
13 Lecture 13: Uniformity and sheaf properties

13.1 Introduction/global theory

So far, we have avoided discussing the global theory of adic spaces, but this is an appropriate point to
introduce the main idea (which will be fleshed out at the start of the next lecture). Recall that for any
Huber pair (A,A+) we have defined a presheaf of complete topological rings OA on X = Spa(A,A+):
we first defined

OA(X(T/s)) = A〈T/s〉

for a finite subset T ⊂ A and s ∈ S such that T ·A is open in A (using a universal mapping property
in Proposition 12.3.3 to ensure that this is intrinsic to the pair (A,A+) and X(T/s) merely as an open
subset of X without reference to the choice of s and T ), and then for an arbitrary open set U ⊂ X
we define

OA(U) = lim←−
W⊂U

OA(W ),

where W varies through rational domains contained in U and we equip this with the inverse limit
topology (subspace topology inside a direct product). We also define a presheaf O+

A in the obvious
parallel way. In Proposition 12.3.7 we verified that the stalk OA,x at a point x ∈ X (throwing away
topological information) is a local ring on which there is a canonical valuation vx.

The particular way that we have defined OA(U) for general open U and the fact that the rational
domains (by definition) form a basis for the topology on X together imply that OA is adapted to the
basis of rational domains, in Wedhorn’s terminology [Wed, §8.9]. In fact, the categories of sheaves
of topological rings (or even of topological spaces) on a topological space and sheaves relative to a
chosen base of the topological space are equivalent [EGA, III0 3.2.2]. In particular, our recipe is the
unique possible way to extend the definition of a Huber pair associated to a rational domain to all
open sets compatibly with restriction maps. Thus for any presheaf F that is adapted to a basis B
on a topological space, F is a sheaf if and only if it is a sheaf when restricted to B; for the purposes
of checking the sheaf axioms, we can focus exclusively on rational domains and their finite covers
by rational domains (as finite covers are cofinal among all open covers, due to quasi-compactness of
rational domains). This is excellent news; otherwise, any explicit calculation would be hopeless.

In order to define global adic spaces, the general strategy is obvious: we want to say that something
is an adic space if it is locally of the form “Spa(A,A+)”, where (A,A+) is a Huber pair. There are
two issues that must be addressed to make sense of this strategy. First, we need to figure out in what
underlying category we are working (for example, in the case of schemes this is the category of locally
ringed spaces, in the case of formal schemes this is the category of locally topologially ringed spaces,
and in the case of rigid-analytic spaces over a non-archimedean field k this is the category of locally
ringed “G-topologized” spaces with k-algebra structure sheaf). Second, perhaps with these examples
in mind, we note that in order to get any sort of reasonable theory off the ground we had better
demand that the structure presheaves are, in fact, sheaves. The main work then is to prove that the
structure presheaf on Spa(A,A+) is a sheaf for certain useful classes of Huber pairs (A,A+) (so the
only pairs (A,A+) for which Spa(A,A+) will be an adic space are those for which OA is a sheaf).

Here’s a solution to the first problem:
Definition 13.1.1 Let V be the category of triples (X,OX , (vx)x∈X), where X is a topological space,
OX is a sheaf of topological rings such that each stalk OX,x is a local ring, and vx is a valuation on
the residue field κ(x) of OX,x. Morphisms f : X → Y in V are maps (f, f [) of locally topologically
ringed spaces (in particular, f [ : OY (U)→
ccOX(f−1(U)) is continuous for all open U ⊂ Y ) such that the induced maps of residue fields
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κ(f(x)) → κ(x) are compatible with the valuations (equivalently, induces a local inclusion between
the valuation rings).
Definition 13.1.2 Given an object (X,OX , (vx)x∈X) in V , we define the sheaf of integral structures
O+
X as follows. For any open U , set

O+
X(U) = {f ∈ OX(U) : vx(f) ≤ 1 for all x ∈ U}.

Remark 13.1.3 By Lemma 12.3.9, this definition agrees with the definition of the presheaf O+
A on

Spa(A,A+).
Definition 13.1.4 An affinoid adic space is an object of V isomorphic to Spa(A,A+) (with its
associated structure sheaf and local valuations). An adic space is an object X of V such that there
exists an open covering {Ui} of X such that each Ui viewed in the evident manner as an object in V
is an affinoid adic space.

In particular, by the definition of V , OA is required to be a sheaf in order for Spa(A,A+) to be an
adic space. When this is the case, we call the Huber pair (A,A+) sheafy.

Our main goal in this lecture is to show that a large class of Huber pairs is sheafy so that the above
definitions are not empty.

