
Math 210C. The adjoint representation
Let G be a Lie group. One of the most basic tools in the investigation of the structure of

G is the conjugation action of G on itself: for g ∈ G we define cg : G → G to be the C∞

automorphism x 7→ gxg−1. (This is not interesting when G is commutative, but we will see
later that connected commutative Lie groups have a rather simple form in general.)

The adjoint representation of G on its tangent space g = Te(G) at the identity is the
homomorphism

AdG : G→ GL(g)

defined by AdG(g) = dcg(e). This is a homomorphism due to the Chain Rule: since cg′ ◦cg =
cg′g and cg(e) = e, we have

AdG(g′g) = dcg′(e) ◦ dcg(e) = AdG(g′) ◦ AdG(g).

In this handout we prove the smoothness of AdG (which the course text seems to have
overlooked), compute the derivative

d(AdG)(e) : g→ T1(GL(g)) = End(g)

at the identity, and use AdG to establish a very useful formula relating the Lie bracket rather
directly to the group law on G near e.

1. Smoothness and examples

To get a feeling for the adjoint representation, let’s consider the case G = GLn(F) for
F = R,C,H. For any X ∈ g = Matn(F), a parametric curve in G through the identity with
velocity vector X at t = 0 is αX(t) := exp(tX). Thus, the differential AdG(g) = dcg(e) sends
X = α′X(0) to the velocity at t = 0 of the parametric curve

cg ◦ αX : t 7→ g exp(tX)g−1 = 1 + gtXg−1 +
∑
j≥2

tj

j!
gXjg−1,

so clearly this has velocity gXg−1 at t = 0. In other words, AdG(g) is g-conjugation on
Matn(F). This is visibly smooth in g.

We can use a similar parametric curve method to compute d(AdG)(e) for G = GLn(F),
as follows. Choose X ∈ g, so αX(t) := exp(tX) is a parametric curve in G with α′X(0) = X.
Hence, d(AdG)(e)(X) is the velocity at t = 0 of the parametric curve AdG(exp(tX)) ∈ GL(g).
In other words, it is the derivative at t = 0 of the parametric curve cexp(tX) ∈ GL(g) ⊂ End(g).
For Y ∈ g,

exp(tX)◦Y ◦exp(−tX) = (1+tX+t2(·))◦Y ◦(1−tX+t2(·)) = (Y+tXY+t2(·))◦(1−tX+t2(·)),

and this is equal to Y + t(XY −Y X) + t2(· · · ), so its End(g)-valued velocity vector at t = 0
is the usual commutator XY − Y X that we know to be the Lie bracket on g.

Next we take up the proof of smoothness in general. First, we localize the problem near
the identity using the elementary:

Lemma 1.1. Let G and H be Lie groups. A homomorphism of groups f : G → H is
continuous if it is continuous at the identity, and it is C∞ if it is C∞ near the identity.

1



2

Proof. The left-translation `g : G → G is a homeomorphism carrying e to g, and likewise
`f(g) : H → H is a homeomorphism. Since

(1.1) f ◦ `g = `f(g) ◦ f
(as f is a homomorphism), continuity of f at g is equivalent to continuity of f at e. This
settles the continuity aspect. In a similar manner, since left translations are diffeomorphisms
and `g carries an open neighborhood of e onto one around g (and similarly for `f(g) on H), if
f is C∞ on an open U around e then f is also C∞ on the open `g(U) around g due to (1.1).
Since the C∞-property is local on G, it holds for f if it does so on an open set around every
point. �

Finally, we prove smoothness of AdG. Since the conjugation-action map c : G × G → G
defined by (g, g′) 7→ gg′g−1 is C∞ and c(e, e) = e, we can choose a open coordinate domains
U ⊂ U ′ ⊂ G around e so that c(U × U) ⊂ U ′. Let {x1, . . . , xn} be a coordinate system on
U ′ with xi(e) = 0, and define fi = xi ◦ c : U × U → R as a function on U × U ⊂ R2n. Let
{y1, . . . , yn, z1, . . . , zn} denote the resulting product coordinate system on U × U .

Each fi is smooth and cg : U → U ′ has ith component function fi(g, z1, . . . , zn) with
g ∈ U . Thus, the matrix AdG(g) = d(cg)(e) ∈ Matn(R) has ij-entry equal to (∂fi/∂zj)(0).
Hence, smoothness of AdG on U reduces to the evident smoothness of each ∂fi/∂zj in the
first n coordinates y1, . . . , yn on U × U (after specializing the second factor U to e). By the
preceding Lemma, this smoothness on U propagates to smoothness for AdG on the entirety
of G since AdG is a homomorphism.

2. Key formula for the Lie bracket

For our Lie group G, choose X, Y ∈ g. In class we mentioned the fact (to be proved next
time) that there is a unique Lie group homomorphism αX : R → G satisfying α′X(0) = X.
The automorphism AdG(αX(t)) of g therefore makes sense and as a point in the open subset
GL(g) of End(g) it depends smoothly on t (since AdG is smooth). Evaluation on Y for this
matrix-valued path defines a smooth path

t 7→ AdG(αX(t))(Y )

valued in g. We claim that the velocity of this latter path at t = 0 is [X, Y ]. In other words:

Theorem 2.1. For any X, Y ∈ g,

[X, Y ] =
d

dt
|t=0(AdG(αX(t))(Y )).

Observe that the left side uses the construction of global left-invariant differential operators
whereas the right side is defined in a much more localized manner near e. The “usual” proof
of this theorem uses the notion of Lie derivative, but the approach we use avoids that.

Proof. Since Y is the velocity at s = 0 of the parametric curve αY (s), for any g ∈ G the vector
AdG(g)(Y ) = d(cg)(e)(Y ) ∈ g is the velocity at s = 0 of the parametric curve cg(αY (s)).
Thus, for any t, AdG(αX(t))(Y ) is the velocity at s = 0 of

a(t, s) := cαX(t)(αY (s)) = αX(t)αY (s)αX(−t).
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Note that a(t, 0) = e for all t, so for each t the velocity to s 7→ a(t, s) ∈ G lies in Te(G) = g;
this velocity is nothing other than AdG(αX(t))(Y ), but we shall suggestively denote it as
d
ds
|s=0a(t, s). Since this is a parametric curve valued in g, we can recast our problem as

proving the identity

[X, Y ]
?
=

d

dt
|t=0

d

ds
|s=0a(t, s)

where a(t, s) = αX(t)αY (s)αX(−t). We shall compute each side as a point-derivation at e
on a smooth function ϕ on G and get the same result.

For the right side, an exercise to appear in HW3 (Exercise 9 in I.2) shows that its value
on ϕ is the ordinary 2nd-order multivariable calculus derivative

∂2

∂t∂s
|(0,0)ϕ(a(t, s))

of the smooth function ϕ ◦ a : R2 → R. By a clever application of the Chain Rule, it is
shown in the course text (on page 19, up to swapping the roles of the letters s and t) that
this 2nd-order partial derivative is equal to the difference

∂2

∂t∂s
|(0,0)ϕ(αX(t)αY (s))− ∂2

∂t∂s
|(0,0)ϕ(αY (s)αX(t)).

Letting X̃ and Ỹ respectively denote the left-invariant vector fields extending X and Y
at e, we want this difference of 2nd-order partial derivatives to equal the value [X, Y ](ϕ) =

[X̃, Ỹ ](ϕ)(e) at e of X̃(Ỹ (ϕ))− Ỹ (X̃(ϕ)), so it suffices to prove in general that

∂2

∂t∂s
|(0,0)ϕ(αX(t)αY (s)) = X(Ỹ ϕ)

(and then apply this with the roles of X and Y swapped).
In our study next time of the construction of 1-parameter subgroups we will see that for

any g ∈ G, (Ỹ ϕ)(g) = (∂s|s=0)(ϕ(gαY (s))). Thus, setting g = αX(t), for any t the s-partial

at s = 0 of ϕ(αX(t)αY (s)) is equal to (Ỹ ϕ)(αX(t)). By the same reasoning now applied to

X instead of Y , passing to the t-derivative at t = 0 yields (X̃(Ỹ ϕ))(e) = X(Ỹ (ϕ)). �

3. Differential of adjoint

Finally, we connect the Lie bracket to the adjoint representation of G:

Theorem 3.1. Let G be a Lie group, and g its Lie algebra. Then d(AdG)(e) ∈ End(g) is
equal to adg. In other words, for X ∈ g, d(AdG)(e)(X) = [X, ·].

Proof. Choose X ∈ g, so αX(t) is a parametric curve in G with velocity X at t = 0. Con-
sequently, d(AdG)(e)(X) is the velocity vector at t = 0 to the parametric curve AdG(αX(t))
valued in the open subset GL(g) of End(g).

Rather generally, if L : (−ε, ε) → End(V ) is a parametric curve whose value at t = 0 is
the identity then for any v ∈ V the velocity to t 7→ L(t)(v) at t = 0 is L′(0)(v). Indeed, the
second-order Taylor expression L(t) = 1 + tA + t2B(t) for a smooth parametric curve B(t)
valued in End(V ) implies that L(t)(v) = v + tA(v) + t2B(t)(v), so this latter curve valued
in V has velocity A(v). But clearly A = L′(0), so our general velocity identity is proved.
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Setting L = AdG ◦ αX and v = Y , we conclude that AdG(αX(t))(Y ) has velocity at t = 0
equal to the evaluation at Y of the velocity at t = 0 of the parametric curve AdG ◦αX valued
in End(g). But by the Chain Rule this latter velocity is equal to

d(AdG)(αX(0)) ◦ α′X(0) = d(AdG(e))(X),

so d(AdG(e))(X) carries Y to the velocity at t = 0 that equals [X, Y ] in Theorem 2.1. �


