Math 145. Homework 6

Do $2.24,2.26,2.28-2.32$ in the book. As usual, below k denotes an algebraically closed field.

1. Let R be a ring, I an ideal all of whose elements are nilpotent.
(i) If $r \in R$ maps into $(R / I)^{\times}$, prove $r \in R^{\times}$. (Do not invoke the existence of maximal ideals in a non-zero ring.) Make this explicit for $R=k[X] / X^{3}, r=-1+X, I=(X)$.
(ii) An element $e \in R$ is called idempotent if $e^{2}=e$. Using e and $1-e$, show that specifying an idempotent is 'the same' as specifying an ordered decomposition $R \simeq R_{1} \times R_{2}$ for rings R_{1}, R_{2}. Show that for every idempotent $\bar{e} \in R / I$, there is a unique idempotent $e \in R$ with $e \bmod I=\bar{e}$. Find all of the idempotents in $R=k[Y] \times k[Y] \times k[Y] \simeq$ $k[X, Y] / X(X-1)(X-\lambda)$ where $\lambda \in k-\{0,1\}$ and determine the associated decomposition of R as an ordered product in each case. Draw pictures.
(iii) If Z is an affine algebraic set, interpret (with proof!) idempotents in $k[Z]$ in terms of connected components of Z. Use this to show that $k[Z]$ has only finitely many idempotents.
(iv) If A is a finite k-algebra, possibly non-reduced, show that there is an isomorphism $A \simeq A_{1} \times \cdots \times A_{n}$ where the A_{i} are local finite k-algebras with nilpotent maximal ideal, corresponding to the finitely many maximal ideals of A. Make this explicit for $A=k[X] /(f)$ for a non-constant monic polynomial f.
2. Suppose k does not have characteristic 2 and let $f \in k[X]$ be non-constant. Prove that $Y^{2}-f(X)=0$ defines an irreducible smooth curve in k^{2} if and only if f has distinct roots.
3. Let $Z \subset k^{n}$ be an irreducible closed set. This exercise explores tangent spaces.
(i) Let $\mathfrak{m}_{z} \subset k[Z]$ be the maximal ideal associated to $z \in Z$, and M_{z} the maximal ideal of $\mathscr{O}_{Z, z}=k[Z]_{\mathfrak{m}_{z}}$. Show that the natural map $\mathfrak{m}_{z} / \mathfrak{m}_{z}^{2} \rightarrow M_{z} / M_{z}^{2}$ is an isomorphism (so we can compute tangent spaces either "globally" using $k[Z]$ or "locally" using $\mathscr{O}_{Z, z}$).
(ii) For $f: Z^{\prime} \rightarrow Z$ with Z^{\prime} irreducible and $z^{\prime} \in Z^{\prime}$ with $f\left(z^{\prime}\right)=z$, show $f^{*}: k[Z] \rightarrow k\left[Z^{\prime}\right]$ uniquely extends to a map $\mathscr{O}_{Z, z} \rightarrow \mathscr{O}_{Z^{\prime}, z^{\prime}}$ which moreover carries M_{z} into $M_{z^{\prime}}$. Defining $\mathrm{d} f\left(z^{\prime}\right): \mathrm{T}_{z^{\prime}}\left(Z^{\prime}\right) \rightarrow \mathrm{T}_{z}(Z)$ to be the linear dual of $M_{z} / M_{Z}^{2} \rightarrow M_{z^{\prime}} / M_{z^{\prime}}^{2}$, establish a Chain Rule $\mathrm{d}\left(f \circ f^{\prime}\right)\left(z^{\prime \prime}\right)=\mathrm{d} f\left(z^{\prime}\right) \circ \mathrm{d} f^{\prime}\left(z^{\prime \prime}\right)$ for any $f^{\prime}: Z^{\prime \prime} \rightarrow Z^{\prime}$ and $z^{\prime \prime} \in Z^{\prime \prime}$ with $f^{\prime}\left(z^{\prime \prime}\right)=z^{\prime}$.
(iii) Let $h_{1}, \ldots, h_{\delta} \in \mathfrak{m}_{z}$ represent a basis of $\mathfrak{m}_{z} / \mathfrak{m}_{z}^{2}=M_{z} / M_{z}^{2}$. We will soon prove in class that such h_{i} necessarily generate the ideal $M_{z}=\mathfrak{m}_{z} \mathscr{O}_{Z, z} \subset \mathscr{O}_{Z, z}$ (but not necessarily $\left.\mathfrak{m}_{z} \subset k[Z]!\right)$. Deduce via denominator-chasing that the h_{i} 's generate $\mathfrak{m}_{z} k[Z]_{a}$ for some $a \in k[Z]$ that is non-vanishing at z, and conclude that $\underline{Z}\left(h_{1}, \ldots, h_{\delta}\right) \cap Z_{a}=\{z\}$. Using this, prove that $h=\left(h_{1}, \ldots, h_{\delta}\right): Z \rightarrow k^{\delta}$ has z as an isolated point in the fiber $h^{-1}(0)$ (thereby completing the proof of the result in class that $\operatorname{dim} Z \leq \operatorname{dim} \mathrm{T}_{z}(Z)$).
4. Let Z be an affine algebraic set in k^{n}, not necessarily irreducible. Let $A=k[Z]$.
(i) For $f \in A$, explain how the (reduced!) k-algebra A_{f} for $f \in A$ is a k-subalgebra of the k-algebra of functions $Z_{f} \rightarrow k$, and check that the operation of restriction of a function on Z to a function on Z_{f} is compatible with the natural map $A \rightarrow A_{f}$.
(ii) If $f, g \in A$, show that f maps to a unit in A_{g} iff $Z_{g} \subseteq Z_{f}$, in which case $A \rightarrow A_{g}$ uniquely factors through $A \rightarrow A_{f}$. Show in such cases that the map $A_{f} \rightarrow A_{g}$ corresponds exactly to the restriction of a k-valued function on Z_{f} to a k-valued function on Z_{g}. (This is the "functoriality" of the Rabinowitz trick.)
(iii) Show that a collection of opens $\left\{Z_{f_{j}}\right\}$ covers Z if and only if the f_{j} 's generate 1 in A.