13.2 A note on the category V

For Huber pairs (A,A+) and (B,B+), consider a continuous map f : A→ B such that f(A+) ⊂ B+.
We get an induced continuous map ϕ : Y = Spa(B,B+) → Spa(A,A+) = X and for any rational
domain W = X(T/s) ⊂ X and rational domain U of Y contained in ϕ−1(W ) the universal property
of the pair (OA(W ),OA(W )+) = (A〈T/s〉, A〈T/s〉+) over (A,A+) applied to the composite map

(A,A+)→ (B,B+)→ (OB(U),OB(U)+)

provides a unique continuous map

(OA(W ),OA(W )+)→ (OB(U),OB(U)+)

over f . Due to this uniqueness, as we vary such U for fixed W these maps are compatible under
restriction, so we obtain a continuous map

(OA(W ),OA(W )+)→ (OB(f−1(W )),O+
B(f

−1(W ))) = (f∗(OB)(W ), f∗(O+
B)(W ))

which is moreover compatible with restriction in W (again via uniqueness). Note that it really is
necessary to vary through rational domains U inside f−1(W ) because the subset f−1(W ) can fail to
be rational in Y : although certainly f−1(W ) coincides with the subset Y (f(T )/f(s)) of points y ∈ Y
such that y(f(t)) ≤ y(f(s)) 6= 0 for all t ∈ T , f(T ) · B might fail to be open in B (and so such
inequalities need not define a rational domain). For example, the map (Zp,Zp) → (Zp[[x]],Zp[[x]])
(using the p-adic and (p, x)-adic topologies respectively) with T = {p} and s = 1 and Y (f(T )/f(s))
is not even quasi-compact! (This will be treated in more detail in Lecture 15 when we discuss adic
spaces associated to rigid-analytic spaces.)

Thus, we have built a map Y → X as adic spaces if A and B are sheafy. (It is easy to check the
compatibility with valuations.) This is readily seen to be compatible with composition, so it defines
a contravariant functor from the category of sheafy Huber pairs (using continuous maps) into the
category of affinoid adic spaces.
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The following proposition provides full faithfulness under a completeness hypothesis that is necessary
since by design OA(Spa(A,A+)) = Â (and recall as well the insensitivity of the topological space
Spa(A,A+) to completion of the Huber pair).
Proposition 13.2.1 (Proposition 2.1 in [H2]) Let (A,A+) and (B,B+) be sheafy Huber pairs with
B complete. The natural map

Hom((A,A+), (B,B+))→ Hom(Spa(B,B+),Spa(A,A+))

is a bijection. Here morphisms of Huber pairs are continuous homomorphisms f : A → B such that
f(A+) ⊆ f(B+), and morphisms on the right side are morphisms of adic spaces (i.e., morphisms in
the category V ).

In other words, the category of complete sheafy Huber pairs is anti-equivalent to the category of
affinoid adic spaces.
Example 13.2.2 To see the importance of preserving the integral structure in the definition of a
morphism of Huber pairs, consider the following example. Let k be an algebraically closed non-
archimedean field, Dk = Spa(k[t], k0[t]) the adic unit disc, and D′k = Spa(k[t], A+) where

A+ = k0 + tm[t].

This example was discussed in 11.3.13; the conclusion was that D′k consists of the union of Dk with
one additional type 5 point v0,1+ whose generization is the Gauss point. The identity map k[t]→ k[t]
induces a morphism of Huber pairs (k[t], A+) → (k[t], k0[t]), which corresponds to the inclusion
Dk ↪→ D′k. However, the identity does not induce a morphism of Huber pairs (k[t], k0[t])→ (k[t], A+),
which is good, as clearly v0,1+ has nowhere to go in the purported corresponding map D′k → Dk.

13.3 Huber’s criteria

The first sheafiness criteria were proven by Huber. In addition to proving the sheaf property, he also
proved that higher cohomology of the structure sheaf vanishes on every rational subdomain, which is
essential if one wants to calculate anything with sheaf cohomology.
Theorem 13.3.1 (Theorem 2.2 in [H2]) Let (A,A+) be a Huber pair. Then OA is a sheaf, and its
higher cohomology vanishes on rational subdomains, if either of the following conditions holds:

(i) Â has a noetherian ring of definition.

(ii) A is a strongly noetherian Tate ring (i.e., all rings A〈t1, . . . , tn〉 are noetherian).

Recall that a Huber ring is Tate if it contains a topologically nilpotent unit. It is apparently not
known whether there exist complete Tate rings that are noetherian but not strongly noetherian. An
example of a (noncomplete) Tate ring that is noetherian but not strongly noetherian is given by the
non-sheafy ring A in Example 13.5.1 below (if it were strongly noetherian, it would be sheafy by
13.3.1!).

