
Math 210C. Quaternions

1. Introduction

Inside the C-algebra Matn(C) there is the R-subalgebra Matn(R) with the property that
the natural map of C-algebras

C⊗R Matn(R)→ Matn(C)

(satisfying c⊗M 7→ cM) is an isomorphism. (Proof: compare C-bases on both sides, using
the standard R-basis of Matn(R) and the analogous C-basis for Matn(C).) There are many
other R-subalgebras A ⊂ Matn(C) with the property that the natural map of C-algebras
C⊗RA→ Matn(C) is an isomorphism: A = gMatn(R)g−1 for any g ∈ GLn(C). This is a bit
“fake” since such an R-subalgebra A is just Matn(R) embedded into Matn(C) via applying
an automorphism of Matn(C) (namely, g-conjugation) to the usual copy of Matn(R) inside
Matn(C).

But are there any fundamentally different A, such as one that is not isomorphic to Matn(R)
as an R-algebra? Any such A would have to have R-dimension equal to n2. In the mid-19th
century, Hamilton made the important discovery that for n = 2 there is a very different
choice for A. This exotic 4-dimensional R-algebra is denoted H in his honor, called the
quaternions.

2. Basic construction

Define H ⊂ Mat2(C) to be the R-span of the elements

1 :=

(
1 0
0 1

)
, i :=

(
i 0
0 −i

)
, j :=

(
0 1
−1 0

)
,k :=

(
0 i
i 0

)
.

Explicitly, for a, b, c, d ∈ R we have

a · 1 + b · i + c · j + d · k =

(
α β
−β α

)
for α = a+ bi, β = c+ di ∈ C. It follows that such an R-linear combination vanishes if and
only if α, β = 0, which is to say a, b, c, d = 0, so {1, i, j,k} is R-linearly independent; we
call it the standard basis for H. These calculations also show that H can be alternatively
described as the set of elements of Mat2(C) admitting the form

M =

(
α β
−β α

)
for α, β ∈ C.

It is easy to verify by direct calculation (do it!) that the following relations are satisfied:

i2 = j2 = k2 = −1, ij = k = −ji
and likewise

jk = −kj = i, ki = −ik = j.

For any two quaternions

h = a · 1 + b · i + c · j + d · k, h′ = a′ · 1 + b′ · i + c′ · j + d′ · k
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with a, b, c, d, a′, b′, c′, d′ ∈ R, the product hh′ ∈ Mat2(C) expands out as an R-linear combi-
nation in the products ee′ for e, e′ in the standard basis. But we just saw that all products
among pairs from the standard basis are in H, establishing the first assertion in:

Proposition 2.1. The quaternions are an R-subalgebra of Mat2(C), and the natural map
of C-algebras µ : C⊗R H→ Mat2(C) is an isomorphism.

The stability of H under multiplication could also be checked using the description as

matrices of the form (
α β

−β α
) with α, β ∈ C.

Proof. The source and target of µ are 4-dimensional over C, so for the isomorphism assertion
it suffices to check injectivity. More specifically, this is the assertion that the standard basis
of H (viewed inside Mat2(C)) is even linearly independent over C (not just over R).

Taking a, b, c, d from C, we have

a · 1 + b · i + c · j + d · k =

(
a+ bi c+ di
−c+ di a− bi

)
,

so if this vanishes then we have a ± bi = 0 = ±c + di with a, b, c, d ∈ C (not necessarily in
R!). It is then clear that a = 0, so b = 0, and likewise that di = 0, so d and c vanish too. �

The center of an associative ring with identity is the subset of elements commuting with
everything under multiplication. This is a commutative subring (with the same identity).

Corollary 2.2. The center of H coincides with R = R · 1.

Proof. Let Z ⊂ H be the center, so R ⊂ Z. To prove equality it suffices to show dimR Z ≤ 1.
But C ⊗R Z is certainly contained in the center of C ⊗R H ' Mat2(C), and the center of
the latter is just the evident copy of C. This shows that dimR Z = dimC(C⊗R Z) ≤ 1. �

3. Conjugation and norm

For h = a · 1 + b · i + c · j + d · k, define its conjugate to be

h = a · 1− b · i− c · j− d · k,

so clearly h = h. We call h a pure quaternion if a = 0, or equivalently h = −h. Although
multiplication in H is not commutative, in a special case commutativity holds:

Proposition 3.1. The products hh and hh coincide and are equal to a2 + b2 + c2 + d2. This
is also equal to det(h) viewing h inside Mat2(C).

There is also a much easier identity: h+ h = 2a = Tr(h).

Proof. The expression a2 + b2 + c2 + d2 is unaffected by replacing h with h, so if we can
prove hh is equal to this expression in general then applying that to h gives the same for

h · h = hh. Hence, we focus on hh. Writing h as a 2× 2 matrix, we have

h =

(
α β
−β α

)
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for α = a + bi and β = c + di. Since a − bi = α and −c − di = −β, h corresponds to the
analogous matrix using α in place of α and −β in place of β. Hence,

hh =

(
α β
−β α

)(
α −β
β α

)
=

(
αα + ββ 0

0 ββ + αα

)
.

This is 1 multiplied against the real scalar |α|2 + |β|2 = a2 + b2 + c2 + d2. �

We call a2 + b2 + c2 + d2 the norm of h, and denote it as N(h); in other words,

N(h) = hh = hh

by viewing R as a subring of H via c 7→ c1.
It is clear by inspection of the formula that if h 6= 0 then N(h) ∈ R×, so in such cases

h/N(h) is a multiplicative inverse to h! Hence,

H× = H− {0};
we say H is a division algebra (akin to a field, but without assuming multiplication is com-
mutative; multiplicative inverses do work the same on both sides). The R-algebra H is very
different from Mat2(R) since the former is a division algebra whereas the latter has lots of
zero-divisors!

Remark 3.2. The R-linear operation h 7→ h is an “anti-automorphism” of H: it satisfies
hh′ = h′ · h for any h, h′ ∈ H. One way to see this quickly is to note that the cases h = 0
or h′ = 0 are easy, and otherwise it suffices to check equality after multiplying on the left
against hh′ ∈ H×. But

(hh′)hh′ = N(hh′) = det(hh′) = det(h) det(h′) = N(h)N(h′) = hhN(h′) = hN(h′)h = hh′h′ ·h
(the second to last equality using that R is central in H, and the final equality using asso-
ciativity).


