MATH 210C. HOMEWORK 2

1. Consider $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Mat}_{2n}(k)$ for a field k (with $n \geq 1$). Let ψ_n be the standard symplectic form on $V = k^{2n}$. Show that if g preserves ψ_n on V (i.e., $\psi_n(gv, gw) = \psi_n(v, w)$ for all $v, w \in V$) then g is invertible, and that g preserves ψ_n if and only if

$${}^{\top}a \cdot c = {}^{\top}c \cdot a, \ {}^{\top}b \cdot d = {}^{\top}d \cdot b, \ {}^{\top}a \cdot d - {}^{\top}c \cdot b = 1_n.$$

2 (i) Let $V = \mathbf{R}^{2n}$ and let $\operatorname{Alt}(V)$ be the vector space of alternating bilinear forms $V \times V \to \mathbf{R}$. Define the map $f : \operatorname{End}(V) \to \operatorname{Alt}(V)$ via $A \mapsto \psi_n \circ (A \times A)$. Using the automatic invertibility in Exercise 1, apply the submersion theorem technique to the fiber $\operatorname{Sp}_{2n}(\mathbf{R})$ over $\psi_n \in \operatorname{Alt}(V)$ to show that the closed subset $\operatorname{Sp}_{2n}(\mathbf{R}) \subset \operatorname{Mat}_{2n}(\mathbf{R})$ is a C^{∞} -submanifold, so $\operatorname{Sp}_{2n}(\mathbf{R})$ is a Lie group. (The same method works for $\operatorname{Sp}_{2n}(\mathbf{C}) \subset \operatorname{Mat}_{2n}(\mathbf{C})$.)

(ii) Let QH_n denote the **R**-vector space of (not necessarily positive-definite) quaternionic hermitian forms on \mathbf{H}^n . Let I_n denote the form $(v, w) \mapsto \sum v_r \overline{w}_r$ in QH_n . Use the map $f : \operatorname{End}_{\mathbf{H}}(\mathbf{H}^n) \to \operatorname{QH}_n$ defined by $f(A) = I_n \circ (A \times A)$ to show that $\operatorname{Sp}(n)$ is a closed C^{∞} submanifold of $\operatorname{End}_{\mathbf{H}}(\mathbf{H}^n) \subset \operatorname{Mat}_{2n}(\mathbf{C})$; deduce it is also a closed C^{∞} -submanifold of $\operatorname{U}(2n)$. 3. Recall from class that $\operatorname{SO}(n)$ is connected for all n > 0, so $\operatorname{SL}_n(\mathbf{R})$ is connected due to the diffeomorphism $\operatorname{SL}_n(\mathbf{R}) \simeq \operatorname{SO}(n) \times V$ for a vector space V (proved in Exercise 6 of HW1). This exercise extends the technique to some other Lie groups.

(i) If G is a Lie group and H is a connected closed Lie subgroup such that G/H (with its quotient topology) is connected, show that G is connected.

(ii) For n > 0, show that SU(n) acts transitively on the unit sphere S^{2n-1} in \mathbb{C}^{2n} with stabilizer SU(n-1) (where SU(0) := 1), and deduce that SU(n) is connected for all n > 0. Why does it follow that $GL_n(\mathbb{C})$ is connected?

(iii) Adapt the method in (ii) to prove the connectedness of $\operatorname{Sp}(n)$ for all n > 0 by considering the unit sphere S^{4n-1} in \mathbf{H}^n . (The group $\operatorname{Sp}_{2n}(\mathbf{R})$ is connected, but a proof in the above spirit requires going beyond spheres.)

4. (i) Let G be a Lie group, and choose $v \in T_e(G)$. Prove rigorously that the unique left-invariant set-theoretic vector field $g \mapsto d\ell_g(v) \in T_g(G)$ extending v at e is C^{∞} .

(ii) Let $G = \operatorname{GL}_n(\mathbf{R})$ viewed as an open submanifold of the vector space $\operatorname{Mat}_n(\mathbf{R})$ (so canonically $\operatorname{Lie}(G) = \operatorname{T}_{1_n}(\operatorname{Mat}_n(\mathbf{R})) = \operatorname{Mat}_n(\mathbf{R})$). Show that the unique left-invariant vector field on G extending $\partial_{x_{ij}}|_e$ at the identity point $e := 1_n \in G$ is $\sum_k x_{ki} \partial_{x_{kj}}$ on G. Using this, show that the "Lie bracket" on $\operatorname{Lie}(G) = \operatorname{Mat}_n(\mathbf{R})$ is the commutator [A, B] = AB - BA.

(iii) For $0 \leq i \leq \dim(G)$, a C^{∞} differential *i*-form ω on G is *left-invariant* if $\ell_g^*(\omega) = \omega$ for all $g \in G$. Show it is equivalent that the element $\omega(g) \in \wedge^i(\mathrm{T}_g^*(G)) = (\wedge^i \mathrm{T}_g(G))^*$ satisfies $\omega(g)(v_1,\ldots,v_i) = \omega(e)(\mathrm{d}\ell_{g^{-1}}(g)(v_1),\ldots,\mathrm{d}\ell_{g^{-1}}(g)(v_i))$ for all $v_1,\ldots,v_i \in \mathrm{T}_g(G)$, $g \in G$.

(iv) Show that every $\omega_0 \in \wedge^i(\mathbf{T}_e^*(G))$ uniquely extends to a left-invariant C^{∞} differential *i*-form ω on G (hint: use the formula in (iii)), and for $G = \operatorname{GL}_n(\mathbf{R})$ show the left-invariance of the n^2 -form

$$\frac{\mathrm{d}x_{11}\wedge\cdots\wedge\mathrm{d}x_{nn}}{\mathrm{det}(x_{ij})^n}.$$