To appreciate the significance of these two conditions, recall that one of Huber’s motivations in the
definition of the category of adic spaces was to construct a category that fully faithfully contained the
categories of locally noetherian formal schemes and Tate’s rigid-analytic spaces. We have not defined
the functors that realize these embeddings, but when we do (in later lectures) we will see that (i)
applies to all adic spaces that come from locally noetherian formal schemes, and (ii) applies to all
adic spaces that come from rigid-analytic spaces. In particular, given the obvious functor from locally
noetherian schemes to locally noetherian formal schemes that assigns the discrete topology to each
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quasi-compact open set,1 we see that the category of adic spaces fully faithfully contains the category
of locally noetherian schemes.
Example 13.3.2 The adic space Spa(Z,Z) associated to the noetherian scheme Spec(Z) (where
A+ = Z is given the discrete topology) is the final object in the category of adic spaces. There
is exactly one valuation in Spa(Z,Z) above the closed point (p) ∈ Spec(Z) (corresponding to the
trivial valuation on Fp) and fiber over the generic point identified with the Rieman-Zariski space
Spv(Q,Z) = Spec(Z) under which the generic point corresponds to the trivial valuation and (p)
corresponds to the p-adic valuation ring Z(p) in Q.

It should not be a surprise that Theorem 13.3.1(i) is proven using techniques in the cohomology of
formal schemes borrowed from [EGA, III], whereas (ii) closely follows the proof of Tate’s original
acyclicity result for rigid-analytic spaces.

The best example to keep in mind when considering the usefulness of (ii) is the adic space associated to
the Tate ring Cp〈t1, . . . , tn〉. Although this ring is noetherian (and very nice in several other respects
as well), its topology is not generated by a noetherian ring of definition because Cp is not discretely
valued. Tate rings over discretely valued fields such as Qp are sheafy by both (i) and (ii).
Example 13.3.3 Although we will ultimately care more about criterion (ii) than (i), here is a useful
toy example of the kinds of mixed-characteristic adic spaces that are now being considered to study
(integral) p-adic Hodge theory via perfectoid spaces (see [S2]). Let

X = Spa(Zp[[T ]],Zp[[T ]]),

where Zp[[T ]] is given the (p, T )-adic topology. Everything in sight is noetherian, so (i) of Theorem
13.3.1 proves thatX is an adic space. An non-analytic point corresponds to a valuation killing the ideal
of definition (p, T ), so there is exactly one such point s, namely the trivial valuation on the residue field
Fp. If we consider the continuous map of topological spaces X → Spec(Zp[[T ]]) sending a valuation
to its support, this point s is the unique point lying above the closed point (p, T ) ∈ Spec(Zp[[T ]]). In
particular, s is closed in X.

Now remove this closed point s, defining the open adic subspace

Y = X − {s}.

This consists entirely of analytic points. It possesses exactly one characteristic-p point, corresponding
to a copy of Spa(Fp((T )),Fp[[T ]]); all other points are characteristic zero. We can draw a useful picture
of Y by considering the inclusions Spa(Fp[[T ]],Fp[[T ]]) ↪→ X and Spa(Zp,Zp) ↪→ X, and imagining
these two spaces as the horizontal and vertical axes of a quadrant in the plane. The horizontal axis
is the locus “T = 0” while the vertical axis is the locus “p = 0” (i.e., the characteristic-p part, or the
special fiber over Spa(Zp,Zp)). These axes in X consist of exactly two points, and they intersect at
the non-analytic point s, which we draw at the origin. All other points lie “somewhere between” the
horizontal and vertical axes in the first quadrant of the plane.

Since p and T are topologically nilpotent, the following rational domains of X that lie inside Y
(consisting of “rational sectors” of this quadrant) cover subsets of interest: if we set

Y +
n = {v ∈ Y : v(Tn) ≤ v(p) 6= 0} and Y −n = {v ∈ Y : v(pn) ≤ v(T ) 6= 0},

where n varies over nonnegative integers, then
⋃∞
n=1 Y

+
n is exactly the complement of the locus p = 0

and
⋃∞
n=1 Y

−
n is exactly the complement of the locus T = 0. One can easily calculate that the complete

1and the so-called “pseudo-discrete” topology to each open set in general; for a discussion of this functor see [SP,
Tag 0AHY].
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Huber pairs associated to Y +
n and Y −n are (A+[1/p], A+) and (B+[1/T ], B+), respectively, where A+

is the p-adic completion of Zp[[T ]][Tn/p] and B+ is the p-adic completion of Zp[[T ]][pn/T ]. All of these
Huber rings are Tate, though the latters ones do not contain any field.

The moral of these calculations is that the complement of the locus p = 0 in Y , which we would like to
define as the generic fiber of Y ,2 is covered by a countable union of very nice rational domains, but is
not itself a rational domain. In fact, it is not even quasi-compact, so it cannot possibly be an affinoid
adic space. This is very different from the corresponding picture for schemes, where the generic fiber
of an affine scheme over a mixed-characteristic ring is certainly affine! In particular, it would be a
bad mistake to attempt to define the generic fiber of X over Spa(Zp,Zp) to be as Spa of Zp[[x]][1/p]
with some topology and some “ring of integers”; as we have in fact already seen in Example 5.5.5.

