
Math 145. Smoothness for irreducible curves and hypersurfaces

1. Hypersurfaces

Let V = {f = 0} ⊂ kn for an irreducible f ∈ k[t1, . . . , tn]. We claim that the locus of smooth points
ξ ∈ V is a non-empty Zariski-open set; in particular, it is Zariski-dense. Put another way, we claim that
the locus of non-smooth points in an irreducible affine hypersurface is a proper Zariski-closed subset of V .
For example, in an irreducible plane curve this says that the set of non-smooth points is finite. (Using more
powerful tools, it can be shown that these assertions for irreducible hypersurfaces are valid for any affine
variety whatsoever. Our argument will use the “explicit” nature of hypersurfaces, so it does not generalize.)

As we have seen in class, a point ξ ∈ V is smooth precisely when one of the partial derivatives ∂ti(f)
is non-zero at ξ. Hence, the non-smooth locus in V = Z(f) is the Zariski-closed set Z(f, ∂t1f, . . . , ∂tnf).
This shows that the smooth locus in V is Zariski-open, but perhaps it is empty! It remains to show that V
contains some smooth point (as then the proved Zariski-openness and the irreducibility of V takes care of
the density aspects). We argue by contradiction: suppose that every point in V is non-smooth, which is to
say that V is contained in the zero locus of the ideal generated by the ∂tif ’s. That is, we assume

Z(f) ⊆ Z(∂t1f, . . . , ∂tnf).

Since I(V ) = (f) by the Nullstellensatz (as f is irreducible in the UFD k[t1, . . . , tn]), it follows that

rad(∂t1f, . . . , ∂tnf) ⊆ (f),

so ∂tif ∈ (f) for all i. That is, f |∂tif for all i. This sounds impossible, since ∂tif has lower ti-degree than f
(assuming that ti appears in f), but keep in mind that in positive characteristic a nonzero polynomial can
have vanishing derivative. More specifically:

Lemma 1.1. Consider a non-constant f ∈ k[t1, . . . , tn] such that ti0 appears in f and f |∂ti0 f . Then

char(k) = p > 0 and f involves ti0 only through powers of tpi0 .

Proof. By relabeling the variables, we can assume i0 = n and that f involves tn (or else there is nothing to
do). Consider the tn-expansion

f = h0 + h1tn + · · ·+ hdt
d
n

with hj ∈ k[t1, . . . , tn−1] and hd 6= 0 with d > 0. Then

∂tnf = h1 + 2h2tn + · · ·+ dhdt
d−1
n ,

so in k(t1, . . . , tn−1)[tn] we see that if ∂tnf 6= 0 then its tn-degree is < d. Such a degree bound is incompatible
with divisibility by f , so ∂tnf = 0. In other words, jhj = 0 for all 1 ≤ j ≤ d. In other words, if hj 6= 0 then
j = 0 in k. Since hd 6= 0 we at least have d = 0 in k, so char(k) = p > 0 (as d > 0). Hence, p|j whenever
hj 6= 0. This says exactly that f lies in k[t1, . . . , tn−1][tpn], as desired. �

Applying the Lemma to the irreducible f , since f |∂tif for all i and some ti does occur in f we see that
necessarily char(k) = p > 0 and every ti appearing in f must appear only through powers of tpi . That
is, under our assumption that Z(f) has no smooth points we see that necessarily char(k) = p > 0 and
f ∈ k[tp1, . . . , t

p
n]. Thus, for every monomial

∏
teii appearing in f we have p|ei for all i (some ei might be

0, but that is fine). Writing ei = pe′i, such a monomial is the pth power of
∏
t
e′i
i . The coefficient c of

∏
teii

appearing in f can also be written as c′
p

for some c′ ∈ k since k is algebraically closed. We conclude that
f is a sum of pth powers, so f itself is a pth power in k[t1, . . . , tn] (as we are in characteristic p). This is a
contradiction, since p ≥ 2 and f is assumed to be irreducible in k[t1, . . . , tn]!

2. Curves

Let C be an irreducible affine curve. In class we asserted that C is smooth if and only if k[C] is integrally
closed, and the proof reduced to the following fact from commutative algebra that we now establish.

Proposition 2.1. Let R be a 1-dimensional local noetherian domain with fraction field K. Then R is
integrally closed in K if and only if R is a discrete valuation ring.
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The property of being integrally closed for higher-dimensional local noetherian domains has no concrete
description akin to the notion of a discrete valuation ring in the 1-dimensional case.

