
Math 676. A compactness theorem for the idele group

1. Introduction

Let K be a global field, so K× is naturally a discrete subgroup of the idele group A×
K and by the product

formula it lies in the kernel (A×
K)1 of the continuous idelic norm

|| · ||K : A×
K → R×

>0.

We saw in class that if S is a finite non-empty set of places of K that contains all archimedean places, then
the combined statement that OK,S has finite class group and finitely generated unit group with rank |S| − 1
is logically equivalent to the assertion (that does not involve S) that the quotient (A×

K)1/K× is compact.
(Some aspects of that proof are addressed in §5 below.)

In the case of number fields we saw how to directly prove that OK,S has finite class group and O×
K,S

is finitely generated with rank |S| − 1 for any S containing the archimedean places. These methods rest
on Minkowski’s lemma, and so to carry them over to global function fields one needs a generalization of
Minkowski’s lemma. Our aim in this handout is to bypass the problem by giving a purely adelic proof of:

Theorem 1.1. For any global field K, (A×
K)1/K× is compact.

The proof will be uniform across all global fields, and the key to the proof is an adelic replacement for the
role of Minkowski’s lemma in the classical argument for number fields. In particular, this gives a new proof
of Dirichlet’s unit theorem and finiteness of class groups for rings of S-integers OK,S . However, if one strips
away the adelic language in the case of number fields (especially when S is precisely the set of archimedean
places) then one essentially recovers the classical argument. It must be emphasized that the power of the
adelic approach is that it is more systematic across all global fields K and it is methodologically simpler.
Also, this approach shows the close logical connection between the two fundamental finiteness theorems of
algebraic number theory, a closeness that one cannot fully appreciate until one has come across their relation
with Theorem 1.1. Our exposition of the proof of Theorem 1.1 follows Chapter 2 (§14–§17) in the book
Algebraic number theory edited by Cassels and Frohlich.

2. The adelic Minkowski lemma

The classical Minkowski lemma concerns compact quotients V/Λ with V a finite-dimensional R-vector
space and Λ a lattice in V : if µΛ is the Haar measure on V that is adapted to counting measure on Λ and
the volume-1 measure on V/Λ, then for X ⊆ V is compact, convex, and symmetric about the origin with
µΛ(X) > 2dim V the intersection X ∩ Λ is nonzero.

As a special case, let V = K ⊗Q R '
∏

v|∞ Kv for a number field K and let Λ = OK . For any C > 0
and any ξ = (ξv) ∈

∏
v|∞ Kv with

∏
v ||ξv||v > C (where || · ||v is the square of the standard absolute value for

complex v) we may consider the compact, convex, centrally symmetric region Xξ ⊆ V consisting of points
(xv) such that ||xv||v ≤ ||ξv||v for all v|∞. The volume of Xξ may be universally bounded below in terms of
C and arithmetic invariants of K, so by taking C sufficiently large we can ensure that Xξ has large enough
volume to satisfy the requirements for Minkowski’s lemma. Hence, for such large C depending only on K we
know that Xξ contains a nonzero element of Λ = OK , which is to say that there exists x ∈ OK − {0} with
||x||v ≤ ||ξv||v for all v|∞. The adelic result we shall now prove is simply a variant on this final assertion, with
the set of archimedean factors replaced by the adele ring and the discrete co-compact subgroup OK ⊆ K⊗QR
replaced with the discrete co-compact subgroup K ⊆ AK .

Theorem 2.1 (Minkowski). Let K be a global field. For ξ = (ξv) ∈ A×
K , define the closed subset

Xξ = {(xv) ∈ AK | ||xv||v ≤ ||ξv||v} ⊆ AK .

There exists C = CK > 0 such that if ||ξ||K > C then Xξ ∩K contains a nonzero element.

Since ||ξv||v = 1 for all but finitely many v, it is clear that Xξ is a product of closed discs that coincide with
Ov for all but finitely many non-archimedean v, so Xξ is compact. However, observe that the hypotheses on
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the idele ξ only concerns ||ξ||K , and hence the set of non-archimedean v’s for which ξv ∈ O×
v is not controlled

by the assumptions on ξ.

