced (4.2)(4.5) as consequences of (3.5,i, ii) and (4.1). In
this remark we give new proofs of (4.2)-(4.5) without using (3.5.1, ii) and (4.1).
Furthermore, we will give a new proof of (3.5.1, ii) in case that the affinoid
ring A4 is of the form 4 =(B, B°) where B is a Tate algebra over k.

Let A be a Tate algebra over k, and let @ be the structure sheaf of the
rigid analytic variety associated with A [4, I11.2.1]. If v is a continuous valuation
of A and U is a rational subset of Max A then v can be extended in at most
one way to a continuous valuation of ¢(U), since ¢(U) is the completion of
a localization of 4 [2, 6.1.4].

(4.7.1) Let g;, fiys s finwy (=1, ..., k) be elements of A such that A=f;; A+ ...
k
+ fin A for i=1,...,k, let U be the rational subset () {xeMax A||f;;.<|g.

i=1
for j=1,...,n()} of Max A, and let v be an element of Spa(A4, A°). Then the
following conditions are equivalent.
(i) v extends to a continuous valuation w of O(U) such that w(e)<1 jor every
ecG(U) (ie., v lies in the image of the natural mapping Spa(¢(U), €¢(U))—
Spai4, A°).
() 0 fi) Sv(g) for i=1, ...k, j=1, ... n(i.
Proof. g; is a unit in @(U), and Jis is power-bounded in ¢ (U). Hence (1) implies
(ii). Now we assume (ii), and we \;vill show that (i) holds. Let B be the valuation
ring of L:=qf(A4/supp(v)) such that B has rank 1 and contains the valuation
ring A(v)<s L associated with v. Then Bnk=k° and hence the valuation | |
of k extends to a valuation | |: L-»R with B={xeL||x|<1}. Let (K, | |) be
the completion of (L, | |). Then (K, | |} is a k-Banach algebra, and the natural
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ring homomorphism ¢: A — K is continuous. Furthermore, ¢(g;) is a unit of
K and Ui

o(g) ) ]
Proposition 3] there is a continuous A-algebra homomorphism ¢': ¢(U)— K.
This implies that v extends to a continuous valuation w of O(U). We have

w(f”><1 Let C be the integral closure of A°[; Lkj=1, ....n(i)] in

8i
O(U). Then w(c)<1 for every ceC, and then, since w is continuous, w(c)=1

for every element ¢ of the closure C of C in ¢(U). One can show C=0(U)°
(cf. [8, 4.4]). Hence (i) is satisfied.

(4.7.2) Let % e(Max A)~ be a prime filter of rational subsets of Max A. We put
ps:={acAlfor every FeZ there exists a xeF with a(x)=0}={aeA|for every
eck* there exists a Fe # with |a|, S le|, for every xeF}. Then there exists (up
to equivalence ) a unique valuation vz of A such that, for all a, be A, vz (a)Z vz (b)
if and only if aepy or there exists a FeF with |al,Z|b|, for every xeF. We
have vz eSpa(A, A°).

Proof. Let |5 be the binary relation of A with b|za if and only if aepy or
there exists a Fe# with |a|,£|b|, for every xe F. Then | satisfies the conditions
(1)6) of the proof of (2.2). This says that there exists (up to equivalence) a
unique valuation v, of A such that, for all g, be A, vy(a)Svz(b) if and only
if aepg or there exists a Fe# with |a|,=Z|b|, for every xeF. It is easily seen
that vz(@)<1 for all aeAd® [4, 11.5.5], pz=supp(vy) and, for every
ac A\supp(vg), there exist e,, e,ek™ with tgz(e,)Svz(@)Zvs(ey). Hence
vzeSpa(4, A°).

We call a subset X of (Max A)~ rational if there exists a rational subset
U of Max 4 such that X =U"={F e(Max A)” |Ue%}. By the definition of
the topology of (Max A)~, the rational subsets of (Max A)~ form a basis of
the topology of (Max 4)~. For every xe Max 4, the set j(x) of all rational subsets
U of Max A with xeU is a prime filter. Via the injection j: Max 4 —(Max A4)~,
x—j(x) we consider Max A as a subsct of (Max 4)~. With (4.7.1) and (4.7.2)
we obtain

(4.7.3) For every veSpa(A, A®), the set d(v) of all rational subsets U of Max A
such that v extends to a continuous valuation w of ¢(U) with w(e)< 1 for every
ecW(U)° is a prime filter of rational subsets of Max A. The mapping d: Spa(A, A°)
—(Max A)~, v—d(v) is a homeomorphism. If X is a rational subset of (Max A)~
then d~'(X) is a rational subset of Spa(A4, A°), and the mapping X+—d ' (X)
is a bijection from the set of rational subsets of (Max A)™ onto the set of rational
subsets of Spa(A4, A°). Furthermore, d”'(Max A)=Max A.