As a final and somewhat parenthetical remark, the space X is a nice illustration of the following
lemma, which states that a point is analytic if and only if it is “locally Tate”:
Lemma 13.3.4 Let (A,A+) be a Huber pair and x ∈ Spa(A,A+). Then x is analytic if and only if
there exists a rational domain U containing x such that OA(U) is Tate.

Proof. First assume that x is analytic, and let {f1, . . . , fn} generate an ideal of definition I of a ring
of definition of A. Without loss of generality, we may rearrange the fi’s so that vx(fi) ≤ vx(f1) for all
i. Because x is analytic, so the support of vx is not open, necessarily vx(I) is nonzero. In particular,
vx(f1) 6= 0. Hence,

U = X

(
{f1, . . . , fn}

f1

)
is a rational domain on which f1 is a unit, and by design x ∈ U . Since we can write fi = (fi/f1) · f1
in OA(U) with fi/f1 ∈ O+

A(U), the I-adic topology on

O+
A(U) = A

〈
{f1, . . . , fn}

f1

〉+

,

is the same as the f1-adic-topology. Therefore f1 is a topologically nilpotent unit in OA(U), so OA(U)
is Tate.

In the other direction, since all points in Spa(B,B+) are analytic when B is Tate, it suffices show that
if x is analytic “from the point of view of U ” it is also analytic “from the point of view of Spa(A,A+).”
This is easy enough by tracking around ideals of definition: any ideal of definition J of a ring of
definition of OA(U) cannot be killed by vx, but any ideal of definition I of a ring of definition of A
generates such a J , so I cannot be killed by vx either. Therefore x is analytic.

13.4 The criterion of Buzzard and Verberkmoes

Another sheafiness criterion has been established for a particular class of Tate rings; namely, those
that [BV] calls stably uniform. Most of our favorite examples of Tate rings contain a field; for
example, affinoid algebras in rigid geometry or (as we will see) perfectoid algebras over perfectoid
fields. Therefore [BV] work under that hypothesis. However, it is unnecessary for the proofs to
assume the presence of a field, as we will indicate, and there are examples where it is helpful to work
in greater generality:

2To make this picture clearer, one can consider Y as fibered over the adic space Spa(Zp,Zp) (our vertical axis),
which consists of two points, one in characteristic p and one in characteristic zero. The fiber over the characteristic
p point consists of the one point described above, while the fiber over the characteristic zero point is its complement,
which we would like to define as the generic fiber of Y . One could define similar notions for the fibers of Y over our
horizontal axis Spa(Fp[[T ]],Fp[[T ]]).
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Example 13.4.1 Perhaps the minimal example of a Tate ring that does not contain a field is Z[X](X)

with theX-adic topology. A considerably less silly example is the mixed-characteristic Example 13.3.3.
An example “from nature” is the adic space avatar of the Fargues-Fontaine curve.

For the rest of this section, let (A,A+) be a Huber pair with A Tate.
Definition 13.4.2 The pair (A,A+) is uniform if the open subring A0 of power-bounded elements
is bounded.
Example 13.4.3 Examples of non-uniform Tate rings include non-reduced rings like Qp[ε]/(ε

2) with
the p-adic topology. For such a ring we have

A0 = Zp ⊕Qp · ε,

which is clearly not bounded as it contains a Qp-line.
Definition 13.4.4 The pair (A,A+) is stably uniform if for all rational U ⊆ Spa(A,A+), the ring
OA(U) is uniform.

Recall that the rings OA(U) are automatically complete, but this is irrelevant as uniformity is pre-
served under completion. Also, the stably uniform property is intrinsic to the topological ring A
without reference to A+: it is the assertion that A(T/s) (or equivalently its completion A〈T/s〉) is
uniform for any s ∈ A and finite non-empty subset T ⊂ A such that T · A is open. We will see an
example of a stably uniform pair that is not uniform in the next section.
Theorem 13.4.5 (Theorem 7 in [BV]) Let (A,A+) be a stably uniform Huber pair with A Tate.
Then OA is a sheaf and its higher sheaf cohomology on rational domains vanishes.

The proof will be sketched later, after we work with some concrete examples. The above statement
differs from that in [BV] by working in the generality of stably uniform Tate rings and including the
statement about vanishing cohomology, which follows using the method of proof of Theorem 2.4.23 in
[KL] (which itself essentially follows Tate’s original proof of the acyclicity theorem in classical rigid
geometry).

The key usefulness of this result is that there are no finiteness assumptions whatsoever (aside from
those in the definition of a Huber pair), so it can be applied to really huge rings like those that arise
in the theory of perfectoid spaces. Useful rings that cannot be handled by the above theorem include
most rings coming from formal schemes, which will not in general be Tate, and nonreduced rings
coming from classical rigid geometry such as Example 13.4.3. Both of these types of rings are sheafy
by Huber’s result. (We will see immediately from the defintion that perfectoid algebras are always
reduced.)

