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K2 AND L-FUNCTIONS OF ELLIPTIC CURVES
COMPUTER CALCULATIONS

S. Bloch and D. Grayson

What follows are computer calculations done in the fall of
1981 to compare the value of the regulator on K2 of an elliptic
curve with the value of the L-function at s = 2. With one
important medification, the results confirm everything that
Beilinson and Bloch had conjectured. They also provide evidence
for vast numbers of exotic relations between special values of
"Eisenstein-Kronecker-Lerch" series and values of Hasse-Weil
L-functions for non C-M curves.

A good reference for these "E-K-L" series is Weil's book
Flliptic Functlons According to Eisenstein and Kronecker. We
try to use Well's notation insofar as possible.

Let Wec € be a lattice with fundamental parallelogram of
area = TA. 'Suppose given Xy € €. The function

X(w) = exp[A™ (X u-x,7)]

is an additive character of the lattice which depends only on the
image of X, in ¢/W. For a €Z and s € €, the Eisenstein-

Kronecker-Lerch series ig

Ké(x,xo,s) = Z*X(w)(§¥ﬁ)a]x+w|~2s

(here Z* means omit terms with x = -w). We shall be inter-
ested in the series

_oe* x(w)
Kl(O,XO,E) =3 =

as these are linked to K2 ofvelliptic curves. However it seems

plausible that the series
Kl(o,xo,r), r = 2,3,4,...
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will be linked in a similar way to values of Hasse-Well L-func-
tions at points s = r. Note that such relatlons are no surprise
when the elliptic curve in question has complex multiplication,
e.g., by an imaginary quadratic field to class number 1. In
that case the L-function is a Hecke L-series whose expression at
s = 2 is similar to that of Kl(o,xo,z) above except that the
additive character of W 1s replaced by a multiplicative char-
acter. Relations between the two kinds of series are obtained by
letting X, Tun through points of some fixed finite order divisi-
ble by the conductor of the Hecke character and then relating the
additive and multiplicative characters via Fourier thecry. The
spirit of the calculations we want to explain is that relations
persist even when the elliptic curve does not have CM.

To be more precise, let E Dbe an elliptic curve over Q.
Tet w be a global one-form defined over R and normalized so
the fundamental real period = 1. Let W c ¢ be the lattice of
periods of w, W= Z+%Z%, Im T » 0. Define

M(E,x.) = (Im 7)2K, (0,x.,2) = (Im 7)2 =" x{w)
0 1 0 2—

wowW
If xgb a e E(¢), we also write M(a) = M(E,xo). Let L(E,s)
be the Hasse-Weil L-function of E. (In cases we work with E
is known to satisfy Weil's conjecture. We take L to be the
Mellin transform of the corresponding modular form.) We are
interested in relations of the form

¢-L(E,2) + z caM(a) =0

with C, ¢ € Z. One checks easily that M(-a) = -M(a), so we
fix 8 < E(Q) such that

tors
B(Q)y ps = SLL(-8)L],E(Q)

and look for relations (*) with c, =0 if a £ S. Actually, it
is convenient to modify the notation slightly. For convenience,
we calculate only with curves of negative discriminant, so the
real locus is always connected and points in E(Q)tors corres-
pond to a cyclic subgroup of fractions of the real period. Thus
if #E(Q)tors =n, we can take 8§ = {1,__.,[E%E}} and look for
relations (N = Weil conductor. Introducing N and n makes B
and {bj} small).
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[

25

]

. n-bJ.M(E,%),B,bJ. € Z.

I an

N'B'L(E,2) +
J
Grayson made such calculations for all curves on the
Swinnerton-Dyer table (Lecture Notes in Math. no. 476) with Weil
conductor < 180, negative discriminant, and a rational torsion
point of order 2_5 (a total of 37 curves). Typically the cal-
culations were carried out to 25 decimal places. Occasionally,
they were carried out to 80 or more decimal places. In the
tables, N = Weil conductor, name = letter under which the curve
1s listed in the S-D table, & = order of torsion subgroup, and
B,bl,bg,... are as in (*). The other columns will be explained
anon.
For example, the curve 26D has a point of order 7. The
computer gives relations

26-L(E,2) + 28M(E,$) + 28M(E,%) =0

1 2 3y _
5M(E,7) + lOM(E,7) + 8M(E,7) =0

K~-theory

We sketch how these computations can be explained by a modi-
fied form of a conjecture which Bloch (in the context of elliptic
curves) and Beilinson more ‘generally have advanced. First of all,
let E be an elliptic curve over € and let f, g be rational
functions on E with divisors

it 3\t
Define
(f)*(g) = j_z' piqj<ai—5j)
sd
M<f:g) = j_z' pqu-M(E:ai'Bj) .
s d

One of the basic results in Bloch's Irvine notes is that
M(f,1-f) = 0, so there is an induced map

M:K,(C(E)) » €
which we compose with the restriction map to get

M:KE(E) > .
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If the zeros and poles of f and g are points of some
finite order dividing d, then there exists an element

e K,(E) well defined up to Xer M such that

Sp, o € Kol

M(Sf,g) = d+M(f,g).

