
Math 210C. Existence of the coroot

Let G be a non-commutative connected compact Lie group, T a maximal torus in G, and
a ∈ Φ(G, T ) a root. Let Ta = (ker a)0 be the codimension-1 subtorus of T killed by a : T �
S1, so ZG(Ta) is a connected closed subgroup containing T such that Φ(ZG(Ta), T ) = {±a}.

We have seen in class that ZG(Ta) is the almost direct product of its maximal central torus
Ta and its closed commutator subgroup Ga := ZG(Ta)

′ that is either SU(2) or SO(3) and
has as a 1-dimensional maximal torus T ′a := T ∩ Ga. Any element of Ga centralizes Ta and
so if it normalizes T ′a then it normalizes TaT

′
a = T . Thus, NGa(T ′a) ⊂ NG(T ), and since all

elements of Ga centralize Ta it follows that

NGa(T ′a) ∩ T = NGa(T ′a) ∩ ZG(T ) = NGa(T ′a) ∩ ZG(T ′a) = ZGa(T ′a) = T ′a.

In other words, we have an inclusion j : W (Ga, T
′
a) ↪→ W (ZG(Ta), T ).

The action of W (ZG(Ta), T ) on X(T )Q = X(Ta)Q ⊕ X(T ′a)Q respects the direct sum de-
composition since all elements of ZG(Ta) normalizing T certainly centralize Ta and normalize
T ∩ZG(Ta)

′ =: T ′a. Thus, the action of W (ZG(Ta), T ) on X(T ) preserves X(T ′a) and is deter-
mined by its effect on this Z-line, so we have an injection

W (ZG(Ta), T ) ↪→ GL(X(T ′a)) = GL(Z) = Z× = {±1}

and it is straightforward to check (do it!) that this is compatible via j with the natural
action W (Ga, T

′
a) ↪→ GL(X(T ′a)) = Z×. In other words, we have compatibly

W (Ga, T
′
a) ⊂ W (ZG(Ta), T ) ⊂ {±1}.

But by case-checking for Ga = SU(2) and Ga = SO(3) with specific maximal tori, we saw
in class that W (Ga, T

′
a) has order 2. Hence, by squeezing, W (ZG(Ta), T ) also has order

2. Explicitly, W (ZG(Ta), T ) = {1, ra} for an element ra of order 2 represented by na ∈
NG(T ) that centralizes the codimension-1 torus Ta and induces inversion on its 1-dimensional
isogeny-complement T ′a.

As we explained in class, the effect of the reflection ra on X(T )Q = X(Ta)Q⊕X(T ′a)Q is the
identity on the hyperplane X(Ta)Q and is negation on the line X(T ′a)Q that contains a (as a is
trivial on Ta = (ker a)0, so a has vanishing component along the hyperplane factor X(Ta)Q of
X(T )Q). Hence, there is a unique linear form `a : X(T )Q → Q such that ra(x) = x− `a(x)a.
The Z-dual of X(T ) is the cocharacter lattice X∗(T ) via the perfect pairing

〈·, ·〉 : X(T )× X∗(T )→ End(S1) = Z

defined by 〈χ, λ〉 = χ ◦ λ, so we can thereby identify the Q-dual of X(T )Q with X∗(T )Q.
The key point in the story is that `a : X(T )Q → Q carries X(T ) into Z, which is to say

that it lies in the Z-dual X∗(T ) of X(T ) inside the Q-dual of X(T )Q. In other words:

Proposition 0.1. There exists a unique a∨ : S1 → T in X∗(T ) such that ra(x) = x−〈x, a∨〉a
for all x ∈ X(T ). Moreover, a∨ is valued in the 1-dimensional subtorus T ′a.

We call a∨ the coroot attached to a.

