Math 145. Homework 1

"As long as Algebra and Geometry were separated, their progress was slow and their use limited; but once these sciences were united, they lent each other mutual support and advanced rapidly together towards perfection." Lagrange (1795)

Ch 1: 1.4, 1.5, 1.10, 1.17, 1.22

1. Find all solutions to $x^{2}+2 y^{2}=3$ with $x, y \in \mathbf{Q}$, and prove that $x^{2}+3 y^{2}=2$ has no solutions in Q. Can you state a generalization for $a x^{2}+b y^{2}=c$ with $a, b, c \in k^{\times}$and k any field not of characteristic 2? Draw pictures.
2. Let k be an algebraically closed field. Thinking about tangency, give an example of affine algebraic sets Z_{1}, Z_{2} in k^{2} with $\underline{I}\left(Z_{1} \cap Z_{2}\right) \neq \underline{I}\left(Z_{1}\right)+\underline{I}\left(Z_{2}\right)$. Draw a picture.
3. This exercise develops basic facts for manipulating polynomials in several variables.
(i Let R be a ring. Define $R\left[X_{1}, \ldots, X_{n}\right]$ in terms of 'sequences of coefficients', define on it a structure of commutative R-algebra, and prove that it has the following universal mapping property: for any R-algebra A and any $a_{1}, \ldots, a_{n} \in A$, there is a unique map of R-algebras $R\left[X_{1}, \ldots, X_{n}\right] \rightarrow A$ which sends X_{i} to a_{i}. The image of f under this map is called the value of f at $\left(a_{1}, \ldots, a_{n}\right)$. Note that when $R=0$, the only R-algebra is R itself (e.g., $R[X]=R$ for $R=0$).
(ii) If I is the ideal in $R\left[X_{1}, \ldots, X_{n}\right]$ generated by elements f_{α}, then state and prove a universal mapping property for the R-algebra $R\left[X_{1}, \ldots, X_{n}\right] / I$. Interpret this in the special case $I=\left(X_{1}-r_{1}, \ldots, X_{n}-r_{n}\right)$ for $r_{j} \in R$. Conclude that $R[X]$ is not isomorphic to R as an R-algebra if $R \neq 0$, but give an example of a non-zero ring R for which there is an isomorphism $R[X] \simeq R$ as abstract rings.
(iii) For $f \in R[X], g \in R[Y]$, prove that there are unique isomorphisms of R-algebras

$$
(R[Y] /(g))[X] /(f) \simeq R[X, Y] /(f, g) \simeq(R[X] /(f))[Y] /(g)
$$

determined by " $X \mapsto X$ " and " $Y \mapsto Y$ ". Generalize for any finite number of variables, with (f) and (g) replaced by any ideals in the corresponding polynomial rings.
4. (i) If A is a UFD, prove that $A\left[X_{1}, \ldots, X_{n}\right]$ is a UFD (e.g., $A=\mathbf{Z}$ or A a field). Prove rigorously that $k[X, Y, Z, W] /(X Y-Z W)$ is a domain but is not a UFD, where k is an algebraically closed field.
(ii) Prove that if k is a field and $f \in k[X]$ with positive degree is a product of distinct irreducible polynomials, then $Y^{2}-f \in k[X, Y]$ is irreducible. (Hint: $k[X, Y]=(k[X])[Y] \subset$ $k(X)[Y]$.