13.5 Examples and counterexamples

A natural reaction to Theorem 13.4.5 is to ask whether the stably uniform hypothesis on Tate rings is
necessary; that is, can we come up with an example of a Tate ring that is not sheafy? The construction
is not obvious, but one example is the following:
Example 13.5.1 ([BV, §§4.1-2]) Let

A = Qp[T, 1/T, Z]/(Z
2).

This is a nice ring, finitely generated over a discretely-valued non-archimedean field, but we are going
to define a rather nasty topology on it. Let A0 be the Zp-submodule of A generated by all elements
of the form
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(i) p|m|Tm, and

(ii) p−|m|TmZ

for all m ∈ Z. One checks easily that the elements in (i) and (ii) are linearly independent over Zp
and that A0 is actually a ring with A0[1/p] = A. Put the topology on A that has as a local basis at
zero the subgroups pnA0 for n ∈ Z, so that in particular A0 is an open subring of A with ideal of
definition (p) and (A,A0) is a Huber pair.

Let
X = Spa(A,A0).

The space X has a cover by the rational domains

U = {v ∈ X : v(T ) ≤ 1} and V = {v ∈ X : v(T ) ≥ 1}.

We claim that the element Z ∈ A considered as a global section onX is nonzero but that its restrictions
to both U and V are zero. If this is the case, OA is clearly not a sheaf, as it fails the “uniqueness of
gluing” (or “locality”) axiom.

The proof of the claim is straightforward; we know that

OA(X) = lim←−
n

A/pnA0,

OA(U) = lim←−
n

A/(pnA0[T ]),

OA(V ) = lim←−
n

A/(pnA0[1/T ]).

We verify that Z 6= 0 in OA(X) because it is not contained in pnA0 for any nonnegative n. But we
claim that Z ∈ pnA0[T ] and Z ∈ pnA0[1/T ] for all nonnegative n, which implies that Z = 0 in both
OA(U) and OA(V )! More specificallly, is enough to write Z as pn multiplied by an element in A0

multiplied by non-negative integral powers of both T and 1/T :

Z = pn · (p−nT−nZ) · Tn and Z = pn · (p−nTnZ) · T−n.

Note that p−nT−nZ is a monomial of the form (ii) by taking m = −n, and p−nTnZ is a monomial of
the form (ii) by taking m = n.

In this example, there is nothing special about the field Qp; the same calculation works for any
non-archimedean field with topology given by a rank-one valuation (and p replaced by any pseudo-
uniformizer). A similar construction also works over Z; see Rost’s example at the end of [H2, §1].

If one actually calculates the rings of sections OA(U) and OA(V ), one finds that

OA(U) = ̂Qp[T, 1/T ]

with a topology generated by the subring Zp[T, p/T ], and

OA(V ) = ̂Qp[T, 1/T ]

with a topology generated by the subring Zp[pT, 1/T ]. That is, U is the adic space associated to the
annulus {|p| ≤ |T | ≤ 1} and V is the adic space associated to the annulus {1 ≤ |T | ≤ |1/p|}. They
do not glue properly, however; in particular, OA(X) contains the nilpotent element Z.
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One can “perfectify” this example to get a topological space that is locally perfectoid (in fact, having
a cover by rational domains that are just perfectoid annuli) but not globally perfectoid (because
perfectoid algebras will be shown to be sheafy): we let

A′ = ( lim−→
T 7→Tp

Qp[T, 1/T ])[Z]/(Z
2),

(which is often abbreviated as Qp[T
1/p∞ , T−1/p

∞
, Z]/(Z2)) and let A′0 be the Zp-submodule of A′

generated by elements of the form p|n|Tn and p−|n|TnZ, for all n ∈ Z[1/p]. The example then goes
through as before.

We have seen a failure of locality in the presheaf OA. It is also possible to exhibit a Tate ring A such
that OA fails the gluing axiom:
Example 13.5.2 ([BV, §4.4]) Let

A = Qp[T, 1/T, Z1, Z2, . . .],

and take A0 to be the free Zp-submodule of A generated by elements of the form pdT a
∏
i Z

ei
i , for

a, d ∈ Z and each ei ∈ Z≥0, subject to the following conditions:

(i) If all ei = 0, then d = |a|.

(ii) If
∑
i ei = 1, then d = |a| − 2min{

∑
i iei, |a|}.

(iii) Otherwise, d = |a| − 2
∑
i iei.

It is a considerably more tedious process this time to check that A0 is in fact a subring, though
obviously A0[1/p] = A. Once this has been done, we can as above define a topology on A generated
by the basis at zero consisting of the subgroups pnA0 for n ∈ Z. We let the rational subdomains U
and V of Spa(A,A0) be defined exactly as in the previous example.

