MATH 210C. HOMEWORK 8

1. Let $\{H_i\}$ be a locally finite set of *affine* hyperplanes in $V = \mathbf{R}^n$, so $H_i = \ell_i^{-1}(c_i)$ for $c_i \in \mathbf{R}$ and $\ell_i \in V^* - \{0\}$. Its *chambers* are connected components of $V - (\cup H_i)$. Pick a chamber $K, x_0 \in K$, and let $\varepsilon_i = \operatorname{sgn}(\ell_i(x_0) - c_i) = \pm 1$, so $x_0 \in H_i^{>0} := \{\varepsilon_i(\ell_i - c_i) > 0\}$.

(i) Prove $K = \bigcap_i H_i^{>0}$ (convex) and such intersection with any signs ε_i is a chamber if $\neq \emptyset$. Use closed segments to show $\overline{K} = \bigcap_i H_i^{\geq 0}$ (evident definition for $H_i^{\geq 0}$). Deduce $\operatorname{int}_V \overline{K} = K$.

(ii) Call H_i a wall of K if $\operatorname{int}_{H_i}(H_i \cap \overline{K}) \neq \emptyset$ (so H_i is the only affine hyperplane of V containing $H_i \cap \overline{K}$!). Show the union of the walls of K contains $\partial_V \overline{K}$. (Hint: For $x \in \partial_V \overline{K}$, arrange $x \in \cap H_j$. Find a closed ray L based at $x_0 \in K$ missing all $H_j \cap H_{j'}$ when $j' \neq j$ but meeting some H_j ; study $L \cap \overline{K}$.) Deduce $K = \bigcap_{H \in \operatorname{walls}(K)} H^{>0}$ and $\overline{K} = \bigcap_{H \in \operatorname{walls}(K)} H^{\geq 0}$.

2. (i) Read the handout on dual root systems.

(ii) Let G be a connected compact Lie group with $\#Z_G < \infty$ and choose a maximal torus T, so $(X(T)_{\mathbf{Q}}, \Phi)$ is a root system. Show $[X_*(T) : \mathbf{Z}\Phi^{\vee}] < \infty$. Deduce that for $G_a := Z_G(T_a)'$ (SU(2) or SO(3)), we have $\sum_{a \in \Phi} \text{Lie}(G_a) = \mathfrak{g}$ (the key is that \mathfrak{t} is contained in this span). (iii) For G in (ii), prove G' := [G, G] is a neighborhood of e. Deduce G = G'!

3. Let (V,Φ) be a root system over a field k of characteristic 0, and define the canonical symmetric bilinear form (v|v') = Σ_{a∈Φ}⟨v, a[∨]⟩⟨v', a[∨]⟩ on V. Read dual root system handout.
(i) Prove (·|·) is W(Φ)-invariant, and moreover positive-definite if k = Q.

(ii) Let $V_0 = \mathbf{Q}\Phi$ (so $k \otimes_{\mathbf{Q}} V_0 = V$; see the handout on dual root systems). Show $(\cdot|\cdot)$ is the scalar extension of the analogue $(\cdot|\cdot)_0$ on V_0 , so V admits a (canonical) non-degenerate $W(\Phi)$ -invariant symmetric bilinear form (so $(V^*, \Phi^{\vee}) \simeq (V, \Phi')$ via $a^{\vee} \mapsto a' := 2a/(a|a)$).

(iii) For $\Psi \subset \Phi$ and $V' = k\Psi$, show $(V', \Phi \cap \mathbf{Z}\Psi)$ is a root system with coroots $a^{\vee}|_{V'}$. Also show $V^{W(\Phi)} = 0$ (hint: consider $W(\Phi)$ -equivariant quotients of V with trivial $W(\Phi)$ -action). 4. Let G be a connected compact Lie group, and T a maximal torus of G; we make no finiteness hypotheses on Z_G . Define $V = X(T)_{\mathbf{Q}}$.

(i) For $a \in \Phi$ let $a^{\vee} \in X_*(T) \subset V^*$ be the coroot arising from $(Z_G(T_a)', T'_a, a|_{T'_a})$ as in the handout on coroots. Show $X_*(T)_{\mathbf{Q}} \twoheadrightarrow X_*(T/Z_G)_{\mathbf{Q}} = X(T/Z_G)_{\mathbf{Q}}^*$ carries a^{\vee} to the coroot associated to a for $(G/Z_G, T/Z_G)$, and for $b \in \Phi$ prove $b^{\vee} = a^{\vee}$ if and only if b = a.

(ii) Let Φ^{\vee} be the set of coroots for (G, T). Prove $\mathbf{Q}\Phi^{\vee}$ is a complement to $X_*(Z_G^0)_{\mathbf{Q}} = X_*(Z_G)_{\mathbf{Q}}$ in $X_*(T)_{\mathbf{Q}}$ (equivalently, it maps isomorphically onto $X_*(T/Z_G)_{\mathbf{Q}} = X(T/Z_G)_{\mathbf{Q}}^*$) inducing an isomorphism $W(G, T) \simeq W(\Phi(G/Z_G, T/Z_G)) = W(\Phi(G, T))$. Hint: make a W(G, T)-invariant positive-definite quadratic form $q : X(T)_{\mathbf{Q}} \to \mathbf{Q}$.

(iii) In (ii) you showed $X_*(Z_G)_{\mathbf{Q}}$ has a canonical W(G, T)-equivariant complement in $X_*(T)_{\mathbf{Q}}$ (so likewise for $X(Z_G^0)_{\mathbf{Q}}$ inside $X(T)_{\mathbf{Q}}$). Prove $X_*(Z_G)_{\mathbf{Q}} = X_*(T)_{\mathbf{Q}}^{W(G,T)}$ (see Exercise 3(iii)) and verify this directly for G = U(n) and T the diagonal torus. Deduce $\mathbf{Z}\Phi^{\vee}$ has finite index in $X_*(T)$ if and only if Z_G is finite; see Exercise 2(ii). (Later: index is $\#\pi_1(G)$.)

(iv) Assume Z_G is finite. For any lattice L in V^* (e.g., $\mathbb{Z}\Phi^{\vee}$), let L' denote the \mathbb{Z} -dual Hom $(L, \mathbb{Z}) \subset$ Hom $(L, \mathbb{Z})_{\mathbb{Q}} = V^{**} = V$ consisting of $v \in V$ such that $\ell(v) \in \mathbb{Z}$ for all $\ell \in L$. For any isogeny $\pi : \mathcal{G} \to G$ from a connected compact Lie group \mathcal{G} , show its maximal torus $\mathcal{T} = \pi^{-1}(T)$ satisfies $\mathbb{Z}\Phi \subset X(T) \subset X(\mathcal{T}) \subset (\mathbb{Z}\Phi^{\vee})'$ inside V and prove $\# \ker \pi = [X(\mathcal{T}) : X(T)]$. Deduce an upper bound on $\# \ker \pi$ determined entirely by (V, Φ) . (This will underlie our later proof that $\pi_1(G)$ is *finite* when Z_G is finite.)