Math 210C. The dual root system and the Q-structure on root systems

By our definition, for a root system (V, Φ) we assume V is a finite-dimensional vector space over some field k of characteristic 0 . In practice, the only cases of interest are $k=\mathbf{Q}$ (for "algebraic" aspects) and $k=\mathbf{R}$ (for geometric arguments with Weyl chambers later, as well as for applications to compact Lie groups). In this handout, we explain how the general case reduces to the case with $k=\mathbf{Q}$. Along the way, we introduce and use the notion of the dual root system.

Let $\langle\cdot, \cdot\rangle: V \times V^{*} \rightarrow k$ be the evaluation pairing. For each $a \in \Phi$, the uniquely determined reflection $r_{a}: V \simeq V$ has the form

$$
r_{a}(v)=v-\left\langle v, a^{v}\right\rangle a
$$

for a unique $a^{\vee} \in V^{*}$ (the coroot associated to a) that is required to satisfy the integrality condition $a^{\vee}(\Phi) \subset \mathbf{Z} \subset k$. The condition $r_{a}(a)=-a$ forces $\left\langle a, a^{\vee}\right\rangle=2$; in particular, $a^{\vee} \neq 0$. We saw in class that a^{\vee} uniquely determines a, so the set $\Phi^{\vee} \subset V^{*}-\{0\}$ of coroots is in bijection with Φ via $a \mapsto a^{\vee}$. We define the reflection $r_{a \vee}=\left(r_{a}\right)^{*}: V^{*} \simeq V^{*}$ to be dual to r_{a} (i.e., $r_{a \vee}(\ell)=\ell \circ r_{a}$); this is a reflection since it is dual to a reflection. More specifically:

$$
r_{a^{\vee}}\left(v^{*}\right)=v^{*}-\left\langle a, v^{*}\right\rangle a^{\vee}
$$

since evaluating the left side on $v^{\prime} \in V$ gives

$$
v^{*}\left(r_{a}\left(v^{\prime}\right)\right)=v^{*}\left(v^{\prime}-\left\langle v^{\prime}, a^{\vee}\right\rangle a\right)=v^{*}\left(v^{\prime}\right)-\left\langle v^{\prime}, a^{\vee} v^{*}(a)=v^{*}\left(v^{\prime}\right)-\left\langle a, v^{*}\right\rangle a^{\vee}\left(v^{\prime}\right)\right.
$$

which is the right side evaluated on v^{\prime}.
We aim to show that (V^{*}, Φ^{\vee}) equipped with these dual reflections is a root system (called the dual root system). This requires establishing two properties: Φ^{\vee} spans V^{*} over k, and $r_{a^{\vee}}\left(\Phi^{\vee}\right)=\Phi^{\vee}$ for all $a \in \Phi$. For this latter equality, we will actually prove the more precise result that $r_{a^{\vee}}\left(b^{\vee}\right)=r_{a}(b)^{\vee}$ for all $a, b \in \Phi$. The spanning property turns out to lie a bit deeper for general k, and is tied up with proving that root systems have canonical Q-structures.

1. Coroot reflections and spanning over \mathbf{Q}

Let's first show that $r_{a^{\vee}}\left(\Phi^{\vee}\right)=\Phi^{\vee}$ for all $a \in \Phi$, or more precisely:
Proposition 1.1. For all $a, b \in \Phi, r_{a \vee}\left(b^{\vee}\right)=r_{a}(b)^{\vee}$.
Proof. By the unique characterization of the coroot associated to a root, we want to show that the linear form $r_{a^{\vee}}\left(b^{\vee}\right) \in V^{*}$ satisfies the condition that

$$
r_{r_{a}(b)}(x)=x-\left\langle x, r_{a^{\vee}}\left(b^{\vee}\right)\right\rangle r_{a}(b)
$$

for all $x \in V$. To do this, we seek another expression for $r_{r_{a}(b)}$.
Let Γ be the finite subgroup of elements of $\mathrm{GL}(V)$ that preserve the finite spanning set Φ, so all reflections r_{c} lie in $\Gamma(c \in \Phi)$. Inside Γ there is at most one reflection negating a given line (since Γ is finite and k has characteristic 0), so since $r_{b} \in \Gamma$ is uniquely determined by the property that it is a reflection negating the line $k b$, it follows that $r_{a} r_{b} r_{a}^{-1} \in \Gamma$ is uniquely determined as being a reflection that negates $r_{a}(k b)=k r_{a}(b)$. But $r_{r_{a}(b)} \in \Gamma$ is also such an element, so we conclude that

$$
\underset{r_{a}(b)}{ }=r_{a} r_{b} r_{a}^{-1}=r_{a} r_{b} r_{a} .
$$

Evaluating on $v \in V$, we get that

$$
v-\left\langle v, r_{a}(b)^{\vee}\right\rangle r_{a}(b)=r_{a}\left(r_{b}\left(r_{a}(v)\right)\right) .
$$