The key idea here is that the element
∑
i Zi converges on U and on V , but does not converge on all

of X, so there are two local sections that agree on intersections but that do not glue. To verify the
former claim, we note that for all n ≥ 0,

Zn = pn · (p−nT−nZn) · Tn ∈ pnA0[T ],

so Zn → 0 in A0[T ] as n → ∞ and therefore the (non-archimedean) sum converges on U . Note that
the element p−nT−nZn satisfies condition (ii) above. Similarly,

Zn = pn · (p−nTnZn) · T−n ∈ pnA0[1/T ],

so Zn → 0 in A0[1/T ] as n → ∞ and therefore the sum converges on V . The element p−nTnZn
likewise satisfies condition (ii). It is clear that these sections over U and V coincide over U ∩ V .

To verify that
∑
i Zi does not “make sense” in OA(X) is more complicated, but the idea is straight-

forward. We define functions ρi : A → Qp that send each element of A to its coefficient for the
degree-1 monomial Zi. It is easy to check that each ρi is continuous, so it extends to a function on
the completion OA(X). Now I claim that for any r ∈ OA(X), we must have

lim
i→∞

ρi(r) = 0.

This follows because r is the limit of a Cauchy sequence of elements of A, and each element of A
has no ZN coefficient at all for large enough N , so a simple approximation argument suffices. The
hypothetical global section “

∑
i Zi” (by which we really mean any hypothetical gluing of that sum

viewed over U and V ) cannot satisfy this condition, and therefore cannot exist.
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It seems unlikely that there exists a noetherian counterexample to the gluing axiom.

Finally, one would like a counterexample proving that “stably uniform” cannot be replaced by “uni-
form” in the statement of Theorem 13.4.5, or failing that at least an example of a Tate ring that is
uniform but not stably uniform, to show that the condition is not empty. The latter construction is
easier and is described below; for an example of the former see [BV, §4.6].
Example 13.5.3 ([BV, §4.5]) To construct a uniform Tate ring that is not stably uniform, first let

Ã = Qp[T, 1/T, Z],

and let A0 be the free Zp-submodule generated by elements of A of the form (pT )a(pZ)b, where b ≥ 0
and a ≥ −b2. Again, one verifies that A0 is actually a ring, and one sets A = A0[1/p] (this time,
A 6= Ã; we’ll never get 1/T by inverting p, for instance). Topologize A using the subgroups pnA0 as
before.

We first claim that A is uniform. In fact, we claim that A0 = A0. By [BV, Lemma 11], any
compatible grading on A and A0 induces a grading on A0, so to show this equality it suffices to check
on each graded part separately. This is easy: if λ · (pT )a(pZ)b ∈ A0 with λ ∈ Qp, then the powers
λn(pT )an(pZ)bn are bounded. But such powers escape p−NA0 for every N unless λ ∈ Zp, which in
turn implies that λ · (pT )a(pZ)b was in A0 after all. We have proven that A is uniform.

Next, with U defined as usual to be {v ∈ Spa(A,A0) : v(T ) ≤ 1}, the ring OA(U) is not uniform.
This is true because now the element Z/pn is power-bounded for all n, so we get a Qp-line in OA(U)0.
Indeed, we calculate(

Z

pn

)n+1

= (pT )−n
2−2n−1(pZ)n+1Tn

2+2n+1 ∈ Â0[T ] = OA(U)+.

As the (n+1)th power is inside the “closed unit ball” defining the topology on OA(U), it follows that
Z/pn is power-bounded.

13.6 Sketch of the proof

There are two steps in the proof of Theorem 13.4.5, following Tate. First, one verifies the sheaf
property for a very specific type of cover. Specifically, we wish to verify that for a uniform and Tate
Huber pair (A,A+), the sheaf property holds with respect to covers of the form

U = {v ∈ X : v(t) ≥ 1} and V = {v ∈ X : v(t) ≤ 1},

where t is any element of A and X = Spa(A,A+). Second, one verifies that we can reduce the general
case to this specific case, this time under a stably uniform hypothesis.

The heart of the proof is the first step, so we will consider it in more detail. We will deal first with
the corresponding sequence of uncompleted exact rings, which for the cover {U, V } reads

0→ A
ε−→ A(t/1)⊕A(1/t) δ−→ A(t/1, 1/t) = A({t2, 1}/t)→ 0. (1)

Here ε is the localization map to both factors, δ is simply subtraction of the second factor from the
first, and the ring notation is as defined in Lectures 6 and 7; for example,

A

(
t

1

)
= A

(
{1, t}
1

)
= A[X]{1,t}/(1−X),
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where A[X]{1,t} is the polynomial ring A[X] equipped with the topology where a basis of open sets
around zero is given by the sets

U [{1, t} ·X] :=

{∑
finite

aiX
i : ai ∈ tj · U for some j ≤ i

}

where U runs over all open additive subgroups U ⊆ A. This construction makes sense by Proposition
6.3.5 because {1, t} generates the unit ideal, which is certainly open. By the discussion in §7.6, a ring
of definition for A[X]{1,t} is given by A0[{1, t} ·X] equipped with the J ·A0[{1, t} ·X]-adic topology
where J is an ideal of definition for a ring of definition A0 of A. Taking the quotient, we find that a
ring of definition for A(t/1), denoted by A0[t/1], is given by A0[t] with a certain topology on it.

