Math 145. Homework 7

Do 2.35 ("form" means "homogenous polynomial"; a polynomial whose non-zero monomial terms have the same degree), 2.44 (let J be radical), $3.2(a)-(c), 3.12$ (for 3.2 and 3.12 assume characteristic 0), 3.17 (just compute the intersection numbers $I(C, D), I(C, E)$) in the text.

1. (i) For any $v=\left(c_{1}, \ldots, c_{n}\right) \in k^{n}$ and $f \in k\left[x_{1}, \ldots, x_{n}\right]$, define the directional derivative $\partial_{v} f \in k\left[x_{1}, \ldots, x_{n}\right]$ to be $\sum c_{i} \partial_{x_{i}} f$. Show that this is coordinate-independent in the sense that for any linear automorphism L of $k^{n},\left(\partial_{v} f\right) \circ L=\partial_{L^{-1}(v)}(f \circ L)$ as functions on k^{n}.
(ii) Show that for any $\xi \in k^{n}$ and $v \in k^{n}$ the value $\left(\partial_{v} f\right)(\xi)$ for $f \in k\left[x_{1}, \ldots, x_{n}\right]$ only depends on $f \bmod \mathfrak{m}_{\xi}^{2}$. (Hint: use (i) to reduce to the case $\xi=(0, \ldots, 0)$.) Deduce that the $\operatorname{map} \alpha_{\xi}: k^{n} \rightarrow \mathrm{~T}_{\xi}\left(k^{n}\right)=\left(\mathfrak{m}_{\xi} / \mathfrak{m}_{\xi}^{2}\right)^{*}$ defined by $v \mapsto\left(f \mapsto\left(\partial_{v} f\right)(\xi)\right)$ is a k-linear isomorphism, and that if $\tau: k^{n} \rightarrow k^{n}$ is translation by v_{0} then $\mathrm{d} \tau(\xi): \mathrm{T}_{\xi}\left(k^{n}\right) \simeq \mathrm{T}_{\xi+\tau_{0}}\left(k^{n}\right)$ carries α_{ξ} to $\alpha_{\xi+v_{0}}$. In this sense, we have a "translation-invariant" canonical identification of the k-vector space k^{n} with the tangent space at any of its points.
(iii) For a prime ideal $P=\left(h_{1}, \ldots, h_{r}\right)$ in $k\left[x_{1}, \ldots, x_{n}\right]$ and $Z=\underline{Z}(P)$, consider the inclusion map $\iota: Z \rightarrow k^{n}$. Show that for any $z \in Z, \mathrm{~d} \iota(z): \mathrm{T}_{z}(Z) \rightarrow \mathrm{T}_{z}\left(k^{n}\right)=k^{n}$ (using (ii) for the final equality) is an injection that identifies $\mathrm{T}_{z}(Z)$ with the kernel of the Jacobian matrix $\left(\left(\partial_{x_{j}} h_{i}\right)(z)\right)$ at z. (Hint: use (ii) to reduce to the case $z=(0, \ldots, 0)$.)
2. Let $V \subseteq k^{n}$ and $V^{\prime} \subseteq k^{m}$ be irreducible closed subsets, and let $\varphi: k(V) \rightarrow k\left(V^{\prime}\right)$ be an injective k-algebra map between the function fields.
(i) Find nonzero $a^{\prime} \in k\left[V^{\prime}\right]$ such that φ carries $k[V]$ into $k\left[V^{\prime}\right]_{a^{\prime}}$. Giving $V_{a^{\prime}}^{\prime}$ its natural structure of affine variety via the Rabinowitz trick (see HW6, Exercise 4(ii)), deduce that φ is induced by a dominant map of affine varieties $V_{a^{\prime}}^{\prime} \rightarrow V$.
(ii) If φ is an isomorphism, find nonzero $a^{\prime} \in k\left[V^{\prime}\right]$ and $a \in k[V]$ such that φ arises from an isomorphism of k-algebras $k[V]_{a} \simeq k\left[V^{\prime}\right]_{a^{\prime}}$ (i.e., φ arises from an isomorphism $V_{a^{\prime}}^{\prime} \simeq V_{a}$ when using the natural affine variety structures on these loci). In other words, the function field of an affine variety "remembers" information up to discarding a proper closed subset.
3. It is a general fact that if F^{\prime} / F is a finitely generated extension of fields and F is perfect (e.g., algebraically closed), then F^{\prime} admits a transcendence basis $\left\{x_{i}\right\}$ that is separating in the sense that the finite extension $F^{\prime} / F\left(x_{1}, \ldots, x_{n}\right)$ is separable. In particular, by the primitive element theorem this is primitive. The case of interest to us is $F=k$.
(i) Let $Z \subset k^{n}$ be an irreducible closed subset of dimension d. Choose a separating transcendence basis $\left\{x_{1}, \ldots, x_{d}\right\}$ of $k(Z)$ over k. Show that $k(Z) \simeq k\left(x_{1}, \ldots, x_{d}\right)[T] /(h)$ over k for an irreducible $h \in k\left[x_{1}, \ldots, x_{d}, T\right]$ that is monic in T and has positive T-degree. (Hint: clear denominators appropriately.)
(ii) Using Exercise 2(ii), deduce that Z and $V=\underline{Z}(h) \subset k^{d+1}$ have isomorphic dense open subsets in the sense that there are basic affine open subsets of Z and V whose coordinate rings are identified under the equality $k(Z)=k(V)$ defined by Exercise 2(ii).
(iii) For any nonzero $a \in Z$ and point $z \in Z_{a}$, explain how to compute $\mathscr{O}_{Z, z}$ in terms of $k[Z]_{a}$. (Hint: identify Z_{a} with the set of maximal ideals of $k[Z]_{a}$.) By applying the same to V, and using the result from class that the locus of smooth points in V is a non-empty open subset, prove that the locus of smooth points in Z contains a non-empty open subset of Z.