Applying $r_{a}=r_{a}^{-1}$ to both sides, we get

$$
r_{a}(v)-\left\langle v, r_{a}(b)^{\vee}\right\rangle b=r_{b}\left(r_{a}(v)\right)=r_{a}(v)-\left\langle r_{a}(v), b^{\vee}\right\rangle b
$$

Hence, $\left\langle v, r_{a}(b)^{\vee}\right\rangle=\left\langle r_{a}(v), b^{\vee}\right\rangle=\left\langle v, r_{a^{\vee}}\left(b^{\vee}\right)\right\rangle$ by definition of the dual reflection $r_{a \vee}:=\left(r_{a}\right)^{*}$. This holds for all $v \in V$, so $r_{a^{\vee}}\left(b^{\vee}\right)=r_{a}(b)^{\vee}$.

To prove that Φ^{\vee} spans V^{*}, we will first give an argument that works when $k=\mathbf{Q}$, and then we will bootstrap that to the general case.
Proposition 1.2. If $k=\mathbf{Q}$ then Φ^{\vee} spans V^{*}. In particular, $\left(V^{*}, \Phi^{\vee}\right)$ is a root system when $k=\mathbf{Q}$.

The proof we give works verbatim over \mathbf{R}, or any ordered field at all. (The special roles of \mathbf{Q} and \mathbf{R} is that they admit unique order structures as fields.)

Proof. Choose a positive-definite quadratic form $q: V \rightarrow \mathbf{Q}$, and by averaging this over the finite Weyl group $W=W(\Phi)$ we arrive at a positive-definite q that is W-invariant. Hence, the associated symmetric bilinear form $B=B_{q}$ is W-invariant in the sense that $B_{q}\left(w . v, w . v^{\prime}\right)=B_{q}\left(v, v^{\prime}\right)$ for all $v, v^{\prime} \in V$ and $w \in W$, and it is non-degenerate since $B_{q}(v, v)=2 q(v)>0$ for $v \neq 0$. This bilinear form defines a W-equivariant isomorphism $V \simeq V^{*}$ via $v \mapsto B_{q}(v, \cdot)=B_{q}(\cdot, v)$.

For each root a, the reflection $r_{a}: V \simeq V$ induces negation on the line L spanned by a, so it restricts to an automorphism of the B_{q}-orthogonal hyperplane $H=L^{\perp}$. But $L \cap L^{\perp}=0$ since q is positive-definite, so addition $L \oplus L^{\perp} \rightarrow V$ is an isomorphism. Since L^{\perp} is characterized in terms of L and B_{q}, and W leaves B_{q} invariant, so r_{a} leaves B_{q} invariant, the r_{a}-stability of L implies the same for L^{\perp}. But the eigenvalue -1 for r_{a} is already accounted for on L, so the finite-order automorphism of L^{\perp} arising from r_{a} has only 1 as an eigenvalue, and hence $\left.r_{a}\right|_{L^{\perp}}$ must be the identity. Writing $v \in V$ as $v=v^{\prime}+c a$ for $v^{\prime} \in L^{\perp}$ and a scalar c,

$$
r_{a}(v)=v^{\prime}-c a=\left(v^{\prime}+c a\right)-2 c a=v-2 c a
$$

and $B_{q}(v, a)=B_{q}\left(v^{\prime}, a\right)+c B_{q}(a, a)=c B_{q}(a, a)$ with $B_{q}(a, a) \neq 0$.
We conclude that $c=B_{q}(v, a) / B_{q}(a, a)$, so

$$
r_{a}(v)=v-2 c a=v-\frac{2 B_{q}(v, a)}{B_{q}(a, a)} a=v-B_{q}\left(v, a^{\prime}\right) a
$$

where $a^{\prime}:=2 a / B_{q}(a, a)$. In other words, the identification of V^{*} with V via B_{q} identifies $a^{\vee} \in V^{*}$ with $a^{\prime}=2 a / B_{q}(a, a) \in V$. This is traditionally written as:

$$
a^{\vee}=\frac{2 a}{(a \mid a)}
$$

with $(\cdot \mid \cdot)$ denoting a positive-definite symmetric bilinear form on V that is W-invariant (and the role of this choice of such positive-definite form in the identification of V^{*} with V has to be remembered when using that formula!).

Now we're ready to show Φ^{\vee} spans V^{*}. If not, its span is contained in some hyperplane in V^{*}, and a hyperplane in V^{*} is nothing more or less than the set of linear forms that kill a specified nonzero $v \in V$. Hence, there would exist some nonzero $v \in V$ such that $\left\langle v, a^{\vee}\right\rangle=0$ for all $a \in \Phi$. The identification of V^{*} with V via B_{q} carries the evaluation pairing between V^{*} and V over to the symmetric bilinear form B_{q}, so the coroot a^{\vee} is brought to $a^{\prime}=2 a / B_{q}(a, a)$. Thus,

$$
0=\left\langle v, a^{\vee}\right\rangle=B_{q}\left(v, a^{\prime}\right)=\frac{2 B_{q}(v, a)}{B_{q}(a, a)}
$$

for all $a \in \Phi$. In other words, v is B_{q}-orthogonal to all $a \in \Phi$. But Φ spans V (!), so v is B_{q}-orthogonal to the entirety of V, a contradiction since $v \neq 0$ and B_{q} is non-degenerate.

2. The spanning property over general k

The verification of the root system properties for $\left(V^{*}, \Phi^{\vee}\right)$ when k is general shall now be deduced from the settled case $k=\mathbf{Q}$. The trick is to introduce an auxiliary \mathbf{Q}-structure, apply the result over \mathbf{Q} there, and then return to the situation over k. To that end, let $V_{0}=\mathbf{Q} \Phi$ denote the \mathbf{Q}-span of Φ inside V, and write a_{0} to denote a viewed inside V_{0}. Also write $\Phi_{0} \subset V_{0}$ to denote Φ viewed inside V_{0}.

Note that since $r_{a}(\Phi)=\Phi$ for all a, we see that $r_{a}\left(V_{0}\right)=V_{0}$ for all a. Likewise, by the integrality hypothesis, $a^{\vee}(\Phi) \subset \mathbf{Z} \subset \mathbf{Q}$ for all a, so $a^{\vee}\left(V_{0}\right) \subset \mathbf{Q}$ for all a. Hence, we get Q-linear form $a_{0}^{\vee}: V_{0} \rightarrow \mathbf{Q}$ that is the restriction of a^{\vee}, and for all $v_{0} \in V_{0}$ we have

$$
r_{a}\left(v_{0}\right)=v_{0}-\left\langle v_{0}, a^{\vee}\right\rangle a_{0}=v_{0}-\left\langle v_{0}, a_{0}^{\vee}\right\rangle a_{0}
$$

Thus, $\left(V_{0}, \Phi_{0}\right)$ is a root system over \mathbf{Q} with associated reflections $r_{a_{0}}=\left.r_{a}\right|_{V_{0}}$ for all $a_{0} \in$ $\Phi_{0}=\Phi$, so the associated coroot is a_{0}^{\vee}. It follows from the settled case over \mathbf{Q} that we have a dual root system $\left(V_{0}^{*}, \Phi_{0}^{\vee}\right)$ where V_{0}^{*} denotes the \mathbf{Q}-dual of V_{0} and Φ_{0}^{\vee} is the set of \mathbf{Q}-linear forms a_{0}^{\vee}. In particular, the elements $a_{0}^{\vee} \in V_{0}^{*}$ are a spanning set over \mathbf{Q} by the settled case over \mathbf{Q} !

Consider the natural k-linear map $f: k \otimes_{\mathbf{Q}} V_{0} \rightarrow V$. This carries $1 \otimes a_{0}$ to a for all $a \in \Phi$, so it is surjective (since Φ spans V over k). Moreover, the k-linear form $a^{\vee}: V \rightarrow k$ is compatible with the scalar extension of $a_{0}^{\vee}: V_{0} \rightarrow \mathbf{Q}$ under this surjection since we can compare against the sets Φ_{0} and Φ that compatibly span V over k and V_{0} over \mathbf{Q} respectively. Once we show that f is also injective, it follows that a^{\vee} is identified with the scalar extension of a_{0}^{\vee}, so in fact the initial root system (V, Φ) is obtained by scalar extension from the root system $\left(V_{0}, \Phi_{0}\right)$ over \mathbf{Q}. (The notion of scalar extension for root systems is defined in an evident manner.) In this sense, every root system will have a canonical \mathbf{Q}-structure. This is why the case $k=\mathbf{Q}$ is essentially the "general" case (though it is very convenient to perform certain later arguments after scalar extension from \mathbf{Q} to \mathbf{R}).

Why is f also injective? It is equivalent to show that the dual k-linear map $f^{*}: V^{*} \rightarrow$ $k \otimes_{\mathbf{Q}} V_{0}^{*}$ is surjective. In other words, we seek a spanning set in V^{*} over k that is carried to a spanning set for $k \otimes_{\mathbf{Q}} V_{0}^{*}$ over k. Well, $f^{*}\left(a^{\vee}\right)=a^{\vee} \circ f=1 \otimes a_{0}^{\vee}$ (the compatibility of a^{\vee} and a_{0}^{\vee} that has already been noted), so it remains to recall that the coroots a_{0}^{\vee} in V_{0}^{*} are a spanning set over \mathbf{Q} !

