MATH 210C. QUATERNIONS

1. INTRODUCTION

Inside the C-algebra $Mat_n(C)$ there is the R-subalgebra $Mat_n(R)$ with the property that the natural map of C-algebras

$$\mathbf{C} \otimes_{\mathbf{R}} \operatorname{Mat}_n(\mathbf{R}) \to \operatorname{Mat}_n(\mathbf{C})$$

(satisfying $c \otimes M \mapsto cM$) is an isomorphism. (Proof: compare **C**-bases on both sides, using the standard **R**-basis of $\operatorname{Mat}_n(\mathbf{R})$ and the analogous **C**-basis for $\operatorname{Mat}_n(\mathbf{C})$.) There are many other **R**-subalgebras $A \subset \operatorname{Mat}_n(\mathbf{C})$ with the property that the natural map of **C**-algebras $\mathbf{C} \otimes_{\mathbf{R}} A \to \operatorname{Mat}_n(\mathbf{C})$ is an isomorphism: $A = g\operatorname{Mat}_n(\mathbf{R})g^{-1}$ for any $g \in \operatorname{GL}_n(\mathbf{C})$. This is a bit "fake" since such an **R**-subalgebra A is just $\operatorname{Mat}_n(\mathbf{R})$ embedded into $\operatorname{Mat}_n(\mathbf{C})$ via applying an automorphism of $\operatorname{Mat}_n(\mathbf{C})$ (namely, g-conjugation) to the usual copy of $\operatorname{Mat}_n(\mathbf{R})$ inside $\operatorname{Mat}_n(\mathbf{C})$.

But are there any fundamentally different A, such as one that is *not isomorphic* to $Mat_n(\mathbf{R})$ as an **R**-algebra? Any such A would have to have **R**-dimension equal to n^2 . In the mid-19th century, Hamilton made the important discovery that for n = 2 there is a very different choice for A. This exotic 4-dimensional **R**-algebra is denoted **H** in his honor, called the *quaternions*.

2. Basic construction

Define $\mathbf{H} \subset \operatorname{Mat}_2(\mathbf{C})$ to be the **R**-span of the elements

$$\mathbf{1} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{i} := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \mathbf{j} := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \mathbf{k} := \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Explicitly, for $a, b, c, d \in \mathbf{R}$ we have

$$a \cdot \mathbf{1} + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k} = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$$

for $\alpha = a + bi$, $\beta = c + di \in \mathbf{C}$. It follows that such an **R**-linear combination vanishes if and only if $\alpha, \beta = 0$, which is to say a, b, c, d = 0, so $\{\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ is **R**-linearly independent; we call it the *standard basis* for **H**. These calculations also show that **H** can be alternatively described as the set of elements of $\operatorname{Mat}_2(\mathbf{C})$ admitting the form

$$M = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$$

for $\alpha, \beta \in \mathbf{C}$.

It is easy to verify by direct calculation (do it!) that the following relations are satisfied:

$$i^2 = j^2 = k^2 = -1, \ ij = k = -ji$$

and likewise

$$\mathbf{j}\mathbf{k} = -\mathbf{k}\mathbf{j} = \mathbf{i}, \ \mathbf{k}\mathbf{i} = -\mathbf{i}\mathbf{k} = \mathbf{j}.$$

For any two quaternions

$$h = a \cdot \mathbf{1} + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k}, \quad h' = a' \cdot \mathbf{1} + b' \cdot \mathbf{i} + c' \cdot \mathbf{j} + d' \cdot \mathbf{k}$$

with $a, b, c, d, a', b', c', d' \in \mathbf{R}$, the product $hh' \in \operatorname{Mat}_2(\mathbf{C})$ expands out as an **R**-linear combination in the products $\mathbf{ee'}$ for $\mathbf{e}, \mathbf{e'}$ in the standard basis. But we just saw that all products among pairs from the standard basis are in **H**, establishing the first assertion in:

Proposition 2.1. The quaternions are an **R**-subalgebra of $Mat_2(\mathbf{C})$, and the natural map of **C**-algebras $\mu : \mathbf{C} \otimes_{\mathbf{R}} \mathbf{H} \to Mat_2(\mathbf{C})$ is an isomorphism.

The stability of **H** under multiplication could also be checked using the description as matrices of the form $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$ with $\alpha, \beta \in \mathbf{C}$.

Proof. The source and target of μ are 4-dimensional over **C**, so for the isomorphism assertion it suffices to check injectivity. More specifically, this is the assertion that the standard basis of **H** (viewed inside Mat₂(**C**)) is even linearly independent over **C** (not just over **R**).

Taking a, b, c, d from **C**, we have

$$a \cdot \mathbf{1} + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k} = \begin{pmatrix} a + bi & c + di \\ -c + di & a - bi \end{pmatrix}$$

so if this vanishes then we have $a \pm bi = 0 = \pm c + di$ with $a, b, c, d \in \mathbb{C}$ (not necessarily in **R**!). It is then clear that a = 0, so b = 0, and likewise that di = 0, so d and c vanish too.

