MATH 210C. THE DUAL ROOT SYSTEM AND THE Q-STRUCTURE ON ROOT SYSTEMS

By our definition, for a root system (V, Φ) we assume V is a finite-dimensional vector space over some field k of characteristic 0. In practice, the only cases of interest are $k = \mathbf{Q}$ (for "algebraic" aspects) and $k = \mathbf{R}$ (for geometric arguments with Weyl chambers later, as well as for applications to compact Lie groups). In this handout, we explain how the general case reduces to the case with $k = \mathbf{Q}$. Along the way, we introduce and use the notion of the dual root system.

Let $\langle \cdot, \cdot \rangle : V \times V^* \to k$ be the evaluation pairing. For each $a \in \Phi$, the uniquely determined reflection $r_a : V \simeq V$ has the form

$$r_a(v) = v - \langle v, a^{\vee} \rangle a$$

for a unique $a^{\vee} \in V^*$ (the *coroot* associated to a) that is required to satisfy the integrality condition $a^{\vee}(\Phi) \subset \mathbf{Z} \subset k$. The condition $r_a(a) = -a$ forces $\langle a, a^{\vee} \rangle = 2$; in particular, $a^{\vee} \neq 0$. We saw in class that a^{\vee} uniquely determines a, so the set $\Phi^{\vee} \subset V^* - \{0\}$ of coroots is in bijection with Φ via $a \mapsto a^{\vee}$. We define the reflection $r_{a^{\vee}} = (r_a)^* : V^* \simeq V^*$ to be dual to r_a (i.e., $r_{a^{\vee}}(\ell) = \ell \circ r_a$); this is a reflection since it is dual to a reflection. More specifically:

$$r_{a^{\vee}}(v^*) = v^* - \langle a, v^* \rangle a^{\vee}$$

since evaluating the left side on $v' \in V$ gives

$$v^{*}(r_{a}(v')) = v^{*}(v' - \langle v', a^{\vee} \rangle a) = v^{*}(v') - \langle v', a^{\vee}v^{*}(a) = v^{*}(v') - \langle a, v^{*} \rangle a^{\vee}(v') + \langle v, a^{\vee}v^{*}(a) = v^{*}(v') - \langle a, v^{*} \rangle a^{\vee}(v') + \langle v, a^{\vee}v^{*}(a) = v^{*}(v') - \langle a, v^{*} \rangle a^{\vee}(v') + \langle v, a^{\vee}v^{*}(a) = v^{*}(v') - \langle a, v^{*} \rangle a^{\vee}(v') + \langle v, a^{\vee}v^{*}(a) = v^{*}(v') - \langle a, v^{*} \rangle a^{\vee}(v') + \langle a, v^{*} \rangle a^{\vee$$

which is the right side evaluated on v'.

We aim to show that (V^*, Φ^{\vee}) equipped with these dual reflections is a root system (called the *dual root system*). This requires establishing two properties: Φ^{\vee} spans V^* over k, and $r_{a^{\vee}}(\Phi^{\vee}) = \Phi^{\vee}$ for all $a \in \Phi$. For this latter equality, we will actually prove the more precise result that $r_{a^{\vee}}(b^{\vee}) = r_a(b)^{\vee}$ for all $a, b \in \Phi$. The spanning property turns out to lie a bit deeper for general k, and is tied up with proving that root systems have canonical **Q**-structures.

1. Coroot reflections and spanning over ${f Q}$

Let's first show that $r_{a^{\vee}}(\Phi^{\vee}) = \Phi^{\vee}$ for all $a \in \Phi$, or more precisely:

Proposition 1.1. For all $a, b \in \Phi$, $r_{a^{\vee}}(b^{\vee}) = r_a(b)^{\vee}$.

Proof. By the unique characterization of the coroot associated to a root, we want to show that the linear form $r_{a^{\vee}}(b^{\vee}) \in V^*$ satisfies the condition that

$$r_{r_a(b)}(x) = x - \langle x, r_{a^{\vee}}(b^{\vee}) \rangle r_a(b)$$

for all $x \in V$. To do this, we seek another expression for $r_{r_a(b)}$.