Proof. Let µ be the unique Haar measure on AK that is adapted to counting measure on the discrete
subgroup K and the volume-1 measure on the compact quotient AK/K. (See HW10, Exercise 2(iii) for the
compactness of this quotient.) Let Z ⊆ AK denote the compact set of adeles z = (zv) such that ||zv||v ≤ 1
for non-archimedean v, ||zv||v ≤ ||1/2||v for v|∞, so if z, z′ ∈ Z then ||zv − z′v||v ≤ 1 for all v. Since Z is
compact and contains an open neighborhood around the origin, µ(Z) is finite and positive. Moreover, this
volume is intrinsic to K.

By Lemma 2.2 below, µ(ξZ) = ||ξ||Kµ(Z). Thus, by taking C = 1/µ(Z) we have µ(ξZ) > 1. We claim
that this forces the existence of a pair of distinct elements in ξZ with the same image in AK/K, which is to
say that the projection map π : ξZ → AK/K has some fiber with size at least 2. Indeed, if χ on AK is the
characteristic function of the subset ξZ then Fubini’s theorem gives

µ(ξZ) =
∫
AK

χdµ =
∫
AK/K

(
∑
c∈K

χ(c + x))dµ(x) =
∫
AK/K

#π−1(x)dµ(x)

with µ the volume-1 Haar measure on AK/K, and so if all fibers of π have size at most 1 then we get
µ(ξZ) ≤

∫
AK/K

dµ = 1, contradicting that µ(ξZ) > 1.
We conclude that there exists x, x′ ∈ ξZ such that x−x′ = a ∈ K×. Thus, if we write x = ξz and x′ = ξz′

with z, z′ ∈ Z then
||a||v = ||ξv(zv − z′v)||v = ||ξ||v||zv − z′v||v ≤ ||ξ||v

for all places v. Hence, a ∈ Xξ ∩K×. �

The following pleasing lemma was used in the preceding proof.

Lemma 2.2. For ξ ∈ A×
K , the scaling effect of ξ on Haar measures of AK is ||ξ||K .

Proof. From the local theory we know that the scaling effect of ξv ∈ K×
v on Haar measures of Kv is ||ξv||v.

Hence, we want to build a Haar measure on AK as a “product measure” of local measures on the Kv’s so
as to compute the scaling action on AK as the product of scalings along the local “factors” of AK . Strictly
speaking AK is not a product space, so we need to be a little careful.

Choose a Haar measure µv on Kv for each place v such that for all but finitely many non-archimedean
place v the compact open subring Ov ⊆ Kv is assigned volume 1. Hence, for each finite set of places S on K
containing the archimedean places it makes sense to form the product Borel measure µS on the open subring
AK,S =

∏
v∈S Kv×

∏
v 6∈S Ov by using µv on Kv for v ∈ S and µv on Ov for v 6∈ S (as all but finitely many of

these Ov’s are assigned volume 1). Clearly each µS is a Borel measure on AK,S , and if S′ contains S then µS′

on AK,S′ restricts to µS on the open subset AK,S . Since the AK,S ’s are a directed system of open additive
subgroups that exhaust AK , by using the correspondence between Borel measures and positive functionals
on the space of continuous functions with compact support (or by working explicitly) it is straightforward
to check that there exists a unique Borel measure µ on AK that restricts to µS on AK,S for all S. Clearly µ
is positive on non-empty opens, is finite on compacts, and is translation-invariant because each µS has these
properties on AK,S for each S. Since AK (and each AK,S) has a countable base of opens, it follows that µ
is σ-regular on AK (as is µS on AK,S for each S). Hence, µ is a Haar measure on AK (and µS is a Haar
measure on AK,S for each S).

Now the problem is a simple computation. We consider S so large so that ξv ∈ O×
v for all v 6∈ S. Since

ξ ∈ A×
K,S , with AK,S an open subgroup of AK , the scaling effect of ξ on µ coincides with the scaling effect

of ξ on µS . Since µS is a genuine product measure, we may choose compact neighborhood N =
∏

v Nv of
the origin in AK,S that is a product of compact neighborhoods Nv of the origin in each factor of AK,S with
local factor Nv = Ov for all v 6∈ S. Thus, clearly

µS(ξN) =
∏
v

µv(ξvNv) =
∏
v

||ξv||vµv(Nv) = ||ξ||KµS(N)

with µS(N) finite and positive. Hence, the desired scaling factor is indeed ||ξ||K . �
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Observe that the proof of Lemma 2.2 does not use the product formula. Hence, we can use it to give
a pretty measure-theoretic proof of the product formula as follows. Let µ be the unique Haar measure
on AK compatible with counting measure on the discrete subgroup K and with volume-1 measure on the
compact quotient AK/K. For any a ∈ K×, multiplication by a on AK carries K to itself isomorphically and
induces an automorphism of AK/K, so by Fubini’s theorem we conclude that the scaling effect of a on µ is
the product of its scaling effects on counting measure for K and the volume-1 measure for AK/K. These
latter two measures are obviously invariant under arbitrary topological group automorphisms, and hence the
scaling effect of a on µ must be 1. Thus, by Lemma 2.2 we recover the product formula: ||a||K = 1!

Before we turn to the proof of Theorem 1.1, it seems worthwhile to record an auxiliary consequence of
the adelic Minkowski lemma that helps us to appreciate the delicate nature of the discreteness of K in AK :
it is crucial for such discreteness that we included all places of K, in the sense that omitting a single factor
has a dramatic consequence:

Theorem 2.3. If v0 is a place of K and Av0
K is the factor ring of AK obtained by deleting the factor Kv0

then the diagonal embedding of K into Av0
K has dense image.

This result is called the strong approximation theorem for the adele ring because it is much stronger than
the usual weak approximation theorem: it says that not only can we find an element x ∈ K that is as
close as we please to choices of elements xv ∈ Kv for any large finite set S of places v 6= v0, but we can
simultaneously ensure that x is v-integral at all remaining non-archimedean places v 6= v0. Since we have
no use for strong approximation here (though it is a prototype for very important approximation results for
adelic groups later in life), we refer the reader to §15 in Chapter 2 of Cassels–Frohlich for details on its proof.

3. Proof of Theorem 1.1

We are now in position to prove the compactness of (A×
K)1/K× for any global field K. The crucial

ingredient is:

Lemma 3.1. The kernel (A×
K)1 of the idelic norm inherits the same topology regardless of whether we view

it in A×
K (where it is a closed subgroup) or in AK , and it is closed in AK .

This is an interesting property since A×
K with its topological group structure certainly does not have the

subspace topology from AK (with respect to which inversion is not continuous).

Proof. Let us first check closedness of the subset (A×
K)1 in the topological space AK . We choose x = (xv) ∈

AK not in (A×
K)1, and we seek a neighborhood N of x in AK disjoint from (A×

K)1. Let S be a finite set of
places containing all archimedean places and such that xv ∈ Ov for all v 6∈ S.

First assume xv0 = 0 for some v0. Consider N =
∏

Nv where Nv = Ov for all v 6∈ S ∪ {v0}, Nv is a
compact neighborhood of xv in Kv for v ∈ S with v 6= v0, and Nv0 is a very small neighborhood of the origin
in Kv0 . Clearly any idele in N has idelic norm bounded above by the product of local norms along factors
in S and along v0, so by taking Nv0 to be very small we can ensure that any idele in N has idelic norm very
near 0 and in particular not equal to 1.

Now assume xv ∈ K×
v for all v. Since ||xv||v ≤ 1 for all but finitely many v, the infinite product

∏
v ||xv||v

has partial products that eventually form a monotonically decreasing sequence, and hence this product makes
sense as a non-negative real number. If it is less than 1 then we take S to be a finite set of places containing
all archimedean places and such that xv ∈ Ov for all v 6∈ S and

∏
v∈S ||xv||v < 1. We now may argue as

in the preceding paragraph, except we take Nv = Ov for all v 6∈ S and we choose Nv to be a very small
neighborhood of xv for v ∈ S. If instead

∏
v ||xv||v = P > 1 then convergence of this infinite product provides

a large finite set of places S (containing all archimedean places) such that xv ∈ Ov for all v 6∈ S, 1/2P > 1/qv

for all v 6∈ S (so ||ξv||v < 1 forces ||ξv||v < 1/2P ), and
∏

v∈S ||xv||v ∈ (1, 2P ). Hence, by choosing Nv = Ov

for v 6∈ S and choosing Nv very small around xv for all v ∈ S we may ensure that if ξ is an idele in N and
||ξv||v < 1 for some v 6∈ S then

||ξ||K =
∏
v∈S

||ξv||v ·
∏
v 6∈S

||ξv||v < 2P/2P = 1,
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whereas if ||ξv||v ≥ 1 for all v 6∈ S then ||ξ||K > 1. In particular, every idele in N has idelic norm not equal
to 1. This completes the proof that (A×

K)1 is a closed subset of AK .
Now we turn to the proof that the inclusion of (A×

K)1 ↪→ AK is a homeomorphism onto its (closed) image.
This map is certainly continuous since the definition of the topology on A×

K is as a subset of AK × AK

and the projection onto the first factor is a continuous map. Hence, our problem is to prove that every
neighborhood N ⊆ (A×

K)1 around a point x contains the intersection of (A×
K)1 with a neighborhood of x

in AK . Multiplication by 1/x is an automorphism of AK that carries (A×
K)1 homeomorphically onto itself

with respect to the subspace topology from the topological group A×
K , so without loss of generality we can

assume x = 1.
Due to the description of a neighborhood-basis of the identity in A×

K , we can shrink N so that it has the
form N = (

∏
v Nv) ∩ (A×

K)1 with Nv equal to a small disc centered at 1 in K×
v for all v in a large finite set

of places S that contains all archimedean places, and with Nv = O×
v for all v 6∈ S. By shrinking the Nv’s

we can ensure that
∏

v∈S ||ξv||v < 2 for all ξ ∈
∏

v Nv ⊆ A×
K , yet for ξ ∈

∏
v Nv clearly ||ξ||K =

∏
v∈S ||ξv||v

because Nv = O×
v for all v 6∈ S. Thus, if we let W be the neighborhood

∏
v∈S Nv ×

∏
v 6∈S Ov of 1 in AK

then any ξ ∈ W ∩ (A×
K)1 satisfies

1 = ||ξ||K =
∏
v∈S

||ξv||v ·
∏
v 6∈S

||ξv||v < 2
∏
v 6∈S

||ξv||v.

Since ||ξv||v ≤ 1 for all v 6∈ S, we get 1 < 2||ξv0 ||v0 for all v0 6∈ S, so 1 ≥ ||ξv0 || > 1/2 ≥ 1/qv0 and hence
ξv0 ∈ O×

v0
= Nv0 for all v0 6∈ S. In other words,

W ∩ (A×
K)1 ⊆ (

∏
v

Nv) ∩ (A×
K)1 = N,

as desired. �

With Lemma 3.1 proved, Theorem 1.1 may now be proved. We are aiming to prove that the quotient
(A×

K)1/K× is compact, and the topology on (A×
K)1 is initially given by that on A×

K . By Lemma 3.1, this
topology is also induced by AK with (A×

K)1 closed in AK . Hence, for any compact subset W ⊆ AK we have
that W ∩ (A×

K)1 is a compact set (as it is closed in W ). It is therefore sufficient to find such a large W for
which the projection map

W ∩ (A×
K)1 → (A×

K)1/K×

is surjective. Choose a constant C > 0 as in the adelic Minkowski lemma (Theorem 2.1), and choose any
idele ξ ∈ A×

K such that ||ξ||K > C. Define the compact set

W = {x = (xv) ∈ AK | ||xv||v ≤ ||ξv||v for all v}
in AK . For any θ = (θv) ∈ (A×

K)1 the idele θ−1ξ has idelic norm ||ξ||K > C, so by the adelic Minkowski lemma
there exists nonzero a ∈ K such that ||a||v ≤ ||θ−1

v ξv||v for all v, and hence aθ ∈ W . Since a ∈ K× ⊆ (A×
K)1,

it follows that aθ ∈ W ∩ (A×
K)1 is a representative of the class of θ in (A×

K)1/K×. This concludes the proof
of Theorem 1.1.

