
Math 210C. The dual root system and the Q-structure on root systems

By our definition, for a root system (V,Φ) we assume V is a finite-dimensional vector
space over some field k of characteristic 0. In practice, the only cases of interest are k = Q
(for “algebraic” aspects) and k = R (for geometric arguments with Weyl chambers later, as
well as for applications to compact Lie groups). In this handout, we explain how the general
case reduces to the case with k = Q. Along the way, we introduce and use the notion of the
dual root system.

Let 〈·, ·〉 : V ×V ∗ → k be the evaluation pairing. For each a ∈ Φ, the uniquely determined
reflection ra : V ' V has the form

ra(v) = v − 〈v, a∨〉a
for a unique a∨ ∈ V ∗ (the coroot associated to a) that is required to satisfy the integrality
condition a∨(Φ) ⊂ Z ⊂ k. The condition ra(a) = −a forces 〈a, a∨〉 = 2; in particular, a∨ 6= 0.
We saw in class that a∨ uniquely determines a, so the set Φ∨ ⊂ V ∗ − {0} of coroots is in
bijection with Φ via a 7→ a∨. We define the reflection ra∨ = (ra)

∗ : V ∗ ' V ∗ to be dual to ra
(i.e., ra∨(`) = ` ◦ ra); this is a reflection since it is dual to a reflection. More specifically:

ra∨(v∗) = v∗ − 〈a, v∗〉a∨

since evaluating the left side on v′ ∈ V gives

v∗(ra(v
′)) = v∗(v′ − 〈v′, a∨〉a) = v∗(v′)− 〈v′, a∨v∗(a) = v∗(v′)− 〈a, v∗〉a∨(v′),

which is the right side evaluated on v′.
We aim to show that (V ∗,Φ∨) equipped with these dual reflections is a root system (called

the dual root system). This requires establishing two properties: Φ∨ spans V ∗ over k, and
ra∨(Φ∨) = Φ∨ for all a ∈ Φ. For this latter equality, we will actually prove the more
precise result that ra∨(b∨) = ra(b)

∨ for all a, b ∈ Φ. The spanning property turns out to
lie a bit deeper for general k, and is tied up with proving that root systems have canonical
Q-structures.

1. Coroot reflections and spanning over Q

Let’s first show that ra∨(Φ∨) = Φ∨ for all a ∈ Φ, or more precisely:

Proposition 1.1. For all a, b ∈ Φ, ra∨(b∨) = ra(b)
∨.

Proof. By the unique characterization of the coroot associated to a root, we want to show
that the linear form ra∨(b∨) ∈ V ∗ satisfies the condition that

rra(b)(x) = x− 〈x, ra∨(b∨)〉ra(b)
for all x ∈ V . To do this, we seek another expression for rra(b).

Let Γ be the finite subgroup of elements of GL(V ) that preserve the finite spanning set Φ,
so all reflections rc lie in Γ (c ∈ Φ). Inside Γ there is at most one reflection negating a given
line (since Γ is finite and k has characteristic 0), so since rb ∈ Γ is uniquely determined by
the property that it is a reflection negating the line kb, it follows that rarbr

−1
a ∈ Γ is uniquely

determined as being a reflection that negates ra(kb) = kra(b). But rra(b) ∈ Γ is also such an
element, so we conclude that

rra(b) = rarbr
−1
a = rarbra.
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Evaluating on v ∈ V , we get that

v − 〈v, ra(b)∨〉ra(b) = ra(rb(ra(v))).

Applying ra = r−1a to both sides, we get

ra(v)− 〈v, ra(b)∨〉b = rb(ra(v)) = ra(v)− 〈ra(v), b∨〉b.

Hence, 〈v, ra(b)∨〉 = 〈ra(v), b∨〉 = 〈v, ra∨(b∨)〉 by definition of the dual reflection ra∨ := (ra)
∗.

This holds for all v ∈ V , so ra∨(b∨) = ra(b)
∨. �

To prove that Φ∨ spans V ∗, we will first give an argument that works when k = Q, and
then we will bootstrap that to the general case.

Proposition 1.2. If k = Q then Φ∨ spans V ∗. In particular, (V ∗,Φ∨) is a root system when
k = Q.

The proof we give works verbatim over R, or any ordered field at all. (The special roles
of Q and R is that they admit unique order structures as fields.)

Proof. Choose a positive-definite quadratic form q : V → Q, and by averaging this over
the finite Weyl group W = W (Φ) we arrive at a positive-definite q that is W -invariant.
Hence, the associated symmetric bilinear form B = Bq is W -invariant in the sense that
Bq(w.v, w.v

′) = Bq(v, v
′) for all v, v′ ∈ V and w ∈ W , and it is non-degenerate since

Bq(v, v) = 2q(v) > 0 for v 6= 0. This bilinear form defines a W -equivariant isomorphism
V ' V ∗ via v 7→ Bq(v, ·) = Bq(·, v).

For each root a, the reflection ra : V ' V induces negation on the line L spanned by a, so it
restricts to an automorphism of the Bq-orthogonal hyperplane H = L⊥. But L∩L⊥ = 0 since
q is positive-definite, so addition L⊕ L⊥ → V is an isomorphism. Since L⊥ is characterized
in terms of L and Bq, and W leaves Bq invariant, so ra leaves Bq invariant, the ra-stability
of L implies the same for L⊥. But the eigenvalue −1 for ra is already accounted for on L, so
the finite-order automorphism of L⊥ arising from ra has only 1 as an eigenvalue, and hence
ra|L⊥ must be the identity. Writing v ∈ V as v = v′ + ca for v′ ∈ L⊥ and a scalar c,

ra(v) = v′ − ca = (v′ + ca)− 2ca = v − 2ca

and Bq(v, a) = Bq(v
′, a) + cBq(a, a) = cBq(a, a) with Bq(a, a) 6= 0.

We conclude that c = Bq(v, a)/Bq(a, a), so

ra(v) = v − 2ca = v − 2Bq(v, a)

Bq(a, a)
a = v −Bq(v, a

′)a

where a′ := 2a/Bq(a, a). In other words, the identification of V ∗ with V via Bq identifies
a∨ ∈ V ∗ with a′ = 2a/Bq(a, a) ∈ V . This is traditionally written as:

a∨ =
2a

(a|a)

with (·|·) denoting a positive-definite symmetric bilinear form on V that is W -invariant (and
the role of this choice of such positive-definite form in the identification of V ∗ with V has to
be remembered when using that formula!).
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Now we’re ready to show Φ∨ spans V ∗. If not, its span is contained in some hyperplane
in V ∗, and a hyperplane in V ∗ is nothing more or less than the set of linear forms that
kill a specified nonzero v ∈ V . Hence, there would exist some nonzero v ∈ V such that
〈v, a∨〉 = 0 for all a ∈ Φ. The identification of V ∗ with V via Bq carries the evaluation
pairing between V ∗ and V over to the symmetric bilinear form Bq, so the coroot a∨ is
brought to a′ = 2a/Bq(a, a). Thus,

0 = 〈v, a∨〉 = Bq(v, a
′) =

2Bq(v, a)

Bq(a, a)

for all a ∈ Φ. In other words, v is Bq-orthogonal to all a ∈ Φ. But Φ spans V (!), so v is
Bq-orthogonal to the entirety of V , a contradiction since v 6= 0 and Bq is non-degenerate. �

2. The spanning property over general k

The verification of the root system properties for (V ∗,Φ∨) when k is general shall now be
deduced from the settled case k = Q. The trick is to introduce an auxiliary Q-structure,
apply the result over Q there, and then return to the situation over k. To that end, let
V0 = QΦ denote the Q-span of Φ inside V , and write a0 to denote a viewed inside V0. Also
write Φ0 ⊂ V0 to denote Φ viewed inside V0.

Note that since ra(Φ) = Φ for all a, we see that ra(V0) = V0 for all a. Likewise, by the
integrality hypothesis, a∨(Φ) ⊂ Z ⊂ Q for all a, so a∨(V0) ⊂ Q for all a. Hence, we get
Q-linear form a∨0 : V0 → Q that is the restriction of a∨, and for all v0 ∈ V0 we have

ra(v0) = v0 − 〈v0, a∨〉a0 = v0 − 〈v0, a∨0 〉a0.
Thus, (V0,Φ0) is a root system over Q with associated reflections ra0 = ra|V0 for all a0 ∈
Φ0 = Φ, so the associated coroot is a∨0 . It follows from the settled case over Q that we have
a dual root system (V ∗0 ,Φ

∨
0 ) where V ∗0 denotes the Q-dual of V0 and Φ∨0 is the set of Q-linear

forms a∨0 . In particular, the elements a∨0 ∈ V ∗0 are a spanning set over Q by the settled case
over Q!

Consider the natural k-linear map f : k ⊗Q V0 → V . This carries 1 ⊗ a0 to a for all
a ∈ Φ, so it is surjective (since Φ spans V over k). Moreover, the k-linear form a∨ : V → k
is compatible with the scalar extension of a∨0 : V0 → Q under this surjection since we can
compare against the sets Φ0 and Φ that compatibly span V over k and V0 over Q respectively.
Once we show that f is also injective, it follows that a∨ is identified with the scalar extension
of a∨0 , so in fact the initial root system (V,Φ) is obtained by scalar extension from the root
system (V0,Φ0) over Q. (The notion of scalar extension for root systems is defined in an
evident manner.) In this sense, every root system will have a canonical Q-structure. This is
why the case k = Q is essentially the “general” case (though it is very convenient to perform
certain later arguments after scalar extension from Q to R).

Why is f also injective? It is equivalent to show that the dual k-linear map f ∗ : V ∗ →
k⊗Q V ∗0 is surjective. In other words, we seek a spanning set in V ∗ over k that is carried to
a spanning set for k ⊗Q V ∗0 over k. Well, f ∗(a∨) = a∨ ◦ f = 1⊗ a∨0 (the compatibility of a∨

and a∨0 that has already been noted), so it remains to recall that the coroots a∨0 in V ∗0 are a
spanning set over Q!