With all relevant notation in place, it is clear that ε and δ are continuous and we may proceed to
simplify things dramatically by using the Tate hypothesis. Let u be a topologically nilpotent unit in
A and fix a ring of definition A0. Replacing u with un for sufficiently large n so that u lies in the
open subring A0. By Proposition 7.5.3, A0 has the u-adic topology. Applying the same reasoning to
the rational localizations (and noting that u is still a topologically nilpotent unit in A(t/1)), we find
that the topology on the ring of definition A0[t/1] ⊂ A(t/1) is also u-adic, and A0[t/1][1/u] is equal
to all of A(t/1).

The same reasoning can be applied to the rings A(1/t) and A(t, 1/t), proving that their rings of
definition A0[t/1] and A0[t/1, 1/t] both have the u-adic topology and that inverting u yields the
ambient ring in each case. It is a trivial matter to verify that (1) is an exact sequence of rings: the
underlying sequence of rings is just

0→ A→ A⊕A[1/t]→ A[1/t]→ 0

in which composition of the second and third maps is clearly zero whereas if an element of (r, s) ∈
A⊕A[1/t] maps to zero then we must have r = s in A[1/t] (and in particular s is the image of r ∈ A),
so (r, s) comes from A.

Unfortunately, the uncompleted groups are not what we are interested in, and in general completing a
sequence of topological abelian groups does not preserve exactness (the whole point is that we do not
want to assume restrictive finiteness hypotheses!). Fortunately, Lemme 2 of III.2.12 in [Bou] comes
to the rescue. It states that if an exact sequence of topological abelian groups has strict maps then
completion preserves exactness.3 We recall that a map of topological abelian groups f : B → C is
strict if the quotient topology on f(B) from B coincides with the subspace topology from C. It is
easy to see that f is strict if and only if it is continuous and and the induced map B → f(B) is open.

In our case, the map δ : A(t/1)⊕A(1/t)→ A(t/1, 1/t) is always strict: by translating and scaling by
powers of u, it suffices to check that the image of A0[t/1] ⊕ A0[1/t] is open in A(t/1, 1/t), which is
the case because this image is precisely A0[t/1, 1/t]. However, it may not be the case that ε : A →
A(t/1)⊕A(1/t) is strict; in particular, this is where the uniformity hypothesis comes in.

Let’s see what we would need in order for ε to be strict. Again by translating and scaling, it would
suffice to show that the image of A0 is open, which is the case if and only if it contains a set of
the form un(A0[t/1] ⊕ A0[1/t]) for some n (as these sets form a basis around zero). In other words,
we seek some n such that un(φ−1(A(t/1)) ∩ ψ−1(A(1/t))) lies in A0, where φ : A → A(t/1) and
ψ : A→ A(1/t) are the canonical maps.

3There is an additional technical condition: we require that there exists a countable basis of the topology around
zero. This is always satisfied for Huber rings, whose topology around zero is given by powers of a given ideal in a ring
of definition
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This is proven in two stages. First, we will show that for any Tate ring, if a global section is
locally integral, then it is globally power-bounded. This establishes that φ−1(A(t/1)) ∩ ψ−1(A(1/t))
is contained in A0. Next, we use uniformity, which implies that unA0 is contained in A0 for some n.
Putting the two together, we would obtain strictness of (1) and therefore exactness of the completed
sequence

0→ OA(X)→ OA(U)⊕OA(V )→ OA(U ∩ V )→ 0. (2)

Thus, we need the following lemma, applied to t1 = 1, t2 = t:
Lemma 13.6.1 (generalization of Lemma 3 in [BV]) Let A be a Tate ring and let t1, . . . , tn ∈ A be
elements that generate the unit ideal. Consider the rational localizations

Ai = A({t1, . . . , tn}/ti)

(a topological ring structure on Ati) together with the canonical maps φi : A→ Ai and the associated
open subrings

Ai,0 = A0

[
t1
ti
, . . . ,

tn
ti

]
.

If an element r ∈ A satisfies φi(r) ∈ Ai,0 for all i then r ∈ A0.

Proof. The proof goes through exactly as in [BV], except instead of taking an η in the base field
(which we are not assuming to exist) such that ηti ∈ A0 for all η, we take η to be a large enough
power of a topologically nilpotent unit u, and likewise for θ in their argument.

Having proven sheafiness for the cover {U, V } (under the hypothesis of uniformity), we wish to boot-
strap to the general case (under the hypothesis of stable uniformity). The basic method is standard
and goes back to Tate, so we give only a sketch.

First one deals only with OA as a presheaf of abelian groups (ignoring the topological aspect). The
method to prove that it is actually a sheaf follows the classical case very closely: first one proves the
sheaf property for so-called Laurent covers, which are covers of the form {UI} where I runs over all
subsets of {1, 2, . . . , n}, t1, t2, . . . , tn are elements of A, and

UI = {v ∈ X : v(ti) ≤ 1 for i ∈ I, v(ti) ≥ 1 for i /∈ I}.

This is proved by induction on n; the base case n = 1 has been of course proven above. Then, by
using a refinement lemma exactly paralleling Lemmas 8.2.2/2-4 in [BGR], one bootstraps to so-called
rational covers, which are those considered in Lemma 13.6.1, and then to arbitrary covers by rational
domains. By the discussion in Lecture 12, this suffices to show that OA is a sheaf of abelian groups.

To prove that OA is actually a sheaf of topological rings, by the discussion at the end of Lecture 12
we need only check for that for a cover {Ui} of a rational domain U by rational domains, the induced
map

OA(U)→
∏
i

OA(Ui) (3)

is a topological embedding (i.e., strict). We can refine this to a finite rational cover by the same
refinement lemma as before (using quasi-compactness of rational domains). Then the same argument
as in the case of the cover {U, V }, using Lemma 13.6.1 to relate

∏
iOA(Ui)+ with power-bounded

elements of OA(U) and using strict uniformity (which we now need, as we are dealing with an arbitrary
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rational domain U) to control the power-bounded elements of OA(U) by OA(U)+, we conclude that
3 is a topological embedding. This completes the proof of sheafiness.

To conclude that the higher cohomology of OA vanishes on rational domains, one can use a Čech-
theoretic approach that also mirrors Tate’s original acyclicity theorem: we have already shown that
the sequence (2) is right-exact, thereby handling the case of a Čech cover consisting of two open
sets, and we can use the same refinement lemmas to reduce to this case. (Note that cohomology is
computed in the category of abelian sheaves, so we are free to disregard the topologies of the rings in
question.) For a detailed argument in a slightly restricted setting (but which is perfectly general and
applies to the setting of sheafy Tate rings just as easily), see [KL, §2.4], especially Theorem 2.4.23.

13.7 A corollary of the proof, and one more example

The following result and example are almost surely useless, as we will be dealing exclusively with
sheafy rings from now on, but are at least moderately amusing.
Corollary 13.7.1 (Corollary 5 in [BV]) Let X = Spa(A,A+), where (A,A+) is a Huber pair with A
Tate. If f ∈ OA(X) and there exists a cover of X by open sets such that f |Ui

= 0 for all i, then f is
topologically nilpotent.

Proof. As usual, it suffices to check on covers by rational domains, and by one of the refinement
lemmas it suffices to check on rational covers (i.e., covers of the form described in Lemma 13.6.1).
By that Lemma, an element that is locally zero is certainly globally power-bounded. Applying this
to u−1f , where u is a topologically nilpotent unit, we see that u−1f is power-bounded and hence
f = u · u−1f is topologically nilpotent.

Example 13.7.2 ([BV, §4.3]) We have seen an example of a locally zero element that is globally
nilpotent (but nonzero) in Example 13.5.1 above. One can also give an example of a Tate ring with
a locally zero element that is not globally nilpotent (although by the above corollary, it must be
topologically nilpotent). One takes

A = Qp[T, 1/T, Z]

and A0 to be the Zp-subalgebra generated by the elements pT , p/T , p−nT a(n), and p−nT−b(n), where
a(n) and b(n) are certain sequences that increase extremely rapidly. One topologizes A by taking the
p-adic topology on A0 as usual. It is easy to check that Z restricts to zero on the familiar rational
subdomains U and V , but one has to work harder to check that for each e there is a number M(e)
such that Ze /∈ pM(e)A0, thereby verifying that Z is not nilpotent in the completion of A. Details can
be found in [BV].

References

[BGR] S. Bosch, U.Güntzer, R.Remmert, Non-archimedean analysis, Springer-Verlag.

[Bou] N. Bourbaki, Algébre commutative, chap. I - VII, Springer (1989); chap. VIII- IX, Masson
(1983); chap. X, Masson (1998).

[BV] K. Buzzard, A. Verberkmoes, Stably uniform affinoids are sheafy, arxiv preprint (2014).

[EGA] A. Grothendieck, EGA, Publ.Math. IHES 1961–68.

[H2] R. Huber, A generalization of formal schemes and rigid-analytic varieties.

12



[KL] K. Kedlaya, R. Liu, Relative p-adic Hodge theory: Foundations.

[S2] P. Scholze, Lectures on p-adic geometry, Fall 2014, notes by J. Weinstein.

[SP] A. J. de Jong, Stacks Project.

[Wed] T. Wedhorn, Adic Spaces, unpublished lecture notes.

13


	Lecture 13: Uniformity and sheaf properties
	Introduction/global theory
	A note on the category V
	Huber's criteria
	The criterion of Buzzard and Verberkmoes
	Examples and counterexamples
	Sketch of the proof
	A corollary of the proof, and one more example