4. Variation in K

In global class field theory, a fundamental object of interest is the idele class group A×
K/K×. We wish to

explain how Theorem 1.1 helps us to prove a pleasant feature of this topological group as we vary K. Fix
a finite separable extension K ′/K. Since K ′ ⊗K AK → AK′ is a (topological) isomorphism, it follows that
K ′ ∩AK = K inside of AK′ . Hence, the natural continuous map of topological groups

A×
K/K× → A×

K′/K ′×

is injective. The topological isomorphism K ′ ⊗K AK → AK′ ensures that the natural continuous ring map
AK → AK′ is a closed embedding, and clearly AK ∩ A×

K′ = A×
K . Hence, by the definition of the idelic

topology we conclude that the natural continuous group map A×
K → A×

K′ is a closed embedding. It is not
obvious “by hand” whether the induced continuous injection modulo the multiplicative groups of the global
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fields is again a closed embedding, and this point seems to not be addressed in any of the basic books on
ideles, so we now prove that nothing unpleasant happens:

Theorem 4.1. The natural map A×
K/K× → A×

K′/K ′× is a closed embedding.

Proof. The natural continuous group map (A×
K)1 → (A×

K′)1 induces a continuous injection

(A×
K)1/K× → (A×

K′)1/K ′×

yet source and target are compact Hausdorff, so this map is a closed embedding. We shall now distinguish
the cases of number fields and global function fields, due to the different nature of the image of the idelic
norm in R×

>0 in the two cases.
First consider the case of global function fields. The idelic norm has discrete image in R×

>0, and hence
(A×

K)1/K× is open and closed in A×
K/K× with infinite cyclic cokernel. Since the map A×

K → A×
K′ intertwines

with the two idelic norms through the map of raising to the [K ′ : K]th-power (because NK′/K(x′) = x′
[K′:K]

for x′ ∈ K ′ and for the polynomial map NK′/K : K ′ → K between finite-dimensional K-vector spaces),
it follows that under the map of interest in the theorem the preimage of (A×

K′)1/K ′× is (A×
K)1/K×, and

similarly with other cosets for fixed values of the idelic norms. Hence, the property of being a closed
embedding may be checked on the level of the open and closed compact kernels for the idelic norm, for which
we have already seen the result to hold for compactness reasons.

Now consider the case of number fields. We fix an archimedean place v0 on K and an archimedean place
v′0 over it on K ′, and we use the continuous splitting of the idelic norm A×

K → R×
>0 via the inclusion that

sends t ∈ R×
>0 to the idele that is 1 in factors away from v0 and is t1/[Kv0 :R] in R×

>0 ⊆ K×
v0

in the factor at
v0. The resulting topological group isomorphisms

A×
K/K× ' R×

>0 × (A×
K)1/K×, A×

K′/K ′× ' R×
>0 × (A×

K′)1/K ′×

carry the map of interest in the theorem over to the product of the maps given by the [K ′ : K]th-power
map on R×

>0 and the natural map on the kernel factors for the idelic norms. This map along the second
factor has been seen to be a closed embedding due to compactness, and the map x 7→ x[K′:K] on R×

>0 is
trivially a closed embedding (even a topological isomorphism). Hence, the product map of interest is a closed
embedding. �

5. From ideles to S-units

We conclude by relating compactness of the idele class group to the finiteness theorems for class groups
and unit groups of rings of S-integers of global fields. As above, we fix a global field K and let S be a finite
non-empty set of places of K that contains the archimedean places. The discussion that follows does not
rest on any of the results proved above.

Lemma 5.1. The subring OK,S ⊆
∏

v∈S Kv is discrete and co-compact. Also, the subgroup O×
K,S of S-units

is discrete in the closed subgroup (
∏

v∈S K×
v )1 of elements (xv)v∈S satisfying

∏
v∈S |xv|v = 1.