Proof. Discrete valuation rings are UFD’s, hence integrally closed, so the real content is the converse direc-
tion. Letting m be the unique maximal ideal, since R is a 1-dimensional domain it follows that the prime
ideals (0) and m in R are distinct and must be the only prime ideals of R.

The first key point is that m/m2 6= 0. To prove this, assume to the contrary. Recall from Nakayama’s
Lemma that if M is a finitely generated module over a local ring (A, n) and M/nM = 0 then M = 0. This
can be applied to A = R and M = m because the ideal m of R is finitely generated as an R-module (since
R is noetherian). Since m 6= 0, it follows that indeed m/m2 6= 0. We may therefore choose an element
t ∈ m − m2. Our goal is to show that m = (t) (thereby establishing one of the equivalent conditions that
defines a discrete valuation ring).

Suppose that the inclusion tR ⊆ m is not an equality. We shall use this to construct an element of K not
in R that is integral over R, so R is not integrally closed in K. Put another way, this will show that if R is
integrally closed in K then necessarily tR = m, so R is indeed a discrete valuation ring.

In the quotient ring R/tR the nonzero prime ideal P = m/tR is the only prime (since R has (0) and m as
its only primes, and t 6= 0). Its elements must all be nilpotent, due to:

Lemma 2.2. If A is a noetherian ring then the ideal of nilpotent elements is precisely the intersection of
the prime ideals.

Proof. For any prime ideal P of A and any nilpotent a ∈ A we have an = 0 ∈ P for some n > 0, so a ∈ P
by primality. Hence, nilpotent elements lie in all primes. To show conversely that any a ∈ A lying in every
prime of A must be nilpotent, we prove the contrapositive: if a is not nilpotent then we will construct a
prime ideal not containing a. The non-nilpotence of a implies that the localization Aa is non-zero (see HW2,
Exercise 3). But Aa is noetherian since any ideal J of Aa is generated by the ideal I ⊂ A of “numerators” of
elements of J (so the finite generation of I implies the same for J). We know that every nonzero noetherian
ring contains prime ideals (e.g., maximal ideals!), so Aa contains a prime ideal Q. Its preimage P under
A→ Aa is a prime ideal of A (since A/P is a subring of the ring Aa/Q that is a domain), and a 6∈ P since
the prime Q of Aa contains no units. �

Since the prime ideal P of R/tR consists entirely of nilpotent elements and it is finitely generated, some
power Pn vanishes. (The specific value of n is determined by the number of generators of P and a common
exponent of nilpotence for each of them, in accordance with the multi-nomial theorem.) But P = m/tR, so
mn−1P = 0. By the hypothesis tR 6= m we have P 6= 0, so n > 1. In other words, the descending chain
of ideals P,mP,m2P, . . . ,mn−1P begins at a nonzero ideal and ends at the zero ideal, so there must be an
integer j ≥ 0 such that mjP 6= 0 but mj+1P = 0. Hence, any nonzero element of mjP is a nonzero element
of P = m/tR that is killed by m. Thus, by choosing such a nonzero element and picking a representative for
it in m, we obtain an element r ∈ m such that r 6∈ tR but mr ⊆ tR.

Consider the ratio a := r/t ∈ K. By the choice of r we have a 6∈ R. We will show that a is nonetheless
integral over R, so that will complete the proof. By the choice of r we also have am ⊆ R. Thus, J := am is
an ideal of R, since R-submodules of R are just ideals by another name. Since we chose t 6∈ m2, certainly tR
is not contained in m2. But rm ⊆ m2, so tR 6= rm. This says J 6= R, as desired. Since J is a proper ideal in
the local noetherian ring R, it must be contained in the unique maximal ideal m, so

a ·m ⊆ m.

It now makes sense to consider the multiplication-by-a endomorphism of m. This is an R-linear endo-
morphism T : m → m. The R-module m is finitely generated since R is noetherian, and in our study of
the basics of integrality we proved a “generalized Cayley-Hamilton theorem” to the effect that every linear
endomorphism of a finitely generated module over a commutative ring satisfies a monic polynomial over the
coefficient ring (with this polynomial constructed as a determinant of a suitable matrix over the coefficient
ring). Thus, there is a monic polynomial f ∈ R[x] such that f(T ) = 0 as an endomorphism of m. But for
any b ∈ m we have f(T )(b) = f(a)b by the definition of the endomorphism T , so f(a) kills m. Since R is a
domain and m 6= 0, this forces f(a) = 0. Thus, a is integral over R, as desired. �


