MATH 145. HOMEWORK 6

Do 2.24, 2.26, 2.28–2.32 in the book. As usual, below k denotes an algebraically closed field.

1. Let R be a ring, I an ideal all of whose elements are nilpotent.

(i) If $r \in R$ maps into $(R/I)^{\times}$, prove $r \in R^{\times}$. (Do not invoke the existence of maximal ideals in a non-zero ring.) Make this explicit for $R = k[X]/X^3$, r = -1 + X, I = (X).

(ii) An element $e \in R$ is called *idempotent* if $e^2 = e$. Using e and 1 - e, show that specifying an idempotent is 'the same' as specifying an ordered decomposition $R \simeq R_1 \times R_2$ for rings R_1, R_2 . Show that for every idempotent $\overline{e} \in R/I$, there is a unique idempotent $e \in R$ with $e \mod I = \overline{e}$. Find all of the idempotents in $R = k[Y] \times k[Y] \times k[Y] \simeq k[X,Y]/X(X-1)(X-\lambda)$ where $\lambda \in k - \{0,1\}$ and determine the associated decomposition of R as an ordered product in each case. Draw pictures.

(*iii*) If Z is an affine algebraic set, interpret (with proof!) idempotents in k[Z] in terms of connected components of Z. Use this to show that k[Z] has only finitely many idempotents.

(*iv*) If A is a finite k-algebra, possibly non-reduced, show that there is an isomorphism $A \simeq A_1 \times \cdots \times A_n$ where the A_i are local finite k-algebras with nilpotent maximal ideal, corresponding to the finitely many maximal ideals of A. Make this explicit for A = k[X]/(f) for a non-constant monic polynomial f.

2. Suppose k does not have characteristic 2 and let $f \in k[X]$ be non-constant. Prove that $Y^2 - f(X) = 0$ defines an irreducible *smooth* curve in k^2 if and only if f has distinct roots.

3. Let $Z \subset k^n$ be an irreducible closed set. This exercise explores tangent spaces.

(i) Let $\mathfrak{m}_z \subset k[Z]$ be the maximal ideal associated to $z \in Z$, and M_z the maximal ideal of $\mathscr{O}_{Z,z} = k[Z]_{\mathfrak{m}_z}$. Show that the natural map $\mathfrak{m}_z/\mathfrak{m}_z^2 \to M_z/M_z^2$ is an isomorphism (so we can compute tangent spaces either "globally" using k[Z] or "locally" using $\mathscr{O}_{Z,z}$).

(ii) For $f: Z' \to Z$ with Z' irreducible and $z' \in Z'$ with f(z') = z, show $f^*: k[Z] \to k[Z']$ uniquely extends to a map $\mathcal{O}_{Z,z} \to \mathcal{O}_{Z',z'}$ which moreover carries M_z into $M_{z'}$. Defining $df(z'): T_{z'}(Z') \to T_z(Z)$ to be the linear dual of $M_z/M_Z^2 \to M_{z'}/M_{z'}^2$, establish a *Chain* Rule $d(f \circ f')(z'') = df(z') \circ df'(z'')$ for any $f': Z'' \to Z'$ and $z'' \in Z''$ with f'(z'') = z'.

(iii) Let $h_1, \ldots, h_{\delta} \in \mathfrak{m}_z$ represent a basis of $\mathfrak{m}_z/\mathfrak{m}_z^2 = M_z/M_z^2$. We will soon prove in class that such h_i necessarily generate the ideal $M_z = \mathfrak{m}_z \mathscr{O}_{Z,z} \subset \mathscr{O}_{Z,z}$ (but not necessarily $\mathfrak{m}_z \subset k[Z]$!). Deduce via denominator-chasing that the h_i 's generate $\mathfrak{m}_z k[Z]_a$ for some $a \in k[Z]$ that is non-vanishing at z, and conclude that $\underline{Z}(h_1, \ldots, h_{\delta}) \cap Z_a = \{z\}$. Using this, prove that $h = (h_1, \ldots, h_{\delta}) : Z \to k^{\delta}$ has z as an isolated point in the fiber $h^{-1}(0)$ (thereby completing the proof of the result in class that dim $Z \leq \dim T_z(Z)$).

4. Let Z be an affine algebraic set in k^n , not necessarily irreducible. Let A = k[Z].

(i) For $f \in A$, explain how the (reduced!) k-algebra A_f for $f \in A$ is a k-subalgebra of the k-algebra of functions $Z_f \to k$, and check that the operation of restriction of a function on Z to a function on Z_f is compatible with the natural map $A \to A_f$.

(ii) If $f, g \in A$, show that f maps to a unit in A_g iff $Z_g \subseteq Z_f$, in which case $A \to A_g$ uniquely factors through $A \to A_f$. Show in such cases that the map $A_f \to A_g$ corresponds exactly to the restriction of a k-valued function on Z_f to a k-valued function on Z_g . (This is the "functoriality" of the Rabinowitz trick.)

(iii) Show that a collection of opens $\{Z_{f_i}\}$ covers Z if and only if the f_j 's generate 1 in A.