Proof. The uniqueness is clear, since the content of the existence of a∨ is precisely that
`a ∈ X∗(T )Q happens to lie inside X∗(T ) (and as such is then renamed as a∨). To prove
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existence, we shall give two proofs: one abstract and one by computing with SO(3) and
SU(2) (depending on what Ga = ZG(Ta)

′ is).
For the computational proof, let a′ = a|T ′

a
. Note that ra is the identity on the hyperplane

X(Ta)Q and its restriction to the line X(T ′a) is exactly through the reflection ra′ ∈ W (Ga, T
′
a)

(via how we made ra using the equality W (Ga, T
′
a) = W (ZG(Ta), T )!), For any λ ∈ X∗(T

′
a) ⊂

X∗(T ) certainly x 7→ x−〈x, λ〉Ta is the identity on the hyperplane X(Ta)Q and has restriction
to X(T ′a)Q given by x 7→ x − 〈x, λ〉T ′

a
a′, so a solution in X∗(T

′
a) for ra′ is also a solution in

X∗(T ) for ra. Hence, we may replace (G, T, a) with (Ga, T
′
a, a
′) to reduce to the case when

G is SU(2) or SO(3), so dimT = 1 and Φ = {±a}.
It is harmless to replace a with −a for our purposes (negate the result to handle the other

root). It is also sufficient to treat a single maximal torus (due to the Conjugacy Theorem!).
The desired formula ra(x) = x − 〈x, a∨〉a on X(T )Q for some a∨ ∈ X∗(T ) is a comparison
of linear endomorphisms of a 1-dimensional Q-vector space. Thus, it suffices to verify such
a formula on a single nonzero element. We may take a to be that element, and since ra is
negation on X(T )Q, our task comes down to finding a∨ : S1 → T such that 〈a, a∨〉 = 2. But
T ' S1, so a : T → S1 can be identified with a nonzero endomorphism of S1 (so ker a = µn

for some n ≥ 1). Our task is to show squaring on S1 factors through a; equivalently, ker a
has order 1 or 2. By inspection, for SU(2) the roots have kernel of order 2. The quotient
map SU(2)→ SO(3) induces an isomorphism on Lie algebras and a degree-2 isogeny T → T
between maximal tori, so the roots T → S1 for SO(3) are isomorphisms (!).

Now we give a conceptual proof. The key idea is to consider not just the group ZG(Ta) =
ZG((ker a)0) but also the centralizer ZG(ker a) of the entire kernel, or rather its identity
component ZG(ker a)0. This contains T as a maximal torus too, and Ta as a central subtorus
(therefore maximal as such), so we have a closed subgroup inclusion

ZG(ker a)0/Ta ⊂ ZG(Ta)/Ta

between rank-1 connected compact subgroups whose maximal torus T/Ta is not central (as
Lie(ZG(ker a)0/Ta) = Lie(ZG(ker a))/Lie(Ta) supports the ±a-weight spaces after complexi-
fication, since the possibly disconnected ker a certainly acts trivially on those weight spaces!).
These connected groups have dimension 3, so the inclusion between them is an equality.

For any n ∈ NZG(Ta)(T ), its conjugation action on T is unaffected by changing it by
multiplication against an element of T , such as against an element of Ta. Hence, the equality
of 3-dimensional groups implies that ra can be represented by an element na ∈ NG(T ) that
centralizes the entirety of ker a! Hence, the endomorphism f : T → T defined by t 7→ t/ra(t)
kills the entire ker a, so it factors through the quotient map a : T � T/(ker a) = S1. In
other words, we obtain a Lie group map a∨ : S1 → T such that f = a∨ ◦ a. This says that
for all t ∈ T , t/ra(t) = a∨(ta); i.e., ra(t) = t/a∨(ta). Applying a character x ∈ X(T ), we get

x(ra(t)) =
x(t)

x(a∨(ta))
=

x(t)

(ta)〈x,a∨〉
=

x(t)

t〈x,a∨〉a
.

In other words, x ◦ ra = x − 〈x, a∨〉a in X(T ). By definition of the action of W (G, T ) on
X(T ) = Hom(T, S1) through inner composition, x ◦ ra is the action on x by r−1a = ra ∈
W (G, T ), so ra(x) = x− 〈x, a∨〉a for all x ∈ X(T ). �


