MATH 145. HOMEWORK 8

1. If X and Y are C^{∞} manifolds, show that a continuous map $f: X \to Y$ between the underlying topological spaces is a C^{∞} map if for all open $U \subset Y$ and $\varphi \in C^{\infty}(U)$ the pullback function $\varphi \circ f: f^{-1}(U) \to \mathbf{R}$ lies in $C^{\infty}(f^{-1}(U))$.

2. (gluing spaces) Let $\{X_i\}$ be a set of topological spaces. Suppose we are given *open* sets $X_{ij} \subseteq X_i$ for all i, j with $X_{ii} = X_i$ and homeomorphisms $f_{ij} : X_{ij} \simeq X_{ji}$ for all i, j such that f_{ii} is the identity and

$$f_{ij}(X_{ij} \cap X_{ik}) = X_{jk} \cap X_{ji}, \ f_{jk}|_{X_{jk} \cap X_{ji}} \circ f_{ij}|_{X_{ij} \cap X_{ik}} = f_{ik}|_{X_{ik} \cap X_{ij}}$$

for all i, j, k. We want to glue the X_i 's along the f_{ij} 's (converting X_{ij}, X_{ji} into $X_i \cap X_j$). Draw pictures to illustrate your arguments below.

(i) Define $X = (\coprod X_i) / \sim$, where $x_i \sim f_{ij}(x_i)$ for $x_i \in X_{ij}$. Show that the natural maps $f_i : X_i \to X$ are injective, with $f_i|_{X_{ij}} = f_j|_{X_{ji}} \circ f_{ij}$, $f_i(X_{ij}) = f_j(X_{ji}) = f_i(X_i) \cap f_j(X_j)$. Thus, we may view X_i as a subset of X and as such $X_{ij} = X_{ji}$ is identified with the overlap $X_i \cap X_j$ inside of X (the identification being f_{ij}).

(*ii*) We define $U \subseteq X$ to be *open* if and only if $f_i^{-1}(U)$ is open in X_i for all *i*. Show that this makes X a topological space with respect to which $f_i(X_i)$ is open and f_i is a homemorphism of X_i onto $f_i(X_i)$. Thus, we may view X_i as an open subset of X. We call $(X, \{f_i\})$ the gluing of the X_i 's along the f_{ij} 's. Prove the universal property that for any topological space Y and continuous maps $g_i : X_i \to Y$ that "agree on overlaps" in the sense that $g_i|_{X_{ij}} = g_j|_{X_{ji}} \circ f_{ij}$ for all i, j, there is a unique continuous map $g : X \to Y$ such that $g \circ f_i = g_i$ for all i.

3. (gluing sheaves) Let X be a topological space with an open covering $\{X_i\}$ and let \mathcal{O}_i be a sheaf of F-valued functions on X_i for a field F. We define $X_{i_1...i_n} = X_{i_1} \cap \cdots \cap X_{i_n}$. Suppose that for all i, j we have $\mathcal{O}_i(U) = \mathcal{O}_j(U)$ for all open $U \subset X_{ij}$. For every open $U \subseteq X$, define

$$\mathscr{O}(U) = \{(s_i) \in \prod \mathscr{O}_i(U \cap X_i) \mid s_i \mid_{U \cap X_{ij}} = s_j \mid_{U \cap X_{ij}} \text{ for all } i, j\}.$$

(i) Prove that \mathscr{O} is of local nature. We call it the gluing of the \mathscr{O}_i 's.

(*ii*) For any ringed space (X, \mathcal{O}) and open subset $V \subset X$, we define the sheaf of functions $\mathcal{O}|_V$ on V by the rule $U \mapsto \mathcal{O}(U)$ for open $U \subset V$. For a field F, formulate what it means to glue a set of ringed spaces $\{(X_i, \mathcal{O}_i)\}$ over F along isomorphisms akin to Exercise 2 between open subspaces $X_{ij} \subset X_i$ (equipped with $\mathcal{O}_i|_{X_{ij}}$). and prove the corresponding universal property within the framework of ringed spaces over F. In particular, show that if (X, \mathcal{O}_X) is a ringed space over Fand $\{U_i\}$ is an open covering of X, then to give a map from $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is "the same" as to give maps $f_i: (U_i, \mathcal{O}_X|_{U_i}) \to (Y, \mathcal{O}_Y)$ such that $f_i|_{U_i \cap U_i} = f_j|_{U_i \cap U_i}$ for all i, j.

4. For any finitely generated reduced k-algebra A, let $MaxSpec(A) = (Max(A), \mathcal{O}_A)$. We define affine n-space over k to be $\mathbf{A}_k^n = MaxSpec(k[t_1, \ldots, t_n])$ $(k^n$ equipped with the "sheaf of regular functions" on varying Zariski-open subsets of k^n).

(i) Show that $\mathscr{O}_{\mathbf{A}_{k}^{1}}(\mathbf{A}_{k}^{1}-\{0\})=k[x,1/x]$ and that if $n\geq 2$ then the natural restriction map

$$k[t_1,\ldots,t_n] = \mathscr{O}_{\mathbf{A}_k^n}(\mathbf{A}_k^n) \to \mathscr{O}_{\mathbf{A}_k^n}(\mathbf{A}_k^n - \{0\})$$

is an *isomorphism*. (Hint: for $X = \mathbf{A}_k^n, X - \{0\}$ is covered by the non-vanishing loci X_{t_1}, \ldots, X_{t_n} .)

(ii) Using (ii), show that if $n \ge 2$ then $\mathbf{A}_k^n - \{0\}$ as a ringed space over k is not isomorphic to MaxSpec(A) for any finitely generated reduced k-algebra A. (Hint: if it were, show via (i) that pullback along the natural inclusion $j : \mathbf{A}_k^n - \{0\} \to \mathbf{A}_k^n$ would have to induce an isomorphism $k[t_1, \ldots, t_n] \simeq A$. Deduce a contradiction since j is not an isomorphism.) This is the precise sense in which " $\mathbf{A}_k^n - \{0\}$ is not affine" when $n \ge 2$.