Proof. Let veSpa(A4, A°) be given. We show that d(v) is a prime filter. Obviously,
d(v) satisfies the condition (i) and (iii) of the definition of a prime filter. Condition
(i) follows from (4.7.1). Let U be an element of d(v) and U, ..., U, rational
subsets of Max A with U=U,u...uU,. We have to show that U,ed(v) for
some ie{l,...,n}. By [4, I11.2.5] there exist fi, ..., f,€O(U) such that O(U)
=f,0 (U)+ +f,,, (U) and, for every ie{l,...,m}, the rational subset V;
={xeU||fjli£Ifil for j=1,...,m} of Max A is contained in some U,. Let
weSpa(@(U), ¢(U)°) be the continuous extension of v to ¢(U). We choose a
re{l,...,m} with w(f) <w(f, ) for i=1,...,m. Then (4.7.1) implies V,ed(v), and
hence UEd(L) for some ie{l,...,n}.

is power-bounded in K. Hence by the universal property [2, 6.1.4,
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Let .# be a filter of rational subsets of Max A, and let v;eSpa(A4, A°) be
the corresponding valuation as defined in (4.7.2). Then by (4.7.1), # =d(v4).
Hence d is surjective.

The rational subsets of Spa(4, 4°) form a basis of the topology of Spa(4, 4°).
Indeed, let veSpa(A4, 4°) be contained in an open subset U:={xeSpa(4, 4°)]
x(a) < x(b)+0} (a, be A) of Spa(A4, A°). Since v is continuous, there exists a cek*
with v(c)<v(h). Then V:={xeSpa(4, 4°)|x(a)<x(h)+0 and x(c)<x(b)=*0} is
a rational subset of Spa(4, A°) with ve V<= U.

Let g, f1,...,/, be elements of A with A=f, A+...+f, A. If we put U
={xeMax A||f|.<|gl, for i=1,...,n} and V={veSpa(4, 4°)|v(f)<v(g) for i
=1,...,n} then d~"(U™)=V (by (4.7.1)). Since the topology of Spa(A4, A°) is
T, and the rational subsets form a basis, we can conclude that d: Spa(4, 4°)
—(Max 4)~ is a homeomorphism and X+~d~!'(X) is a bijection from the set
of rational subsets of (Max A)~ to the set of rational subsets of Spa (A4, 4°).

(4.74) Let % be the boolean algebra of subsets of (Max A)~ which is generated
by the rational subsets of (Max A)~, and let T be the topology of (Max A)~
generated by 98. Then (Max A)~,7) is compact, and B is the set of subsets
of (Max A)~ which are open and closed in 7. Max A is dense in (Max A)~, 7).

Proof. Let S be the set of rational subsets of Max A4, and let #(S) be the power
set of S. Then (Max 4)~ is a subset of 2(S). We equip {0, 1} with the discrete
topology and #Z(S)={0, 1}® with the product topology. Then #(S) is compact,
and (Max A4)~, 7) is a closed subspace of 2(S). [

The mapping X+— X nMax A4 is a bijection from the set of rational sub-
sets of (Max 4)~ to the set of rational subsets of Max 4. The inverse map-
ping is U—U". A family (U),.; of rational subsets of Max A4 is a covering
of a rational subset U of Max A in the Grothendieck topology of Max A if
and only if U~ ={ ) U/, since U™ is quasi-compact in the topology of (Max A)~

iel
(by (4.7.4)). Hence the category of sheaves of the Grothendieck topology of
Max 4 is canonically equivalent to the category of sheaves of the topological
space (Max A)~ (cf. [5, 0.3.2.2]). Now (4.7.3) implies (4.4).

By (2.1.vi) and (4.7.4), (Max A4)~ is a spectral space and 4 is the set of
constructible subsets of (Max 4)~. Hence with (4.7.3) we obtain (3.5.i, ii) for
the affinoid ring (4, A°). By (4.7.4), Max A is dense in the constructible topology
of (Max A4)~. Then again (4.7.3) implies (4.2).
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