Proof. The topology on
∏

v∈S K×
v is the subspace topology in

∏
v∈S Kv, so if OK,S inherits the discrete

topology from
∏

v∈S Kv then the locus OK,S − {0} where it meets
∏

v∈S K×
v inherits the discrete topology

from
∏

v∈S K×
v . In particular, O×

K,S would inherit the discrete topology from
∏

v∈S K×
v and so also would

inherit the discrete topology from the closed subgroup (
∏

v∈S K×
v )1. Thus, we now may focus our attention

on the additive problem.
Since

∏
v∈S Kv is Hausdorff, a subgroup is discrete if and only if it meets a neighborhood of 0 in a finite

set. We know that K is discrete in AK (as this was inferred from the cases K = Q and K = Fp(x) in the
homework), so the open subring AK,S of S-adeles (that meets K in OK,S) contains the ring of S-integers
OK,S as a discrete subring. Hence, any compact neighborhood of the origin in AK,S meets OK,S in a finite
set. Let Nv ⊆ Kv be a compact neighborhood of 0 for each v ∈ S, so

N =
∏
v∈S

Nv ×
∏
v 6∈S

Ov
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is a compact neighborhood of 0 in AK,S . Clearly
∏

v∈S Nv is a neighborhood of 0 in
∏

v∈S Kv, and it meets
OK,S in exactly the set where OK,S meets N inside of AK,S . Thus,

∏
v∈S Kv has a neighborhood of 0

meeting OK,S in a finite set, as desired.
We have settled the discreteness part of the claim. It remains to prove that the quotient group (

∏
v∈S Kv)/OK,S

is compact. Projection from AK,S onto
∏

v∈S Kv carries the diagonally embedded OK,S to the natural copy
of OK,S in

∏
v∈S Kv, so it suffices to prove that AK,S/OK,S is compact. But AK,S is an open subring

of AK meeting the discrete subgroup K in the discrete subgroup OK,S , so the natural continuous injec-
tion AK,S/OK,S → AK/K is a topological isomorphism onto an open subgroup. But open subgroups are
necessarily closed and AK/K is compact (HW10, Exercise 2(iii)). �

Let LS :
∏

v∈S K×
v → RS be the continuous logarithm map

LS : (xv)v∈S 7→
∑
v∈S

log |xv|v.

The preimage of the hyperplane HS = {(tv) ∈ RS |
∑

v∈S tv = 0} is precisely (
∏

v∈S K×
v )1. The continuous

map LS between locally compact Hausdorff spaces is proper (in the sense that the preimage of a compact set
is compact) because bounding log |xv|v above and below puts xv inside of a compact annulus in K×

v . Hence,
the induced continuous map of topological groups L ′

S : (
∏

v∈S K×
v )1 → HS is proper. Since L ′

S is proper
and O×

K,S is discrete in (
∏

v∈S K×
v )1, it follows (as we saw earlier in the number field case) that LS(O×

K,S)
is discrete in HS .

The topology on HS is that arising from its structure of finite-dimensional R-vector space of dimension
|S|−1, and so any discrete subgroup of HS is finitely generated with dimension at most |S|−1. In particular,
this shows that LS(O×

K,S) is finitely generated with rank at most |S| − 1, and equality is attained if and
only if HS/LS(O×

K,S) is compact. Since LS is proper, its kernel L −1
S (0) is compact and hence meets the

discrete subgroup O×
K,S in a finite set. Thus, LS(O×

K,S) is the quotient of O×
K,S by a finite subgroup, and

thus we see that O×
K,S is finitely generated with rank at most |S| − 1. In fact:

Lemma 5.2. The rank of the finitely generated group O×
K,S is equal to |S|−1 if and only if (

∏
v∈S K×

v )1/O×
K,S

is compact.

Proof. Consider the continuous map

L
′
S : (

∏
v∈S

K×
v )1/O×

K,S → HS/LS(O×
K,S)

induced by L ′
S . We have to prove that the source is compact if and only if the target is compact. Since

LS(O×
K,S) = L ′

S(O×
K,S) is discrete in HS and the map L ′

S is a proper map between locally compact Hausdorff

spaces, it is easy to check that L
′
S is proper. Thus, if the target of L

′
S is compact then so is its source.