The *center* of an associative ring with identity is the subset of elements commuting with everything under multiplication. This is a commutative subring (with the same identity).

Corollary 2.2. The center of H coincides with $\mathbf{R} = \mathbf{R} \cdot \mathbf{1}$.

Proof. Let $Z \subset \mathbf{H}$ be the center, so $\mathbf{R} \subset Z$. To prove equality it suffices to show $\dim_{\mathbf{R}} Z \leq 1$. But $\mathbf{C} \otimes_{\mathbf{R}} Z$ is certainly contained in the center of $\mathbf{C} \otimes_{\mathbf{R}} \mathbf{H} \simeq \operatorname{Mat}_{2}(\mathbf{C})$, and the center of the latter is just the evident copy of \mathbf{C} . This shows that $\dim_{\mathbf{R}} Z = \dim_{\mathbf{C}}(\mathbf{C} \otimes_{\mathbf{R}} Z) \leq 1$.

3. Conjugation and norm

For $h = a \cdot \mathbf{1} + b \cdot \mathbf{i} + c \cdot \mathbf{j} + d \cdot \mathbf{k}$, define its *conjugate* to be

$$h = a \cdot \mathbf{1} - b \cdot \mathbf{i} - c \cdot \mathbf{j} - d \cdot \mathbf{k},$$

so clearly $\overline{\overline{h}} = h$. We call h a *pure quaternion* if a = 0, or equivalently $\overline{h} = -h$. Although multiplication in **H** is not commutative, in a special case commutativity holds:

Proposition 3.1. The products $h\overline{h}$ and $\overline{h}h$ coincide and are equal to $a^2 + b^2 + c^2 + d^2$. This is also equal to det(h) viewing h inside Mat₂(**C**).

There is also a much easier identity: $h + \overline{h} = 2a = \text{Tr}(h)$.

Proof. The expression $a^2 + b^2 + c^2 + d^2$ is unaffected by replacing h with \overline{h} , so if we can prove $h\overline{h}$ is equal to this expression in general then applying that to \overline{h} gives the same for $\overline{h} \cdot \overline{\overline{h}} = \overline{h}h$. Hence, we focus on $h\overline{h}$. Writing h as a 2×2 matrix, we have

$$h = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}$$

for $\alpha = a + bi$ and $\beta = c + di$. Since $a - bi = \overline{\alpha}$ and $-c - di = -\beta$, \overline{h} corresponds to the analogous matrix using $\overline{\alpha}$ in place of α and $-\beta$ in place of β . Hence,

$$h\overline{h} = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \begin{pmatrix} \overline{\alpha} & -\beta \\ \overline{\beta} & \alpha \end{pmatrix} = \begin{pmatrix} \alpha\overline{\alpha} + \beta\overline{\beta} & 0 \\ 0 & \overline{\beta}\beta + \alpha\overline{\alpha} \end{pmatrix}$$

This is **1** multiplied against the real scalar $|\alpha|^2 + |\beta|^2 = a^2 + b^2 + c^2 + d^2$.

We call $a^2 + b^2 + c^2 + d^2$ the norm of h, and denote it as N(h); in other words,

$$N(h) = hh = hh$$

by viewing **R** as a subring of **H** via $c \mapsto c\mathbf{1}$.

It is clear by inspection of the formula that if $h \neq 0$ then $N(h) \in \mathbb{R}^{\times}$, so in such cases $\overline{h}/N(h)$ is a multiplicative inverse to h! Hence,

$$\mathbf{H}^{\times} = \mathbf{H} - \{0\};$$

we say **H** is a *division algebra* (akin to a field, but without assuming multiplication is commutative; multiplicative inverses do work the same on both sides). The **R**-algebra **H** is very different from $Mat_2(\mathbf{R})$ since the former is a division algebra whereas the latter has lots of zero-divisors!

Remark 3.2. The **R**-linear operation $h \mapsto \overline{h}$ is an "anti-automorphism" of **H**: it satisfies $\overline{hh'} = \overline{h'} \cdot \overline{h}$ for any $h, h' \in \mathbf{H}$. One way to see this quickly is to note that the cases h = 0 or h' = 0 are easy, and otherwise it suffices to check equality after multiplying on the left against $hh' \in \mathbf{H}^{\times}$. But

 $(hh')\overline{hh'} = \mathcal{N}(hh') = \det(hh') = \det(h)\det(h') = \mathcal{N}(h)\mathcal{N}(h') = h\overline{\mathcal{N}}(h') = h\mathcal{N}(h')\overline{h} = hh'\overline{h'}\cdot\overline{h}$

(the second to last equality using that \mathbf{R} is central in \mathbf{H} , and the final equality using associativity).