Math 210C. Quaternions

1. Introduction

Inside the \mathbf{C}-algebra $\operatorname{Mat}_{n}(\mathbf{C})$ there is the \mathbf{R}-subalgebra $\operatorname{Mat}_{n}(\mathbf{R})$ with the property that the natural map of \mathbf{C}-algebras

$$
\mathbf{C} \otimes_{\mathbf{R}} \operatorname{Mat}_{n}(\mathbf{R}) \rightarrow \operatorname{Mat}_{n}(\mathbf{C})
$$

(satisfying $c \otimes M \mapsto c M$) is an isomorphism. (Proof: compare \mathbf{C}-bases on both sides, using the standard \mathbf{R}-basis of $\operatorname{Mat}_{n}(\mathbf{R})$ and the analogous \mathbf{C}-basis for $\operatorname{Mat}_{n}(\mathbf{C})$.) There are many other \mathbf{R}-subalgebras $A \subset \operatorname{Mat}_{n}(\mathbf{C})$ with the property that the natural map of \mathbf{C}-algebras $\mathbf{C} \otimes_{\mathbf{R}} A \rightarrow \operatorname{Mat}_{n}(\mathbf{C})$ is an isomorphism: $A=g \operatorname{Mat}_{n}(\mathbf{R}) g^{-1}$ for any $g \in \mathrm{GL}_{n}(\mathbf{C})$. This is a bit "fake" since such an \mathbf{R}-subalgebra A is just $\operatorname{Mat}_{n}(\mathbf{R})$ embedded into $\operatorname{Mat}_{n}(\mathbf{C})$ via applying an automorphism of $\operatorname{Mat}_{n}(\mathbf{C})$ (namely, g-conjugation) to the usual copy of $\operatorname{Mat}_{n}(\mathbf{R})$ inside $\operatorname{Mat}_{n}(\mathbf{C})$.

But are there any fundamentally different A, such as one that is not isomorphic to $\operatorname{Mat}_{n}(\mathbf{R})$ as an \mathbf{R}-algebra? Any such A would have to have \mathbf{R}-dimension equal to n^{2}. In the mid-19th century, Hamilton made the important discovery that for $n=2$ there is a very different choice for A. This exotic 4-dimensional \mathbf{R}-algebra is denoted \mathbf{H} in his honor, called the quaternions.

2. Basic construction

Define $\mathbf{H} \subset \operatorname{Mat}_{2}(\mathbf{C})$ to be the \mathbf{R}-span of the elements

$$
\mathbf{1}:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \mathbf{i}:=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \mathbf{j}:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \mathbf{k}:=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right) .
$$

Explicitly, for $a, b, c, d \in \mathbf{R}$ we have

$$
a \cdot \mathbf{1}+b \cdot \mathbf{i}+c \cdot \mathbf{j}+d \cdot \mathbf{k}=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

for $\alpha=a+b i, \beta=c+d i \in \mathbf{C}$. It follows that such an \mathbf{R}-linear combination vanishes if and only if $\alpha, \beta=0$, which is to say $a, b, c, d=0$, so $\{\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ is \mathbf{R}-linearly independent; we call it the standard basis for \mathbf{H}. These calculations also show that \mathbf{H} can be alternatively described as the set of elements of $\operatorname{Mat}_{2}(\mathbf{C})$ admitting the form

$$
M=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

for $\alpha, \beta \in \mathbf{C}$.
It is easy to verify by direct calculation (do it!) that the following relations are satisfied:

$$
\mathrm{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-\mathbf{1}, \quad \mathbf{i j}=\mathbf{k}=-\mathbf{j i}
$$

and likewise

$$
\mathbf{j} \mathbf{k}=-\mathbf{k j}=\mathbf{i}, \quad \mathbf{k i}=-\mathbf{i} \mathbf{k}=\mathbf{j} .
$$

For any two quaternions

$$
h=a \cdot \mathbf{1}+b \cdot \mathbf{i}+c \cdot \mathbf{j}+d \cdot \mathbf{k}, \quad h_{1}^{\prime}=a^{\prime} \cdot \mathbf{1}+b^{\prime} \cdot \mathbf{i}+c^{\prime} \cdot \mathbf{j}+d^{\prime} \cdot \mathbf{k}
$$

with $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \in \mathbf{R}$, the product $h h^{\prime} \in \operatorname{Mat}_{2}(\mathbf{C})$ expands out as an \mathbf{R}-linear combination in the products $\mathbf{e e}^{\prime}$ for $\mathbf{e}, \mathbf{e}^{\prime}$ in the standard basis. But we just saw that all products among pairs from the standard basis are in \mathbf{H}, establishing the first assertion in:

Proposition 2.1. The quaternions are an \mathbf{R}-subalgebra of $\operatorname{Mat}_{2}(\mathbf{C})$, and the natural map of \mathbf{C}-algebras $\mu: \mathbf{C} \otimes_{\mathbf{R}} \mathbf{H} \rightarrow \mathrm{Mat}_{2}(\mathbf{C})$ is an isomorphism.

The stability of \mathbf{H} under multiplication could also be checked using the description as matrices of the form $\left(\begin{array}{c}\alpha \\ -\bar{\beta} \\ \frac{\beta}{\alpha}\end{array}\right)$ with $\alpha, \beta \in \mathbf{C}$.

Proof. The source and target of μ are 4-dimensional over \mathbf{C}, so for the isomorphism assertion it suffices to check injectivity. More specifically, this is the assertion that the standard basis of \mathbf{H} (viewed inside $\operatorname{Mat}_{2}(\mathbf{C})$) is even linearly independent over \mathbf{C} (not just over \mathbf{R}).

Taking a, b, c, d from \mathbf{C}, we have

$$
a \cdot \mathbf{1}+b \cdot \mathbf{i}+c \cdot \mathbf{j}+d \cdot \mathbf{k}=\left(\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right)
$$

so if this vanishes then we have $a \pm b i=0= \pm c+d i$ with $a, b, c, d \in \mathbf{C}$ (not necessarily in $\mathbf{R}!$). It is then clear that $a=0$, so $b=0$, and likewise that $d i=0$, so d and c vanish too.

The center of an associative ring with identity is the subset of elements commuting with everything under multiplication. This is a commutative subring (with the same identity).

Corollary 2.2. The center of \mathbf{H} coincides with $\mathbf{R}=\mathbf{R} \cdot \mathbf{1}$.
Proof. Let $Z \subset \mathbf{H}$ be the center, so $\mathbf{R} \subset Z$. To prove equality it suffices to show $\operatorname{dim}_{\mathbf{R}} Z \leq 1$. But $\mathbf{C} \otimes_{\mathbf{R}} Z$ is certainly contained in the center of $\mathbf{C} \otimes_{\mathbf{R}} \mathbf{H} \simeq \operatorname{Mat}_{2}(\mathbf{C})$, and the center of the latter is just the evident copy of \mathbf{C}. This shows that $\operatorname{dim}_{\mathbf{R}} Z=\operatorname{dim}_{\mathbf{C}}\left(\mathbf{C} \otimes_{\mathbf{R}} Z\right) \leq 1$.

3. Conjugation and norm

For $h=a \cdot \mathbf{1}+b \cdot \mathbf{i}+c \cdot \mathbf{j}+d \cdot \mathbf{k}$, define its conjugate to be

$$
\bar{h}=a \cdot \mathbf{1}-b \cdot \mathbf{i}-c \cdot \mathbf{j}-d \cdot \mathbf{k},
$$

so clearly $\overline{\bar{h}}=h$. We call h a pure quaternion if $a=0$, or equivalently $\bar{h}=-h$. Although multiplication in \mathbf{H} is not commutative, in a special case commutativity holds:

Proposition 3.1. The products $h \bar{h}$ and $\bar{h} h$ coincide and are equal to $a^{2}+b^{2}+c^{2}+d^{2}$. This is also equal to $\operatorname{det}(h)$ viewing h inside $\operatorname{Mat}_{2}(\mathbf{C})$.

There is also a much easier identity: $h+\bar{h}=2 a=\operatorname{Tr}(h)$.
Proof. The expression $a^{2}+b^{2}+c^{2}+d^{2}$ is unaffected by replacing h with \bar{h}, so if we can prove $h \bar{h}$ is equal to this expression in general then applying that to \bar{h} gives the same for $\bar{h} \cdot \overline{\bar{h}}=\bar{h} h$. Hence, we focus on $h \bar{h}$. Writing h as a 2×2 matrix, we have

$$
h=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

for $\alpha=a+b i$ and $\beta=c+d i$. Since $a-b i=\bar{\alpha}$ and $-c-d i=-\beta, \bar{h}$ corresponds to the analogous matrix using $\bar{\alpha}$ in place of α and $-\beta$ in place of β. Hence,

$$
h \bar{h}=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)\left(\begin{array}{cc}
\bar{\alpha} & -\beta \\
\bar{\beta} & \alpha
\end{array}\right)=\left(\begin{array}{cc}
\alpha \bar{\alpha}+\beta \bar{\beta} & 0 \\
0 & \bar{\beta} \beta+\alpha \bar{\alpha}
\end{array}\right) .
$$

This is 1 multiplied against the real scalar $|\alpha|^{2}+|\beta|^{2}=a^{2}+b^{2}+c^{2}+d^{2}$.
We call $a^{2}+b^{2}+c^{2}+d^{2}$ the norm of h, and denote it as $\mathrm{N}(h)$; in other words,

$$
\mathrm{N}(h)=h \bar{h}=\bar{h} h
$$

by viewing \mathbf{R} as a subring of \mathbf{H} via $c \mapsto c \mathbf{1}$.
It is clear by inspection of the formula that if $h \neq 0$ then $\mathrm{N}(h) \in \mathbf{R}^{\times}$, so in such cases $\bar{h} / \mathrm{N}(h)$ is a multiplicative inverse to h ! Hence,

$$
\mathbf{H}^{\times}=\mathbf{H}-\{0\} ;
$$

we say \mathbf{H} is a division algebra (akin to a field, but without assuming multiplication is commutative; multiplicative inverses do work the same on both sides). The \mathbf{R}-algebra \mathbf{H} is very different from $\operatorname{Mat}_{2}(\mathbf{R})$ since the former is a division algebra whereas the latter has lots of zero-divisors!

Remark 3.2. The R-linear operation $h \mapsto \bar{h}$ is an "anti-automorphism" of \mathbf{H} : it satisfies $\overline{h h^{\prime}}=\overline{h^{\prime}} \cdot \bar{h}$ for any $h, h^{\prime} \in \mathbf{H}$. One way to see this quickly is to note that the cases $h=0$ or $h^{\prime}=0$ are easy, and otherwise it suffices to check equality after multiplying on the left against $h h^{\prime} \in \mathbf{H}^{\times}$. But
$\left(h h^{\prime}\right) \overline{h h^{\prime}}=\mathrm{N}\left(h h^{\prime}\right)=\operatorname{det}\left(h h^{\prime}\right)=\operatorname{det}(h) \operatorname{det}\left(h^{\prime}\right)=\mathrm{N}(h) \mathrm{N}\left(h^{\prime}\right)=h \bar{h} \mathrm{~N}\left(h^{\prime}\right)=h \mathrm{~N}\left(h^{\prime}\right) \bar{h}=h h^{\prime} \overline{h^{\prime}} \cdot \bar{h}$
(the second to last equality using that \mathbf{R} is central in \mathbf{H}, and the final equality using associativity).