Conversely, assume that (
∏

v∈S K×
v )1/O×

K,S is compact. Its image in the locally compact Hausdorff
group HS/O×

K,S is therefore a compact closed (!) subgroup. Thus, LS((
∏

v∈S K×
v )1) is a closed sub-

group of HS , and moreover HS/O×
K,S is compact if and only if the locally compact and Hausdorff quotient

HS/LS((
∏

v∈S K×
v )1) is compact. Since HS is a finite-dimensional vector space over R with dimension

|S|−1, to prove compactness of the Hausdorff quotient of HS modulo the closed subgroup LS((
∏

v∈S K×
v )1)

it suffices to exhibit a set of |S| − 1 linearly independent vectors in this closed subgroup. The case |S| = 1
is trivial (explicitly, HS = {0} in this case), so we may assume |S| > 1.

Pick v0 ∈ S with v0|∞ in the number field case. For each v ∈ S−{v0} we will find a vector h(v) ∈ HS ⊆ RS

lying in the image of LS such that the only non-zero coordinates of h(v) are in positions v and v0; this provides
the desired linearly independent set. To find h(v) we merely have to show that the subgroups |K×

v0
|v0 and

|K×
v |v are Z-linearly dependent inside of R>0 (in the sense that there exists a non-trivial multiplicative

dependence relation between non-trivial elements of these two groups). This is obvious in the number field
case, as |K×

v0
|v0 = R>0 due to the condition v0|∞. In the global function field case, all value groups |K×

v |v



7

are finite-index subgroups of qZ (with q denoting the size of the constant field in K), and hence any two are
Z-linearly dependent. �

By Lemma 5.1 and Lemma 5.2, we see that O×
K,S is a discrete and finitely generated subgroup of

(
∏

v∈S K×
v )1 with rank at most |S| − 1, and that this rank bound is an equality if and only if the lo-

cally compact Hausdorff quotient (
∏

v∈S K×
v )1/O×

K,S is compact. Since K× is discrete in A×
K , it follows

that O×
K,S is discrete in the open subgroup A×

K,S . There is an evident continuous quotient map from the
locally compact Hausdorff group (A×

K,S)1/O×
K,S onto (

∏
v∈S K×

v )1/O×
K,S with kernel that is compact (as the

kernel is a continuous image of the compact group
∏

v∈S−S∞
O×

v ), so compactness of (
∏

v∈S K×
v )1/O×

K,S is
equivalent to compactness of (A×

K,S)1/O×
K,S .

Consideration of the exact sequence of locally compact Hausdorff topological groups

1 → (A×
K,S)1/O×

K,S → (A×
K)1/K× → (A×

K)1/K× · (A×
K,S)1 → 1

(with open inclusion on the left and discrete quotient on the right) shows that compactness of the left side
is equivalent to the conjunction of compactness of the middle term and finiteness of the right side (as a
discrete space is compact if and only if it is finite). Thus, we conclude that compactness of (A×

K)1/K×

is logically equivalent to the finitely generated group O×
K,S having rank |S| − 1 and the discrete group

(A×
K)1/K× · (A×

K,S)1 being finite. There is an evident isomorphism A×
K/K× ·A×

K,S ' Pic(OK,S) induced

by (xv) 7→
∏

v 6∈S p
ordv(xv)
v , and the subgroup inclusion of discrete groups

(A×
K)1/K× · (A×

K,S)1 ⊆ A×
K/K× ·A×

K,S

(why is this injective?) has cokernel A×
K/A×

K,S ·(A
×
K)1 = ||A×

K ||K/||A×
K,S ||K that is finite by inspection (since

S is non-empty and contains S∞). Hence, Pic(OK,S) is finite if and only if the finite-index discrete subgroup
(A×

K)1/K× · (A×
K,S)1 is finite. Putting everything together, this shows:

Theorem 5.3. For a global field K and a non-empty finite set of places S that contains the set of archimedean
places of K, the compactness of (A×

K)1/K× is logically equivalent to the combined assertion that Pic(OK,S)
is finite and that the finitely generated group O×

K,S has rank |S| − 1.


