Math 210C. Homework 6

1. (i) Let G be a unimodular Lie group, and K and B closed subgroups such that K is unimodular and multiplication $K \times B \rightarrow G$ is a diffeomorphism. (HW1 and HW2 give some such G for which unimodularity admits a unified proof via algebraic-group techniques.) Let $\mathrm{d} k$ be a Haar measure on K and $\mathrm{d} b$ be a right Haar measure on B. Let $\mathrm{d} g$ be a Haar measure on G. Prove the product measure $\mathrm{d} k \mathrm{~d} b$ is equal to $f(g) \mathrm{d} g$ for some $f \in C^{\infty}(G)$, and then use invariance properties of the measures to deduce f is constant!
(ii) Let $U \subset G:=\mathrm{SL}_{n}(\mathbf{R})$ be the subgroup of upper-triangular unipotents, $A \subset G$ the "positive" diagonal subgroup, and $K=\mathrm{SO}(n)$. Prove $\mathrm{d} u:=\prod_{i<j} \mathrm{~d} u_{i j}$ is a right Haar measure on $U, \mathrm{~d} a:=\prod_{i<n} \mathrm{~d} a_{i} / a_{i}$ is a Haar measure on A, and $\mathrm{d} k \mathrm{~d} a \mathrm{~d} u$ is a Haar measure on G for a Haar measure $\mathrm{d} k$ on K. (Proving invariance of $\mathrm{d} k \mathrm{~d} a \mathrm{~d} u$ by bare hands is a mess!)
(iii) Make (ii) explicit for $\mathrm{SL}_{2}(\mathbf{R})$ via the equality $\mathrm{SO}(2)=S^{1}$.
2. By IV, 3.13 (whose proof you should read!), for $G=\mathrm{U}(n)$ and the diagonal maximal torus $T=\left(S^{1}\right)^{n}$, the injection $R(G) \hookrightarrow R(T)^{W}$ is an equality. The idea is to compute $R(T)^{W}$ as a ring and show that characters of specific G-representations (in fact, the first n exterior powers of the standard representation of $G=\mathrm{U}(n)$ and the dual of the n th) generate $R(T)^{W}$.

Explicitly, $R(T)=\mathbf{Z}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]=\mathbf{Z}\left[z_{1}, \ldots, z_{n}, 1 / \prod z_{i}\right]$ on which $W=S_{n}$ acts by usual permutations, so $R(T)^{W}=\mathbf{Z}\left[z_{1}, \ldots, z_{n}\right]^{W}\left[1 / \prod z_{i}\right]$. Letting $\sigma_{j}=\sigma_{j}\left(z_{1}, \ldots, z_{n}\right)$ be the j th symmetric polynomial $(1 \leq j \leq n)$, so $\prod z_{i}=\sigma_{n}$, (ii) below computes $R(T)^{W}$.
(i) Using basic properties of transcendence degree, sketch the Galois-theoretic proof that $\sigma_{1}, \ldots, \sigma_{n}$ are algebraically independent in $k\left[z_{1}, \ldots, z_{n}\right]$ and $k\left(\sigma_{1}, \ldots, \sigma_{n}\right)=k\left(z_{1}, \ldots, z_{n}\right)^{S_{n}}$ for any field k. Using integrality considerations, deduce $k\left[z_{1}, \ldots, z_{n}\right]^{S_{n}}=k\left[\sigma_{1}, \ldots, \sigma_{n}\right]$.
(ii) Prove $A\left[z_{1}, \ldots, z_{n}\right]^{S_{n}}=A\left[\sigma_{1}, \ldots, \sigma_{n}\right]$ for $A=\mathbf{Z}, \mathbf{Z} / m \mathbf{Z}(m>0)$.
(iii) For any commutative ring A, prove $\sigma_{1}, \ldots, \sigma_{n}$ are algebraically independent over A inside $A\left[z_{1}, \ldots, z_{n}\right]$ and that $A\left[\sigma_{1}, \ldots, \sigma_{n}\right]=A\left[z_{1}, \ldots, z_{n}\right]^{S_{n}}$. (Hint: the ring structure of A is irrelevant (!), so reduce to considering finitely generated Z-modules A and apply (ii).)
3. IV, 3.14, Exercise 3.
4. (i) IV, 3.14, Exercise 4.
(ii) Using $R(\mathrm{SU}(2)) \simeq \mathbf{Z}\left[\sigma_{1}, \sigma_{2}\right] /\left(\sigma_{2}-1\right)=\mathbf{Z}\left[\sigma_{1}\right]$, describe the character χ_{m} of V_{m} as a polynomial in σ_{1} for $m \leq 5$. (For example, $t^{2}+1+t^{-2}=\left(t+t^{-1}\right)^{2}-1$, so $\chi_{2}=\sigma_{1}^{2}-1$.)
5. For \mathbf{C}-valued continuous class functions f on $\mathrm{SU}(2)$ and the volume- 1 measure $\mathrm{d} g$, prove

$$
\int_{\mathrm{SU}(2)} f(g) \mathrm{d} g=2 \int_{0}^{1} f(t(\theta)) \sin ^{2}(2 \pi \theta) \mathrm{d} \theta
$$

where $t(\theta)=\operatorname{diag}\left(e^{2 \pi i \theta}, e^{-2 \pi i \theta}\right)$. (This agrees with II, 5.2 via change of variable. As a check on the normalizations, you can handle $f=1$ by hand.) Also find an analogue for $\mathrm{SO}(3)$.
6. Let the group $\mathrm{SU}(2)$ of norm- 1 quaternions act on $\mathbf{H}=\mathbf{R}^{4}$ in two commuting ways: left-multiplication $(v \mapsto u v$ for $v \in \mathbf{H})$ and right-multiplication through inversion $\left(v \mapsto v u^{-1}\right.$ for $v \in \mathbf{H})$. These actions define a Lie group homomorphism $f: \mathrm{SU}(2) \times \mathrm{SU}(2) \rightarrow \mathrm{GL}_{4}(\mathbf{R})$.
(i) Check $\operatorname{ker} f$ is the diagonally embedded $\mu_{2}=\{ \pm 1\}$, and that f lands inside $\mathrm{SO}(4)$.
(ii) Prove that the map $(\mathrm{SU}(2) \times \mathrm{SU}(2)) / \mu_{2} \rightarrow \mathrm{SO}(4)$ is a Lie group isomorphism.

