MATH 210C. EXISTENCE OF THE COROOT

Let G be a non-commutative connected compact Lie group, T a maximal torus in G, and $a \in \Phi(G, T)$ a root. Let $T_a = (\ker a)^0$ be the codimension-1 subtorus of T killed by $a: T \twoheadrightarrow S^1$, so $Z_G(T_a)$ is a connected closed subgroup containing T such that $\Phi(Z_G(T_a), T) = \{\pm a\}$.

We have seen in class that $Z_G(T_a)$ is the almost direct product of its maximal central torus T_a and its closed commutator subgroup $G_a := Z_G(T_a)'$ that is either SU(2) or SO(3) and has as a 1-dimensional maximal torus $T'_a := T \cap G_a$. Any element of G_a centralizes T_a and so if it normalizes T'_a then it normalizes $T_aT'_a = T$. Thus, $N_{G_a}(T'_a) \subset N_G(T)$, and since all elements of G_a centralize T_a it follows that

$$N_{G_a}(T'_a) \cap T = N_{G_a}(T'_a) \cap Z_G(T) = N_{G_a}(T'_a) \cap Z_G(T'_a) = Z_{G_a}(T'_a) = T'_a.$$

In other words, we have an inclusion $j: W(G_a, T'_a) \hookrightarrow W(Z_G(T_a), T)$.

The action of $W(Z_G(T_a), T)$ on $X(T)_{\mathbf{Q}} = X(T_a)_{\mathbf{Q}} \oplus X(T'_a)_{\mathbf{Q}}$ respects the direct sum decomposition since all elements of $Z_G(T_a)$ normalizing T certainly centralize T_a and normalize $T \cap Z_G(T_a)' =: T'_a$. Thus, the action of $W(Z_G(T_a), T)$ on X(T) preserves $X(T'_a)$ and is determined by its effect on this **Z**-line, so we have an injection

$$W(Z_G(T_a), T) \hookrightarrow \operatorname{GL}(X(T'_a)) = \operatorname{GL}(\mathbf{Z}) = \mathbf{Z}^{\times} = \{\pm 1\}$$

and it is straightforward to check (do it!) that this is compatible via j with the natural action $W(G_a, T'_a) \hookrightarrow \operatorname{GL}(X(T'_a)) = \mathbb{Z}^{\times}$. In other words, we have compatibly

$$W(G_a, T'_a) \subset W(Z_G(T_a), T) \subset \{\pm 1\}$$

But by case-checking for $G_a = SU(2)$ and $G_a = SO(3)$ with specific maximal tori, we saw in class that $W(G_a, T'_a)$ has order 2. Hence, by squeezing, $W(Z_G(T_a), T)$ also has order 2. Explicitly, $W(Z_G(T_a), T) = \{1, r_a\}$ for an element r_a of order 2 represented by $n_a \in N_G(T)$ that centralizes the codimension-1 torus T_a and induces inversion on its 1-dimensional isogeny-complement T'_a .

As we explained in class, the effect of the reflection r_a on $X(T)_{\mathbf{Q}} = X(T_a)_{\mathbf{Q}} \oplus X(T'_a)_{\mathbf{Q}}$ is the identity on the hyperplane $X(T_a)_{\mathbf{Q}}$ and is negation on the line $X(T'_a)_{\mathbf{Q}}$ that contains a (as a is trivial on $T_a = (\ker a)^0$, so a has vanishing component along the hyperplane factor $X(T_a)_{\mathbf{Q}}$ of $X(T)_{\mathbf{Q}}$). Hence, there is a unique linear form $\ell_a : X(T)_{\mathbf{Q}} \to \mathbf{Q}$ such that $r_a(x) = x - \ell_a(x)a$. The **Z**-dual of X(T) is the cocharacter lattice $X_*(T)$ via the perfect pairing

$$\langle \cdot, \cdot \rangle : \mathcal{X}(T) \times \mathcal{X}_*(T) \to \operatorname{End}(S^1) = \mathbf{Z}$$

defined by $\langle \chi, \lambda \rangle = \chi \circ \lambda$, so we can thereby identify the **Q**-dual of $X(T)_{\mathbf{Q}}$ with $X_*(T)_{\mathbf{Q}}$.

The key point in the story is that $\ell_a : X(T)_{\mathbf{Q}} \to \mathbf{Q}$ carries X(T) into \mathbf{Z} , which is to say that it lies in the \mathbf{Z} -dual $X_*(T)$ of X(T) inside the \mathbf{Q} -dual of $X(T)_{\mathbf{Q}}$. In other words:

Proposition 0.1. There exists a unique $a^{\vee} : S^1 \to T$ in $X_*(T)$ such that $r_a(x) = x - \langle x, a^{\vee} \rangle a$ for all $x \in X(T)$. Moreover, a^{\vee} is valued in the 1-dimensional subtorus T'_a .

We call a^{\vee} the *coroot* attached to *a*.