Let Γ be the *finite* subgroup of elements of $\operatorname{GL}(V)$ that preserve the finite spanning set Φ , so all reflections r_c lie in Γ ($c \in \Phi$). Inside Γ there is at most one reflection negating a given line (since Γ is finite and k has characteristic 0), so since $r_b \in \Gamma$ is uniquely determined by the property that it is a reflection negating the line kb, it follows that $r_a r_b r_a^{-1} \in \Gamma$ is uniquely determined as being a reflection that negates $r_a(kb) = kr_a(b)$. But $r_{r_a(b)} \in \Gamma$ is also such an element, so we conclude that

$$r_{r_a(b)} = r_a r_b r_a^{-1} = r_a r_b r_a.$$

Evaluating on $v \in V$, we get that

$$v - \langle v, r_a(b)^{\vee} \rangle r_a(b) = r_a(r_b(r_a(v))).$$

Applying $r_a = r_a^{-1}$ to both sides, we get

$$r_a(v) - \langle v, r_a(b)^{\vee} \rangle b = r_b(r_a(v)) = r_a(v) - \langle r_a(v), b^{\vee} \rangle b.$$

Hence, $\langle v, r_a(b)^{\vee} \rangle = \langle r_a(v), b^{\vee} \rangle = \langle v, r_{a^{\vee}}(b^{\vee}) \rangle$ by definition of the dual reflection $r_{a^{\vee}} := (r_a)^*$. This holds for all $v \in V$, so $r_{a^{\vee}}(b^{\vee}) = r_a(b)^{\vee}$.

To prove that Φ^{\vee} spans V^* , we will first give an argument that works when $k = \mathbf{Q}$, and then we will bootstrap that to the general case.

Proposition 1.2. If $k = \mathbf{Q}$ then Φ^{\vee} spans V^* . In particular, (V^*, Φ^{\vee}) is a root system when $k = \mathbf{Q}$.

The proof we give works verbatim over \mathbf{R} , or any ordered field at all. (The special roles of \mathbf{Q} and \mathbf{R} is that they admit unique order structures as fields.)

Proof. Choose a positive-definite quadratic form $q: V \to \mathbf{Q}$, and by averaging this over the finite Weyl group $W = W(\Phi)$ we arrive at a positive-definite q that is W-invariant. Hence, the associated symmetric bilinear form $B = B_q$ is W-invariant in the sense that $B_q(w.v, w.v') = B_q(v, v')$ for all $v, v' \in V$ and $w \in W$, and it is non-degenerate since $B_q(v, v) = 2q(v) > 0$ for $v \neq 0$. This bilinear form defines a W-equivariant isomorphism $V \simeq V^*$ via $v \mapsto B_q(v, \cdot) = B_q(\cdot, v)$.

For each root a, the reflection $r_a : V \simeq V$ induces negation on the line L spanned by a, so it restricts to an automorphism of the B_q -orthogonal hyperplane $H = L^{\perp}$. But $L \cap L^{\perp} = 0$ since q is positive-definite, so addition $L \oplus L^{\perp} \to V$ is an isomorphism. Since L^{\perp} is characterized in terms of L and B_q , and W leaves B_q invariant, so r_a leaves B_q invariant, the r_a -stability of L implies the same for L^{\perp} . But the eigenvalue -1 for r_a is already accounted for on L, so the finite-order automorphism of L^{\perp} arising from r_a has only 1 as an eigenvalue, and hence $r_a|_{L^{\perp}}$ must be the identity. Writing $v \in V$ as v = v' + ca for $v' \in L^{\perp}$ and a scalar c,

$$r_a(v) = v' - ca = (v' + ca) - 2ca = v - 2ca$$

and $B_q(v, a) = B_q(v', a) + cB_q(a, a) = cB_q(a, a)$ with $B_q(a, a) \neq 0$.

We conclude that $c = B_q(v, a)/B_q(a, a)$, so

$$r_a(v) = v - 2ca = v - \frac{2B_q(v,a)}{B_q(a,a)}a = v - B_q(v,a')a$$

where $a' := 2a/B_q(a, a)$. In other words, the identification of V^* with V via B_q identifies $a^{\vee} \in V^*$ with $a' = 2a/B_q(a, a) \in V$. This is traditionally written as:

$$a^{\vee} = \frac{2a}{(a|a)}$$

with $(\cdot|\cdot)$ denoting a positive-definite symmetric bilinear form on V that is W-invariant (and the role of this *choice* of such positive-definite form in the identification of V^* with V has to be remembered when using that formula!).

Now we're ready to show Φ^{\vee} spans V^* . If not, its span is contained in some hyperplane in V^* , and a hyperplane in V^* is nothing more or less than the set of linear forms that kill a specified nonzero $v \in V$. Hence, there would exist some nonzero $v \in V$ such that $\langle v, a^{\vee} \rangle = 0$ for all $a \in \Phi$. The identification of V^* with V via B_q carries the evaluation pairing between V^* and V over to the symmetric bilinear form B_q , so the coroot a^{\vee} is brought to $a' = 2a/B_q(a, a)$. Thus,

$$0 = \langle v, a^{\vee} \rangle = B_q(v, a') = \frac{2B_q(v, a)}{B_q(a, a)}$$

for all $a \in \Phi$. In other words, v is B_q -orthogonal to all $a \in \Phi$. But Φ spans V (!), so v is B_q -orthogonal to the entirety of V, a contradiction since $v \neq 0$ and B_q is non-degenerate.

2. The spanning property over general k

The verification of the root system properties for (V^*, Φ^{\vee}) when k is general shall now be deduced from the settled case $k = \mathbf{Q}$. The trick is to introduce an auxiliary \mathbf{Q} -structure, apply the result over \mathbf{Q} there, and then return to the situation over k. To that end, let $V_0 = \mathbf{Q}\Phi$ denote the \mathbf{Q} -span of Φ inside V, and write a_0 to denote a viewed inside V_0 . Also write $\Phi_0 \subset V_0$ to denote Φ viewed inside V_0 .

Note that since $r_a(\Phi) = \Phi$ for all a, we see that $r_a(V_0) = V_0$ for all a. Likewise, by the integrality hypothesis, $a^{\vee}(\Phi) \subset \mathbf{Z} \subset \mathbf{Q}$ for all a, so $a^{\vee}(V_0) \subset \mathbf{Q}$ for all a. Hence, we get \mathbf{Q} -linear form $a_0^{\vee} : V_0 \to \mathbf{Q}$ that is the restriction of a^{\vee} , and for all $v_0 \in V_0$ we have

$$r_a(v_0) = v_0 - \langle v_0, a^{\vee} \rangle a_0 = v_0 - \langle v_0, a_0^{\vee} \rangle a_0.$$

Thus, (V_0, Φ_0) is a root system over \mathbf{Q} with associated reflections $r_{a_0} = r_a|_{V_0}$ for all $a_0 \in \Phi_0 = \Phi$, so the associated coroot is a_0^{\vee} . It follows from the settled case over \mathbf{Q} that we have a dual root system (V_0^*, Φ_0^{\vee}) where V_0^* denotes the \mathbf{Q} -dual of V_0 and Φ_0^{\vee} is the set of \mathbf{Q} -linear forms a_0^{\vee} . In particular, the elements $a_0^{\vee} \in V_0^*$ are a spanning set over \mathbf{Q} by the settled case over \mathbf{Q} !

Consider the natural k-linear map $f : k \otimes_{\mathbf{Q}} V_0 \to V$. This carries $1 \otimes a_0$ to a for all $a \in \Phi$, so it is surjective (since Φ spans V over k). Moreover, the k-linear form $a^{\vee} : V \to k$ is compatible with the scalar extension of $a_0^{\vee} : V_0 \to \mathbf{Q}$ under this surjection since we can compare against the sets Φ_0 and Φ that compatibly span V over k and V_0 over \mathbf{Q} respectively. Once we show that f is also injective, it follows that a^{\vee} is identified with the scalar extension of a_0^{\vee} , so in fact the initial root system (V, Φ) is obtained by scalar extension from the root system (V_0, Φ_0) over \mathbf{Q} . (The notion of scalar extension for root systems is defined in an evident manner.) In this sense, every root system will have a canonical \mathbf{Q} -structure. This is why the case $k = \mathbf{Q}$ is essentially the "general" case (though it is very convenient to perform certain later arguments after scalar extension from \mathbf{Q} to \mathbf{R}).

Why is f also injective? It is equivalent to show that the dual k-linear map $f^* : V^* \to k \otimes_{\mathbf{Q}} V_0^*$ is surjective. In other words, we seek a spanning set in V^* over k that is carried to a spanning set for $k \otimes_{\mathbf{Q}} V_0^*$ over k. Well, $f^*(a^{\vee}) = a^{\vee} \circ f = 1 \otimes a_0^{\vee}$ (the compatibility of a^{\vee} and a_0^{\vee} that has already been noted), so it remains to recall that the coroots a_0^{\vee} in V_0^* are a spanning set over \mathbf{Q} !