Math 145. Homework 4

2.8, 2.11 (and find the coordinate ring of $G(f)$), 2.12 (draw a picture), $2.13,2.17$ in the book. As usual, k is algebraically closed (and "isomorphism" is via coordinate rings; see Exercise 2 below).
0 . Prove UFD's are integrally closed, and that $k[X, Y] /\left(Y^{2}-X^{3}\right)$ is a domain but not integrally closed. If char $(k) \neq 2$, prove $k[x, y, z] /\left(x y-z^{2}\right)$ is an integrally closed domain but not a UFD (hint: this is $A[z] /\left(z^{2}-a\right)$ for the UFD $A=k[x, y]$ and $\left.a=x y\right)$; extra credit for handling $\operatorname{char}(k)=2$.

1. (i) Let $Z=\underline{Z}(I) \subseteq k^{n}$ be an affine algebraic set, with I an ideal in $k\left[X_{1}, \ldots, X_{n}\right]$; don't assume I is radical. For any $z \in Z$ and open U in Z around z, prove that there exists $f \in k\left[X_{1}, \ldots, X_{n}\right] / I$ such that the open set $Z_{f} \stackrel{\text { def }}{=}\{z \in Z \mid f(z) \neq 0\}$ contains z and lies inside U. The upshot of this result is that the 'basic opens' Z_{f} form a base of opens for the Zariski topology on Z.
(ii) For $n, m \geq 1$, prove that the natural bijection $k^{n} \times k^{m} \rightarrow k^{n+m}$ is not continuous for the Zariski topology on the right and the product topology from the Zariski topologies on the left.
2. Let $Z \subseteq k^{n}, Z^{\prime} \subseteq k^{n^{\prime}}$ be two affine algebraic sets and let $f: Z \rightarrow Z^{\prime}$ be a "polynomial map" between them, with $f^{*}: k\left[Z^{\prime}\right] \rightarrow k[Z]$ the corresponding map of k-algebras.
(i) If $Z^{\prime \prime} \subseteq k^{n^{\prime \prime}}$ is a third affine algebraic set and $f^{\prime}: Z^{\prime} \rightarrow Z^{\prime \prime}$ is a polynomial map, show that $f^{\prime} \circ f: Z \rightarrow Z^{\prime \prime}$ is a polynomial map and $\left(f^{\prime} \circ f\right)^{*}=f^{*} \circ f^{\prime *}$. Also show that if $n^{\prime}=n$ and $Z^{\prime}=Z$ inside of $k^{n^{\prime}}=k^{n}$, then f is the identity if and only if f^{*} is the identity (so the "dictionary" between affine algebraic sets and finitely generated reduced k-algebras is compatible with maps).
(ii) Recall from class that for an affine algebraic set $\underline{Z}\left(I^{\prime}\right) \subseteq Z^{\prime}$ with I^{\prime} an ideal in $k\left[Z^{\prime}\right]$, we have

$$
f^{-1}\left(\underline{Z}\left(I^{\prime}\right)\right)=\underline{Z}\left(f^{*}\left(I^{\prime}\right) k[Z]\right),
$$

though the ideal $f^{*}\left(I^{\prime}\right) k[Z]$ might not be radical, even if I is radical. Describe this for the projection of $\left\{(x, y) \in k^{2} \mid x=y^{2}\right\}$ to the x-axis, with I^{\prime} corresponding to the maximal ideal of a point on the x-axis. When is $k[Z] / f^{*}\left(I^{\prime}\right) k[Z]$ non-reduced? Draw pictures, and don't ignore characteristic 2 .
3. Let k be an algebraically closed field. Let A be the image of the map $k\left[T_{1}, T_{2}, T_{3}, T_{4}\right] \rightarrow k[X, Y]$ which sends $T_{1} \mapsto X, T_{2} \mapsto X Y, T_{3} \mapsto Y^{2}, T_{4} \mapsto Y^{3}$, so A is a finitely generated domain over k. Let P be the kernel and $Z:=\underline{Z}(P) \subseteq k^{4}$ an irreducible algebraic set, and t_{j} the image of T_{j} in A.
(i) Show that A is the k-subalgebra of $k[X, Y]$ consisting of elements of the form $c+f$ for $c \in k$ and $f \in\left(X, Y^{2}\right)$, and check that $t_{2}^{2}=t_{1}^{2} t_{3}, t_{2} t_{4}=t_{1} t_{3}^{2}, t_{2} t_{3}=t_{1} t_{4}, t_{3}^{3}=t_{4}^{2}$. Show also that the inclusion $A \rightarrow k[X, Y]$ is a finite map, identifying the fraction fields of these domains. Let $\pi: k^{2} \rightarrow Z \subset k^{4}$ be the corresponding geometric map $\left((x, y) \mapsto\left(x, x y, y^{2}, y^{3}\right)\right)$. Show that for $a \in A$ with $a \notin(X, Y)$, necessarily $Y \notin A_{a}$ inside of this common fraction field.
(ii) By finiteness, π is surjective onto Z and closed. Show that $\pi^{-1}(0,0,0,0)=(0,0)$, the two open sets defined by $t_{1} \neq 0, t_{3} \neq 0$ cover $Z-\{(0,0,0,0)\}$, and the maps $A_{t_{1}} \rightarrow k[X, Y]_{X}$ and $A_{t_{3}} \rightarrow k[X, Y]_{Y}$ are isomorphisms. (Geometrically, view Z as obtained from k^{2} by crunching up $(0,0) \in k^{2}$ into a nasty singularity, with $k^{2} \rightarrow Z$ inducing an "isomorphism" away from the origin.)
(iii) Show that $f=t_{2} / t_{1} \in k(Z)$ is a rational function defined on $Z-\{(0,0,0,0)\}$ and prove it is not defined at $(0,0,0,0)$ (hint: use the map π). This gives an example an irreducible surface with a rational function whose pole set is a single point! By contrast, recall from the previous homework that if $Z \subseteq k^{n}$ is an irreducible affine variety for which $k[Z]$ is a UFD (e.g., $Z=k^{n}$), then the pole set of any $f \in k(Z)$ is a finite (possibly empty) union of "codimension 1 " subvarieties.
4. Let $Z \subset \mathbf{C}^{n}$ and $Z^{\prime} \subset \mathbf{C}^{m}$ be closed in the classical topology, and $f: Z \rightarrow Z^{\prime}$ a continuous map with finite fibers. Prove that f is closed if and only if any sequence $\left\{z_{n}\right\}$ in Z with $f\left(z_{n}\right) \rightarrow z^{\prime} \in Z^{\prime}$ has a convergent subsequence. (Hint: bounded sequences in \mathbf{C}^{n} have convergent subsequences)

