MATH 210C. THE ADJOINT REPRESENTATION

Let G be a Lie group. One of the most basic tools in the investigation of the structure of G is the conjugation action of G on itself: for $g \in G$ we define $c_g : G \to G$ to be the C^{∞} automorphism $x \mapsto gxg^{-1}$. (This is not interesting when G is commutative, but we will see later that *connected* commutative Lie groups have a rather simple form in general.)

The *adjoint representation* of G on its tangent space $\mathfrak{g} = T_e(G)$ at the identity is the homomorphism

$$\operatorname{Ad}_G: G \to \operatorname{GL}(\mathfrak{g})$$

defined by $\operatorname{Ad}_G(g) = \operatorname{d}_{c_g}(e)$. This is a homomorphism due to the Chain Rule: since $c_{g'} \circ c_g = c_{g'g}$ and $c_g(e) = e$, we have

$$\operatorname{Ad}_G(g'g) = \operatorname{d}_{c_{g'}}(e) \circ \operatorname{d}_{c_g}(e) = \operatorname{Ad}_G(g') \circ \operatorname{Ad}_G(g).$$

In this handout we prove the smoothness of Ad_G (which the course text seems to have overlooked), compute the derivative

$$d(Ad_G)(e) : \mathfrak{g} \to T_1(GL(\mathfrak{g})) = End(\mathfrak{g})$$

at the identity, and use Ad_G to establish a very useful formula relating the Lie bracket rather directly to the group law on G near e.

1. Smoothness and examples

To get a feeling for the adjoint representation, let's consider the case $G = \operatorname{GL}_n(\mathbf{F})$ for $\mathbf{F} = \mathbf{R}, \mathbf{C}, \mathbf{H}$. For any $X \in \mathfrak{g} = \operatorname{Mat}_n(\mathbf{F})$, a parametric curve in G through the identity with velocity vector X at t = 0 is $\alpha_X(t) := \exp(tX)$. Thus, the differential $\operatorname{Ad}_G(g) = \operatorname{d}_{c_g}(e)$ sends $X = \alpha'_X(0)$ to the velocity at t = 0 of the parametric curve

$$c_g \circ \alpha_X : t \mapsto g \exp(tX)g^{-1} = 1 + gtXg^{-1} + \sum_{j \ge 2} \frac{t^j}{j!}gX^jg^{-1},$$

so clearly this has velocity gXg^{-1} at t = 0. In other words, $\operatorname{Ad}_G(g)$ is g-conjugation on $\operatorname{Mat}_n(\mathbf{F})$. This is visibly smooth in g.

We can use a similar parametric curve method to compute $d(\operatorname{Ad}_G)(e)$ for $G = \operatorname{GL}_n(\mathbf{F})$, as follows. Choose $X \in \mathfrak{g}$, so $\alpha_X(t) := \exp(tX)$ is a parametric curve in G with $\alpha'_X(0) = X$. Hence, $d(\operatorname{Ad}_G)(e)(X)$ is the velocity at t = 0 of the parametric curve $\operatorname{Ad}_G(\exp(tX)) \in \operatorname{GL}(\mathfrak{g})$. In other words, it is the derivative at t = 0 of the parametric curve $c_{\exp(tX)} \in \operatorname{GL}(\mathfrak{g}) \subset \operatorname{End}(\mathfrak{g})$. For $Y \in \mathfrak{g}$,

$$\exp(tX) \circ Y \circ \exp(-tX) = (1 + tX + t^2(\cdot)) \circ Y \circ (1 - tX + t^2(\cdot)) = (Y + tXY + t^2(\cdot)) \circ (1 - tX + t^2(\cdot)),$$

and this is equal to $Y + t(XY - YX) + t^2(\dots)$, so its End(\mathfrak{g})-valued velocity vector at t = 0 is the usual commutator XY - YX that we know to be the Lie bracket on \mathfrak{g} .

Next we take up the proof of smoothness in general. First, we localize the problem near the identity using the elementary:

Lemma 1.1. Let G and H be Lie groups. A homomorphism of groups $f : G \to H$ is continuous if it is continuous at the identity, and it is C^{∞} if it is C^{∞} near the identity.

Proof. The left-translation $\ell_g : G \to G$ is a homeomorphism carrying e to g, and likewise $\ell_{f(g)} : H \to H$ is a homeomorphism. Since

(1.1)
$$f \circ \ell_q = \ell_{f(q)} \circ f$$

(as f is a homomorphism), continuity of f at g is equivalent to continuity of f at e. This settles the continuity aspect. In a similar manner, since left translations are diffeomorphisms and ℓ_g carries an open neighborhood of e onto one around g (and similarly for $\ell_{f(g)}$ on H), if f is C^{∞} on an open U around e then f is also C^{∞} on the open $\ell_g(U)$ around g due to (1.1). Since the C^{∞} -property is local on G, it holds for f if it does so on an open set around every point.

Finally, we prove smoothness of Ad_G . Since the conjugation-action map $c: G \times G \to G$ defined by $(g, g') \mapsto gg'g^{-1}$ is C^{∞} and c(e, e) = e, we can choose a open coordinate domains $U \subset U' \subset G$ around e so that $c(U \times U) \subset U'$. Let $\{x_1, \ldots, x_n\}$ be a coordinate system on U' with $x_i(e) = 0$, and define $f_i = x_i \circ c : U \times U \to \mathbf{R}$ as a function on $U \times U \subset \mathbf{R}^{2n}$. Let $\{y_1, \ldots, y_n, z_1, \ldots, z_n\}$ denote the resulting product coordinate system on $U \times U$.

Each f_i is smooth and $c_g : U \to U'$ has *i*th component function $f_i(g, z_1, \ldots, z_n)$ with $g \in U$. Thus, the matrix $\operatorname{Ad}_G(g) = \operatorname{d}(c_g)(e) \in \operatorname{Mat}_n(\mathbf{R})$ has *ij*-entry equal to $(\partial f_i/\partial z_j)(0)$. Hence, smoothness of Ad_G on U reduces to the evident smoothness of each $\partial f_i/\partial z_j$ in the first *n* coordinates y_1, \ldots, y_n on $U \times U$ (after specializing the second factor U to e). By the preceding Lemma, this smoothness on U propagates to smoothness for Ad_G on the entirety of G since Ad_G is a homomorphism.

2. Key formula for the Lie bracket

For our Lie group G, choose $X, Y \in \mathfrak{g}$. In class we mentioned the fact (to be proved next time) that there is a unique Lie group homomorphism $\alpha_X : \mathbf{R} \to G$ satisfying $\alpha'_X(0) = X$. The automorphism $\operatorname{Ad}_G(\alpha_X(t))$ of \mathfrak{g} therefore makes sense and as a point in the open subset $\operatorname{GL}(\mathfrak{g})$ of $\operatorname{End}(\mathfrak{g})$ it depends smoothly on t (since Ad_G is smooth). Evaluation on Y for this matrix-valued path defines a smooth path

$$t \mapsto \operatorname{Ad}_G(\alpha_X(t))(Y)$$

valued in \mathfrak{g} . We claim that the velocity of this latter path at t = 0 is [X, Y]. In other words: **Theorem 2.1.** For any $X, Y \in \mathfrak{g}$,

$$[X,Y] = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} (\mathrm{Ad}_G(\alpha_X(t))(Y)).$$

Observe that the left side uses the construction of global left-invariant differential operators whereas the right side is defined in a much more localized manner near e. The "usual" proof of this theorem uses the notion of Lie derivative, but the approach we use avoids that.

Proof. Since Y is the velocity at s = 0 of the parametric curve $\alpha_Y(s)$, for any $g \in G$ the vector $\operatorname{Ad}_G(g)(Y) = \operatorname{d}(c_g)(e)(Y) \in \mathfrak{g}$ is the velocity at s = 0 of the parametric curve $c_g(\alpha_Y(s))$. Thus, for any t, $\operatorname{Ad}_G(\alpha_X(t))(Y)$ is the velocity at s = 0 of

$$a(t,s) := c_{\alpha_X(t)}(\alpha_Y(s)) = \alpha_X(t)\alpha_Y(s)\alpha_X(-t).$$

Note that a(t, 0) = e for all t, so for each t the velocity to $s \mapsto a(t, s) \in G$ lies in $T_e(G) = \mathfrak{g}$; this velocity is nothing other than $\operatorname{Ad}_G(\alpha_X(t))(Y)$, but we shall suggestively denote it as $\frac{d}{ds}|_{s=0}a(t,s)$. Since this is a parametric curve valued in \mathfrak{g} , we can recast our problem as proving the identity

$$[X,Y] \stackrel{?}{=} \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} \frac{\mathrm{d}}{\mathrm{d}s}|_{s=0} a(t,s)$$

where $a(t,s) = \alpha_X(t)\alpha_Y(s)\alpha_X(-t)$. We shall compute each side as a point-derivation at e on a smooth function φ on G and get the same result.

For the right side, an exercise to appear in HW3 (Exercise 9 in I.2) shows that its value on φ is the ordinary 2nd-order multivariable calculus derivative

$$\frac{\partial^2}{\partial_t \partial_s}|_{(0,0)}\varphi(a(t,s))$$

of the smooth function $\varphi \circ a : \mathbf{R}^2 \to \mathbf{R}$. By a clever application of the Chain Rule, it is shown in the course text (on page 19, up to swapping the roles of the letters s and t) that this 2nd-order partial derivative is equal to the difference

$$\frac{\partial^2}{\partial t \partial s}|_{(0,0)}\varphi(\alpha_X(t)\alpha_Y(s)) - \frac{\partial^2}{\partial t \partial s}|_{(0,0)}\varphi(\alpha_Y(s)\alpha_X(t))$$

Letting \widetilde{X} and \widetilde{Y} respectively denote the left-invariant vector fields extending X and Y at e, we want this difference of 2nd-order partial derivatives to equal the value $[X, Y](\varphi) = [\widetilde{X}, \widetilde{Y}](\varphi)(e)$ at e of $\widetilde{X}(\widetilde{Y}(\varphi)) - \widetilde{Y}(\widetilde{X}(\varphi))$, so it suffices to prove in general that

$$\frac{\partial^2}{\partial t \partial s}|_{(0,0)}\varphi(\alpha_X(t)\alpha_Y(s)) = X(\widetilde{Y}\varphi)$$

(and then apply this with the roles of X and Y swapped).

In our study next time of the construction of 1-parameter subgroups we will see that for any $g \in G$, $(\tilde{Y}\varphi)(g) = (\partial_s|_{s=0})(\varphi(g\alpha_Y(s)))$. Thus, setting $g = \alpha_X(t)$, for any t the s-partial at s = 0 of $\varphi(\alpha_X(t)\alpha_Y(s))$ is equal to $(\tilde{Y}\varphi)(\alpha_X(t))$. By the same reasoning now applied to X instead of Y, passing to the t-derivative at t = 0 yields $(\tilde{X}(\tilde{Y}\varphi))(e) = X(\tilde{Y}(\varphi))$.

3. Differential of adjoint

Finally, we connect the Lie bracket to the adjoint representation of G:

Theorem 3.1. Let G be a Lie group, and \mathfrak{g} its Lie algebra. Then $d(\operatorname{Ad}_G)(e) \in \operatorname{End}(\mathfrak{g})$ is equal to $\operatorname{ad}_{\mathfrak{g}}$. In other words, for $X \in \mathfrak{g}$, $d(\operatorname{Ad}_G)(e)(X) = [X, \cdot]$.

Proof. Choose $X \in \mathfrak{g}$, so $\alpha_X(t)$ is a parametric curve in G with velocity X at t = 0. Consequently, $d(\operatorname{Ad}_G)(e)(X)$ is the velocity vector at t = 0 to the parametric curve $\operatorname{Ad}_G(\alpha_X(t))$ valued in the open subset $\operatorname{GL}(\mathfrak{g})$ of $\operatorname{End}(\mathfrak{g})$.

Rather generally, if $L : (-\epsilon, \epsilon) \to \operatorname{End}(V)$ is a parametric curve whose value at t = 0 is the identity then for any $v \in V$ the velocity to $t \mapsto L(t)(v)$ at t = 0 is L'(0)(v). Indeed, the second-order Taylor expression $L(t) = 1 + tA + t^2B(t)$ for a smooth parametric curve B(t)valued in $\operatorname{End}(V)$ implies that $L(t)(v) = v + tA(v) + t^2B(t)(v)$, so this latter curve valued in V has velocity A(v). But clearly A = L'(0), so our general velocity identity is proved. Setting $L = \operatorname{Ad}_G \circ \alpha_X$ and v = Y, we conclude that $\operatorname{Ad}_G(\alpha_X(t))(Y)$ has velocity at t = 0 equal to the evaluation at Y of the velocity at t = 0 of the parametric curve $\operatorname{Ad}_G \circ \alpha_X$ valued in $\operatorname{End}(\mathfrak{g})$. But by the Chain Rule this latter velocity is equal to

$$d(\mathrm{Ad}_G)(\alpha_X(0)) \circ \alpha'_X(0) = d(\mathrm{Ad}_G(e))(X),$$

so $d(Ad_G(e))(X)$ carries Y to the velocity at t = 0 that equals [X, Y] in Theorem 2.1.