Suppose for egample a € E(Q)torS generates a subgroup of order
ay> 2, E :
d-1

(g) =2 = (ra) - 2(a-1)(0).
r=1

For 1¢ s ¢ d-1, define a rational function f_ such that

(£.) = d(sa) -~ a(0), o € E(Q)

S tors

Then S, s 4Fn. £.,8 0

_ 2
M(Sa’s) = -2d°M(E, sa).

We had conjectured that K, (E would have rank 1 and

Q)
that

(%) 0-M(Ky(Eg)) = @-L(E,2)

Assuming Weil's conjecture, it follows from Beililinson's work on
modular curves that the right side in (*¥*) is included in the
left. On the other hand, the computer search for rational rela-
tions between the M(E,a), o € E(Q)tors
the rank of KQ(EQ) is in general > 1, e.g., the rank appears
to be 2 for the curve 26D cited before.

This is as it should be! Let EzZ be the Neron model of
E. What one wants to conjecture is that the rank of Kg(Ez) =1
with generator related to the value of the L-function by the
is regular and proper over Spec Z Just like

strongly suggests that

regulator. (EZ
spectra of rings of integers in the classical regulator formula.)
Consider the localization sequence

Ky(By) > Ky(Ey) » %} Ki(Eﬁb)

For good reduction primes it is easy to show Ki(EE1) is

torsion. However, if EEF is a bad fibre of Kodalra type I
p

\)’
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v> 1, Ep 7& yeeo th K (E_ )
2 é) Zj R

= ZUDtor31on (Other kinds of bad flbres have torsion K

1
1°
point is that the dual graph of the Iv' fibres has Hl Z.)

We calculated the boundary (tame symbol) for Iv fibres

The

3
K, (E) —P—-->K'1(EIF )/tors = 7 .

b

To explain the calculation, let o ¢ E<Q)tors be a point of
order d > 2. Assume the specilal fibre has m sides, numbered
consecutively O0,1,...,m-1 with O corresponding to the com-
ponent meeting the O-section. Assume o meets the r-th compon-
ent and write t = r/m. For a ¢ Q+ write <{a> for the frac-
tional part, so 0{ <& < 1 and a ~<a) ¢ Z. ILet Sa,s be
as on page 4. Then

d-1
3, (84, ¢) = (*)L§l(<ts> =<t ) (<t H +min (64 ,{ts> )

where (¥*) is a non-zero constant independent of s. Write
fp(a,s) for the right side (without the (*)). Then, up to
torsion, an element (aS € 7Z)

d-1
(452
S31 aSSa’S (one can show Sa,s = _Sa,d-s)
comes from KE(EZJ if and only if for all p with multiplica-
tive reduction
d-1
(4521
(%%x) v a_f (a,s) = O.
s-1 °P
We compute tables of the fp(a,s) and show that for all but two
of the curves considered (the exceptions being 114B and 126C) the
elements I aSSa s with the ag satisfying (***) generate a
>
rank one lattice in KE(EZZ)’ and the regulator map (denoted M
above) applied to a generator‘of the lattice gives (up to 25
decimals) a simple non-zero fractional multiple of L(E,2)! In
the two exceptional cases, there are no non-trivial solutions to
(#%%) so0 no linear combination of the Sa s globalizes. One
: »
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. . (*)
simply has to look elsewhere for an element in KE(EZ)l

Relations with the dilogarithm and Milnor's conjecture

Let z
D(z) = logl|z|arg(l-z) - Im(] log(l—t)%?) .
0

D(z) 1is a single valued function of =z (cf.the Irvine notes).
Milnor considers D(¢) for gd = 1. He conjectures (for geo-
metric reasons) that the only relations

d-1 r

rEl a,D(¢ ) = 0, a, € Z

are those arising from the distribution relations

% D(x°) = T D(rx)
821

together with

D(x) = -D(x).

Now let E be an elliptic curve over § corresponding to
the lattice 1, T as above (so 1 = fundamental real period and

ImT)» 0). Let q = ™7 and define

D (z) = £ D(zq")
< nez
(the series converges, cf. the Irvine notes). A fourier series

compubatlion shows (notation as on p. 4)

2rix

WDq(e O)

= M(E,xo) .

Assume A< O so E(Q)fors is eyelic, and suppose d = #E(Q)torg
> Y. Write I tor the number of fibres of type I, with v >3
in the Neron model, and suppose [Q%l] -> 1 (e.g. 114, 144,
20B, 26D, 42A, 48E, 54B, 66J, 90G, 150C on the enclosed list).

(*)Note the computer only verifies relations to 25 decimal places,
it does not prove them. All relations in Ké are mod Ker (M),

which is conjecturally O. Grayson has added to the table some
curves with points of order 3 and 4. Results for these are
consistent with everything said above.
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Then there should be (and the computer verifies for the curves
listed) at least [gél] - L -1 exotic relations (ar e Z)

44

X aqu(gr) = 0 where ({ is a primitive d-th root of 1.
r=1

Note g e R so Dq(g-r) = —Dq(gr). Also the function fp(a,s)
is identically zero when the reduction is of type I1 or IE’
so these impose no conditions.

Tables by D. Grayson

Notation for tables

N = conductor

d = order of the rational point o

a = (real period)/n

d-1

(4521
z

B[N-L(E,2)] + bj[d M(E, ja)]

J=1
u = number of independent conditions imposed by the require-
ment that the tame symbol vanish on fibres with multi-
plicative reduction
p(r/m) means E has reduction of type Im at p, m> 1,
and o specilalizes to #r ¢ Z/mZ = group of irreduci-
ble components of E(p). To find r, we use prﬂjb'(a).

N, name d B bl b2 b3 b4 b5 u reduction
11A 5 1 0 2
0
0 2 3 »
11B 5 25 | -8 -4 1 11(2/5)
14A 6 1 0 3
0 2(1/2)
_ 0| 2 5
14C 6 31-1 -1 1 2(3/6)7(1/3)
15A a| 1 -4 | 0 |
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N, name d B bi b2 b3 b4 b5 reduction
15F 4 2(1/2)5(2/8)
17C 4 17(1/4)
19A 3] 1 -4
19B 3 19(1/3)

208 6 | 1]-36 90
5(1/2)
0| 5 -13
26D 711 o a4 4
2(3/7)
ol 5 10 8
30A 6 1] -2 -2 2(2/4)3(1/3)
36A 6 | 1] -4 o0
o] o 1
42A 8 | 1] -3 -1 1
2(3/8)3(1/2)
0ol 1 5 5
48E 8 | 1| -3 -1 1
3(3/8)
o 1 -2 -3
50A 5 | 1] -4 8 2(1/5)
508 5 | 1| -4 -2 2(6/15)
54B 9 | 3| -8 -4 4 4
o] 1. 2 3 1 2(4/9)
o 2 -4 -1 3
57F 5 | 3] -8 -4 3(4/10)
588 5 | 1| -8 -4 2(4/10)
66B 6 | 1] -8 10 3(1/6)11(1/2)
667 10 |1]-2 -2 -1 0
2(2/5)3(3/10)11(1/2)
0] 2 0 -3 -4
84C 6 | 1|-4 -4 3(1/3)7(1/2)
904 6 | 1]-8 10 2(1/6)
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N, name d bl b2 b3 b4 b5 reduction
90G 12 -9 -8 -3 3 2
1 0 -1 1 2 2(5/12)5(1/3)
[ 3 2
90M 6 -4 -4 2(1/2)5(1/3)
1028 6 8 10 _ gggﬁ)Z)N(l/Z)
110C 5 -8 -4 2(2/5)5(2/5)
114B 6 2(1/3)3(1/6)19(1/2)
118B 5 -8 16 2(2/10)
123A 5 -4 8 3(1/5)
126C 6 2(1/6)7(1/3)
126E 6 -8 10 2(3/18)
130F 6 -8 10 2(0/2)5(1/6)13(1/2)
138G 6 -8 10 2(2/4)3(1/6)
150 10 -8 -6 0 4 2(3/10)
0 1 2 2 3(2/5)
155D 5 -8 -4 5(2/5)
1701 6 -8 10 2(0/4)5(2/4)17(1/6)
174G 7 -20 -20 -12 2(2/7)3(3/7)
175A 5 -4 8 7(1/5)
180D 6 -16 20 5(1/6)
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Table for B(Sa s)’ where o is a point of order 4, and meets
3

the 15t component of a Neron fiber of type Id' In fact, then

a(sa,s) = % s(d—s)((d—s)g-se). The general case (d #m or

r # 1) can be reduced to this one.

N 2 3 4 5 6
2 0
3 1 -1
4 4 0
5 10 5
6 20 16 0
7 35 35 14
8 56 64 40 0
9 84 105 81 30
10 120 160 140 80 0
12 -~ 220 320 324 256 140 0
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