
Math 145. Morphisms from quasi-projective varieties

1. Motivation

For homogeneous polynomials F0, . . . , Fm ∈ k[x0, . . . , xn] of the same degree d > 0 we wish to
prove by a systematic method that the well-defined map of sets

ϕ : Pn − Z(F0, . . . , Fm)→ Pm

given by
[x0, . . . , xn] 7→ [F0(x), . . . , Fm(x)]

is a morphism. The principle is to take an algebro-geometric view of the map of sets

q : An+1 − {0} → Pn

given by (x0, . . . , xn) 7→ [x0, . . . , xn] in the definition of projective space. Note that k×-scaling on
An+1 − {0} preserves the fibers of q, so for any subset S ⊂ Pn the preimage q−1(S) ⊂ An+1 − {0}
is stable under k×-scaling.

We claim that q really is a morphism of varieties, and that if U ⊂ Pn is any non-empty open set
(so q−1(U) is open in An+1−{0}) then for any morphism f : q−1(U)→ Y to an abstract algebraic
set which is invariant under k×-scaling on q−1(U) the resulting well-defined map of sets f : U → Y
given by [x0, . . . , xn] 7→ f(x) is a morphism. By taking U = Pn−Z(F0, . . . , Fm), this would reduce
the problem of whether or not ϕ above is a morphism to the analogous problem for the set map
An+1 − {0} → Pm (which we will analyze by working Zariski-locally on the source). In class we
saw an application to the fact that the action on Pn by PGLn+1(k) is through (auto)morphisms
as a variety (not just as a set), which may seem messy to verify by bare hands since this action
generally does not carry any of the “standard affine opens” Ui = {xi 6= 0} into any other.

2. The universal property of q

Let us first show that q is a morphism, and that it has the asserted mapping property for
morphisms f : q−1(U) → Y (with U ⊂ Pn a non-empty open set). The morphism property for q
is local on the source in the sense that it suffices to check it on the constituents of an open cover
of the source (since continuity and sheaf compatibility are local on the source) We work with the
open affine cover Vi = {xi 6= 0} of An+1 − {0} (for 0 ≤ i ≤ n). The ith such open subset is carried
into the open affine An = Ui ⊂ Pn, with

k[Vi] = k[x0, . . . , xn]xi , k[Ui] = k[x0/xi, . . . , xn/xi].

There is an evident injective map
k[Ui] ↪→ k[Vi],

and it is straightforward to check (do it!) that the induced morphism Vi → Ui set-theoretically
recovers q|Vi . Hence, q is indeed a morphism.

Of greater interest is the mapping property of q: if U ⊂ Pn is a non-empty open set and
f : q−1(U) → Y is a morphism to an abstract algebraic set Y such that f is invariant under the
k×-scaling action on q−1(U) then we shall show that the induced map of sets f : U → Y defined by
[x0, . . . , xn] 7→ f(x) is a morphism. For each of the standard affine opens Ui = {xi 6= 0} ⊂ Pn, the
overlaps U ∩Ui are an open cover of U (with its open subspace structure from Pn). For a set map
between abstract algebraic sets to be a morphism it suffices to work locally on the source (i.e., on
the constituents of an open covering), so it suffices to show that f |U∩Ui is a morphism for each i.
That is, we may work over each U ∩ Ui separately, so we fix such an i0 and work on U ∩ Ui0 .
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The map q−1(Ui)→ Ui = An can be expressed in a rather concrete form (as we saw in the proof
that Ui is a morphism), namely the map

πi : U ′i = {x ∈ An+1 |xi 6= 0} → An = Ui

between affine varieties arising from q|U ′
i

defined by

(x0, . . . , xn) 7→ (x0/xi, . . . , xn/xi).

Note in particular that there is an “algebraic section”: a morphism si : An → U ′i given by
(t0, . . . , t̃i, . . . , tn) 7→ (t0, . . . , ti−1, 1, ti+1, . . . , tn) such that πi ◦ si = idAn . (Algebraically, si corre-
sponds to the k-algebra map k[U ′i ] = k[An+1]xi → k[t0, . . . , t̃i, . . . , tn] defined by xj 7→ tj for j 6= i
and xi 7→ 1.) In more geometric terms, we have an isomorphism of affine varieties

hi : U ′i ' An × (A1 − {0})

given by (x0, . . . , xn) 7→ ((x0/xi, . . . , xn/xi), xi) with inverse

((t0, . . . , t̂i, . . . , tn), c) 7→ (ct0, . . . , cti−1, c, cti+1, . . . , ctn),

and this carries πi : U ′i → An over to the standard projection An × (A1 − {0}) → An from the
direct product. In these terms, si corresponds to the “constant section” An → An × (A1 − {0})
defined by t 7→ (t, 1).

Returning to our problem of verifying that f : U ∩ Ui → Y is a morphism, we note that
the isomorphism hi carries q−1(Ui) = U ′i over to Ui × (A1 − {0}) in such a way that πi goes
over to projection to the Ui-factor of the direct product and the k×-scaling action goes over to
the usual k×-scaling action on the second factor A1 − {0} of the direct product. Hence, this
restricts to an isomorphism q−1(U ∩ Ui) ' (U ∩ Ui) × (A1 − {0}) carrying the k×-scaling action
on q−1(U ∩ Ui) over to the usual scaling action on the second factor of (U ∩ Ui)× (A1 − {0}) and
carrying q : q−1(U ∩ Ui) → U ∩ Ui over to the standard projection to the first factor of the direct
product.

Our problem now takes on a more concrete form, as follows. For Vi = U ∩ Ui, we are given
a morphism fi : Vi × (A1 − {0}) → Y such that fi(v, c) = fi(v, tc) for all t ∈ k× and we aim
to show that the well-defined map of sets f i : Vi → Y given by v 7→ fi(v, t) for all t ∈ k× is a
morphism. But this is easy: just take f i(v) = fi(v, 1)! That is, we recognize the set map f i as
the composition of the morphism fi with the inclusion morphism Vi → Vi × (A1 − {0}) defined by
v 7→ (v, 1) (corresponding to the k-algebra map k[Vi][x, 1/x] → k[Vi] via x 7→ 1 when Vi is affine,
and in general built from the analogue of this over open affines in Vi).

3. Application

To illustrate the mapping property of q, we now apply it to address the question raised at the
outset, namely proving that ϕ is a morphism. The set map

f : An+1 − Z(F0, . . . , Fm)→ Pm

given by
(x0, . . . , xn) 7→ [F0(x), . . . , Fm(x)]

is well-defined and visibly invariant under k×-scaling on the source (which is the q-preimage of the
open complement of the locus of common zeros of the Fj ’s in Pn), so it suffices to show that f
is a morphism. It suffices to find an open cover {Ωα} of the source so that f |Ωα : Ωα → Pm is a
morphism for each α.
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We take our open cover to be the open sets Vj = An+1 − Z(Fj). This is carried by f into the
open set {yj 6= 0} in Pm (where y0, . . . , ym denote the homogeneous “coordinates” on Pm), so it
suffices to show that each of the set maps

fj : Vj → {yj 6= 0} = Am

given by
(x0, . . . , xn) 7→ (F0(x)/Fj(x), . . . , Fm(x)/Fj(x))

is a morphism. But Vj is affine with coordinate ring k[x0, . . . , xn]Fj and the target {yj 6= 0} = Am

of fj is an affine space with coordinate ring k[y0/yj , . . . , ym/yj ], so we just need to write down a
map of k-algebras

k[y0/yj , . . . , ym/yj ] 7→ k[x0, . . . , xn]Fj
that induces fj . It is straightforward to check that the map

yi/yj 7→ Fi(x)/Fj(x) ∈ k[x0, . . . , xn]Fj
does the job (check!).


