Math 210C. Existence of the coroot

Let G be a non-commutative connected compact Lie group, T a maximal torus in G, and $a \in \Phi(G, T)$ a root. Let $T_{a}=(\operatorname{ker} a)^{0}$ be the codimension-1 subtorus of T killed by $a: T \rightarrow$ S^{1}, so $Z_{G}\left(T_{a}\right)$ is a connected closed subgroup containing T such that $\Phi\left(Z_{G}\left(T_{a}\right), T\right)=\{ \pm a\}$.

We have seen in class that $Z_{G}\left(T_{a}\right)$ is the almost direct product of its maximal central torus T_{a} and its closed commutator subgroup $G_{a}:=Z_{G}\left(T_{a}\right)^{\prime}$ that is either $\mathrm{SU}(2)$ or $\mathrm{SO}(3)$ and has as a 1-dimensional maximal torus $T_{a}^{\prime}:=T \cap G_{a}$. Any element of G_{a} centralizes T_{a} and so if it normalizes T_{a}^{\prime} then it normalizes $T_{a} T_{a}^{\prime}=T$. Thus, $N_{G_{a}}\left(T_{a}^{\prime}\right) \subset N_{G}(T)$, and since all elements of G_{a} centralize T_{a} it follows that

$$
N_{G_{a}}\left(T_{a}^{\prime}\right) \cap T=N_{G_{a}}\left(T_{a}^{\prime}\right) \cap Z_{G}(T)=N_{G_{a}}\left(T_{a}^{\prime}\right) \cap Z_{G}\left(T_{a}^{\prime}\right)=Z_{G_{a}}\left(T_{a}^{\prime}\right)=T_{a}^{\prime}
$$

In other words, we have an inclusion $j: W\left(G_{a}, T_{a}^{\prime}\right) \hookrightarrow W\left(Z_{G}\left(T_{a}\right), T\right)$.
The action of $W\left(Z_{G}\left(T_{a}\right), T\right)$ on $\mathrm{X}(T)_{\mathbf{Q}}=\mathrm{X}\left(T_{a}\right)_{\mathbf{Q}} \oplus \mathrm{X}\left(T_{a}^{\prime}\right)_{\mathbf{Q}}$ respects the direct sum decomposition since all elements of $Z_{G}\left(T_{a}\right)$ normalizing T certainly centralize T_{a} and normalize $T \cap Z_{G}\left(T_{a}\right)^{\prime}=: T_{a}^{\prime}$. Thus, the action of $W\left(Z_{G}\left(T_{a}\right), T\right)$ on $\mathrm{X}(T)$ preserves $\mathrm{X}\left(T_{a}^{\prime}\right)$ and is determined by its effect on this \mathbf{Z}-line, so we have an injection

$$
W\left(Z_{G}\left(T_{a}\right), T\right) \hookrightarrow \operatorname{GL}\left(\mathrm{X}\left(T_{a}^{\prime}\right)\right)=\mathrm{GL}(\mathbf{Z})=\mathbf{Z}^{\times}=\{ \pm 1\}
$$

and it is straightforward to check (do it!) that this is compatible via j with the natural action $W\left(G_{a}, T_{a}^{\prime}\right) \hookrightarrow \operatorname{GL}\left(\mathrm{X}\left(T_{a}^{\prime}\right)\right)=\mathbf{Z}^{\times}$. In other words, we have compatibly

$$
W\left(G_{a}, T_{a}^{\prime}\right) \subset W\left(Z_{G}\left(T_{a}\right), T\right) \subset\{ \pm 1\}
$$

But by case-checking for $G_{a}=\mathrm{SU}(2)$ and $G_{a}=\mathrm{SO}(3)$ with specific maximal tori, we saw in class that $W\left(G_{a}, T_{a}^{\prime}\right)$ has order 2. Hence, by squeezing, $W\left(Z_{G}\left(T_{a}\right), T\right)$ also has order 2. Explicitly, $W\left(Z_{G}\left(T_{a}\right), T\right)=\left\{1, r_{a}\right\}$ for an element r_{a} of order 2 represented by $n_{a} \in$ $N_{G}(T)$ that centralizes the codimension-1 torus T_{a} and induces inversion on its 1-dimensional isogeny-complement T_{a}^{\prime}.

As we explained in class, the effect of the reflection r_{a} on $\mathrm{X}(T)_{\mathbf{Q}}=\mathrm{X}\left(T_{a}\right)_{\mathbf{Q}} \oplus \mathrm{X}\left(T_{a}^{\prime}\right)_{\mathbf{Q}}$ is the identity on the hyperplane $\mathrm{X}\left(T_{a}\right)_{\mathbf{Q}}$ and is negation on the line $\mathrm{X}\left(T_{a}^{\prime}\right)_{\mathbf{Q}}$ that contains a (as a is trivial on $T_{a}=(\operatorname{ker} a)^{0}$, so a has vanishing component along the hyperplane factor $\mathrm{X}\left(T_{a}\right)_{\mathbf{Q}}$ of $\left.\mathrm{X}(T)_{\mathbf{Q}}\right)$. Hence, there is a unique linear form $\ell_{a}: \mathrm{X}(T)_{\mathbf{Q}} \rightarrow \mathbf{Q}$ such that $r_{a}(x)=x-\ell_{a}(x) a$. The Z-dual of $\mathrm{X}(T)$ is the cocharacter lattice $\mathrm{X}_{*}(T)$ via the perfect pairing

$$
\langle\cdot, \cdot\rangle: \mathrm{X}(T) \times \mathrm{X}_{*}(T) \rightarrow \operatorname{End}\left(S^{1}\right)=\mathbf{Z}
$$

defined by $\langle\chi, \lambda\rangle=\chi \circ \lambda$, so we can thereby identify the \mathbf{Q}-dual of $\mathrm{X}(T)_{\mathbf{Q}}$ with $\mathrm{X}_{*}(T)_{\mathbf{Q}}$.
The key point in the story is that $\ell_{a}: \mathrm{X}(T)_{\mathbf{Q}} \rightarrow \mathbf{Q}$ carries $\mathrm{X}(T)$ into \mathbf{Z}, which is to say that it lies in the \mathbf{Z}-dual $\mathrm{X}_{*}(T)$ of $\mathbf{X}(T)$ inside the \mathbf{Q}-dual of $\mathbf{X}(T)_{\mathbf{Q}}$. In other words:

Proposition 0.1. There exists a unique $a^{\vee}: S^{1} \rightarrow T$ in $\mathrm{X}_{*}(T)$ such that $r_{a}(x)=x-\left\langle x, a^{\vee}\right\rangle a$ for all $x \in \mathrm{X}(T)$. Moreover, a^{\vee} is valued in the 1-dimensional subtorus T_{a}^{\prime}.

We call a^{\vee} the coroot attached to a.
Proof. The uniqueness is clear, since the content of the existence of a^{\vee} is precisely that $\ell_{a} \in \mathrm{X}_{*}(T)_{\mathbf{Q}}$ happens to lie inside $\mathrm{X}_{*}(T)$ (and as such is then renamed as a^{\vee}). To prove
existence, we shall give two proofs: one abstract and one by computing with $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$ (depending on what $G_{a}=Z_{G}\left(T_{a}\right)^{\prime}$ is).

For the computational proof, let $a^{\prime}=\left.a\right|_{T_{a}^{\prime}}$. Note that r_{a} is the identity on the hyperplane $\mathrm{X}\left(T_{a}\right)_{\mathbf{Q}}$ and its restriction to the line $\mathrm{X}\left(T_{a}^{\prime}\right)$ is exactly through the reflection $r_{a^{\prime}} \in W\left(G_{a}, T_{a}^{\prime}\right)$ (via how we made r_{a} using the equality $W\left(G_{a}, T_{a}^{\prime}\right)=W\left(Z_{G}\left(T_{a}\right), T\right)$!), For any $\lambda \in \mathrm{X}_{*}\left(T_{a}^{\prime}\right) \subset$ $\mathrm{X}_{*}(T)$ certainly $x \mapsto x-\langle x, \lambda\rangle_{T} a$ is the identity on the hyperplane $\mathrm{X}\left(T_{a}\right)_{\mathbf{Q}}$ and has restriction to $\mathrm{X}\left(T_{a}^{\prime}\right)_{\mathbf{Q}}$ given by $x \mapsto x-\langle x, \lambda\rangle_{T_{a}^{\prime}} a^{\prime}$, so a solution in $\mathrm{X}_{*}\left(T_{a}^{\prime}\right)$ for $r_{a^{\prime}}$ is also a solution in $\mathrm{X}_{*}(T)$ for r_{a}. Hence, we may replace (G, T, a) with $\left(G_{a}, T_{a}^{\prime}, a^{\prime}\right)$ to reduce to the case when G is $\mathrm{SU}(2)$ or $\mathrm{SO}(3)$, so $\operatorname{dim} T=1$ and $\Phi=\{ \pm a\}$.