Proof. The uniqueness is clear, since the content of the existence of a^{\vee} is precisely that $\ell_a \in X_*(T)_{\mathbf{Q}}$ happens to lie inside $X_*(T)$ (and as such is then renamed as a^{\vee}). To prove

existence, we shall give two proofs: one abstract and one by computing with SO(3) and SU(2) (depending on what $G_a = Z_G(T_a)'$ is).

For the computational proof, let $a' = a|_{T'_a}$. Note that r_a is the identity on the hyperplane $X(T_a)_{\mathbf{Q}}$ and its restriction to the line $X(T'_a)$ is exactly through the reflection $r_{a'} \in W(G_a, T'_a)$ (via how we made r_a using the equality $W(G_a, T'_a) = W(Z_G(T_a), T)!$), For any $\lambda \in X_*(T'_a) \subset X_*(T)$ certainly $x \mapsto x - \langle x, \lambda \rangle_T a$ is the identity on the hyperplane $X(T_a)_{\mathbf{Q}}$ and has restriction to $X(T'_a)_{\mathbf{Q}}$ given by $x \mapsto x - \langle x, \lambda \rangle_{T'_a} a'$, so a solution in $X_*(T'_a)$ for $r_{a'}$ is also a solution in $X_*(T)$ for r_a . Hence, we may replace (G, T, a) with (G_a, T'_a, a') to reduce to the case when G is SU(2) or SO(3), so dim T = 1 and $\Phi = \{\pm a\}$.

It is harmless to replace a with -a for our purposes (negate the result to handle the other root). It is also sufficient to treat a single maximal torus (due to the Conjugacy Theorem!). The desired formula $r_a(x) = x - \langle x, a^{\vee} \rangle a$ on $X(T)_{\mathbf{Q}}$ for some $a^{\vee} \in X_*(T)$ is a comparison of linear endomorphisms of a 1-dimensional **Q**-vector space. Thus, it suffices to verify such a formula on a single nonzero element. We may take a to be that element, and since r_a is negation on $X(T)_{\mathbf{Q}}$, our task comes down to finding $a^{\vee} : S^1 \to T$ such that $\langle a, a^{\vee} \rangle = 2$. But $T \simeq S^1$, so $a : T \to S^1$ can be identified with a nonzero endomorphism of S^1 (so ker $a = \mu_n$ for some $n \ge 1$). Our task is to show squaring on S^1 factors through a; equivalently, ker ahas order 1 or 2. By inspection, for SU(2) the roots have kernel of order 2. The quotient map SU(2) \to SO(3) induces an isomorphism on Lie algebras and a degree-2 isogeny $T \to \overline{T}$ between maximal tori, so the roots $\overline{T} \to S^1$ for SO(3) are isomorphisms (!).

Now we give a conceptual proof. The key idea is to consider not just the group $Z_G(T_a) = Z_G((\ker a)^0)$ but also the centralizer $Z_G(\ker a)$ of the entire kernel, or rather its identity component $Z_G(\ker a)^0$. This contains T as a maximal torus too, and T_a as a central subtorus (therefore maximal as such), so we have a closed subgroup inclusion

$$Z_G(\ker a)^0/T_a \subset Z_G(T_a)/T_a$$

between rank-1 connected compact subgroups whose maximal torus T/T_a is not central (as $\text{Lie}(Z_G(\ker a)^0/T_a) = \text{Lie}(Z_G(\ker a))/\text{Lie}(T_a)$ supports the $\pm a$ -weight spaces after complexification, since the possibly disconnected ker *a* certainly acts trivially on those weight spaces!). These connected groups have dimension 3, so the inclusion between them is an equality.

For any $n \in N_{Z_G(T_a)}(T)$, its conjugation action on T is unaffected by changing it by multiplication against an element of T, such as against an element of T_a . Hence, the equality of 3-dimensional groups implies that r_a can be represented by an element $n_a \in N_G(T)$ that centralizes the entirety of ker a! Hence, the endomorphism $f: T \to T$ defined by $t \mapsto t/r_a(t)$ kills the entire ker a, so it factors through the quotient map $a: T \twoheadrightarrow T/(\ker a) = S^1$. In other words, we obtain a Lie group map $a^{\vee}: S^1 \to T$ such that $f = a^{\vee} \circ a$. This says that for all $t \in T$, $t/r_a(t) = a^{\vee}(t^a)$; i.e., $r_a(t) = t/a^{\vee}(t^a)$. Applying a character $x \in X(T)$, we get

$$x(r_a(t)) = \frac{x(t)}{x(a^{\vee}(t^a))} = \frac{x(t)}{(t^a)^{\langle x, a^{\vee} \rangle}} = \frac{x(t)}{t^{\langle x, a^{\vee} \rangle a}}.$$

In other words, $x \circ r_a = x - \langle x, a^{\vee} \rangle a$ in X(T). By definition of the action of W(G, T) on $X(T) = \text{Hom}(T, S^1)$ through inner composition, $x \circ r_a$ is the action on x by $r_a^{-1} = r_a \in W(G, T)$, so $r_a(x) = x - \langle x, a^{\vee} \rangle a$ for all $x \in X(T)$.