It is harmless to replace a with $-a$ for our purposes (negate the result to handle the other root). It is also sufficient to treat a single maximal torus (due to the Conjugacy Theorem!). The desired formula $r_{a}(x)=x-\left\langle x, a^{\vee}\right\rangle a$ on $\mathrm{X}(T)_{\mathbf{Q}}$ for some $a^{\vee} \in \mathrm{X}_{*}(T)$ is a comparison of linear endomorphisms of a 1-dimensional \mathbf{Q}-vector space. Thus, it suffices to verify such a formula on a single nonzero element. We may take a to be that element, and since r_{a} is negation on $\mathrm{X}(T)_{\mathbf{Q}}$, our task comes down to finding $a^{\vee}: S^{1} \rightarrow T$ such that $\left\langle a, a^{\vee}\right\rangle=2$. But $T \simeq S^{1}$, so $a: T \rightarrow S^{1}$ can be identified with a nonzero endomorphism of S^{1} (so ker $a=\mu_{n}$ for some $n \geq 1$). Our task is to show squaring on S^{1} factors through a; equivalently, ker a has order 1 or 2 . By inspection, for $\mathrm{SU}(2)$ the roots have kernel of order 2 . The quotient map $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ induces an isomorphism on Lie algebras and a degree- 2 isogeny $T \rightarrow \bar{T}$ between maximal tori, so the roots $\bar{T} \rightarrow S^{1}$ for $\mathrm{SO}(3)$ are isomorphisms (!).

Now we give a conceptual proof. The key idea is to consider not just the group $Z_{G}\left(T_{a}\right)=$ $Z_{G}\left((\operatorname{ker} a)^{0}\right)$ but also the centralizer $Z_{G}(\operatorname{ker} a)$ of the entire kernel, or rather its identity component $Z_{G}(\operatorname{ker} a)^{0}$. This contains T as a maximal torus too, and T_{a} as a central subtorus (therefore maximal as such), so we have a closed subgroup inclusion

$$
Z_{G}(\operatorname{ker} a)^{0} / T_{a} \subset Z_{G}\left(T_{a}\right) / T_{a}
$$

between rank-1 connected compact subgroups whose maximal torus T / T_{a} is not central (as $\operatorname{Lie}\left(Z_{G}(\operatorname{ker} a)^{0} / T_{a}\right)=\operatorname{Lie}\left(Z_{G}(\operatorname{ker} a)\right) / \operatorname{Lie}\left(T_{a}\right)$ supports the $\pm a$-weight spaces after complexification, since the possibly disconnected ker a certainly acts trivially on those weight spaces!). These connected groups have dimension 3, so the inclusion between them is an equality.

For any $n \in N_{Z_{G}\left(T_{a}\right)}(T)$, its conjugation action on T is unaffected by changing it by multiplication against an element of T, such as against an element of T_{a}. Hence, the equality of 3-dimensional groups implies that r_{a} can be represented by an element $n_{a} \in N_{G}(T)$ that centralizes the entirety of ker a ! Hence, the endomorphism $f: T \rightarrow T$ defined by $t \mapsto t / r_{a}(t)$ kills the entire ker a, so it factors through the quotient map $a: T \rightarrow T /(\operatorname{ker} a)=S^{1}$. In other words, we obtain a Lie group map $a^{\vee}: S^{1} \rightarrow T$ such that $f=a^{\vee} \circ a$. This says that for all $t \in T, t / r_{a}(t)=a^{\vee}\left(t^{a}\right)$; i.e., $r_{a}(t)=t / a^{\vee}\left(t^{a}\right)$. Applying a character $x \in \mathrm{X}(T)$, we get

$$
x\left(r_{a}(t)\right)=\frac{x(t)}{x\left(a^{\vee}\left(t^{a}\right)\right)}=\frac{x(t)}{\left(t^{a}\right)^{\left\langle x, a^{\vee}\right\rangle}}=\frac{x(t)}{t^{\left\langle x, a^{\vee}\right\rangle a}} .
$$

In other words, $x \circ r_{a}=x-\left\langle x, a^{\vee}\right\rangle a$ in $\mathrm{X}(T)$. By definition of the action of $W(G, T)$ on $\mathrm{X}(T)=\operatorname{Hom}\left(T, S^{1}\right)$ through inner composition, $x \circ r_{a}$ is the action on x by $r_{a}^{-1}=r_{a} \in$ $W(G, T)$, so $r_{a}(x)=x-\left\langle x, a^{\vee}\right\rangle a$ for all $x \in \mathrm{X}(T)$.

