Math 145. Nakayama's Lemma

Let R be a local ring, with maximal ideal \mathfrak{m}, and let M be a finitely generated R-module. The quotient module $M_{0}=M / \mathfrak{m} M$ is naturally a module over the residue field $k=R / \mathfrak{m}$, and so M_{0} is a finite-dimensional k-vector space since any finite spanning set for M over R induces a spanning set for M_{0} over k.

The aim of this handout is to prove a "residual criterion" for a finite set of elements of M to be a spanning set over R by working in the k-vector space M_{0}.

Theorem 0.1. A finite subset $\left\{m_{1}, \ldots, m_{r}\right\}$ of M is a spanning set over R if their residue classes $\bar{m}_{i}=$ $m_{i} \bmod \mathfrak{m} M$ span M_{0} over k. In particular, if $M_{0}=0$ then $M=0$.

The final part follows from the rest by taking $\left\{m_{i}\right\}$ to be the singleton $\{0\}$. In fact, we'll see that this special case contains all of the real content of the theorem.

Proof. Let $M^{\prime}=M /\left(\sum R m_{i}\right)$. This is finitely generated over R since M is, and $M^{\prime} / \mathfrak{m} M^{\prime}=0$ because $M=\sum R m_{i}+\mathfrak{m} M$ by hypothesis and projecting this into M^{\prime} kills the m_{i} 's and carries $\mathfrak{m} M$ into $\mathfrak{m} M^{\prime}$. (That is, we have $M^{\prime}=\mathfrak{m} M^{\prime}$, as asserted.) Since our problem is to show that $M^{\prime}=0$, and we know that $M^{\prime} / \mathfrak{m} M^{\prime}=0$, we may rename M^{\prime} as M to reduce to showing that if $M_{0}=0$ then $M=0$. This implication is what we shall now prove.

By hypothesis M has a finite generating set, say $\left\{v_{1}, \ldots, v_{n}\right\}$. That is, $M=\sum R v_{i}$. But $M=\mathfrak{m} M$ since $M_{0}=0$, so in fact $M=\sum \mathfrak{m} v_{i}$. In particular, for all j we have expressions

$$
v_{j}=\sum a_{i j} v_{i}
$$

with $a_{i j} \in \mathfrak{m}$. Subtracting the right side over to the left side, we get a system of n equations in the v 's, taking the matrix form

$$
\left(\mathrm{id}_{n}-\left(a_{i j}\right)\right)\left(\begin{array}{c}
v_{1} \\
\ldots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\ldots \\
0
\end{array}\right)
$$

The crux of the matter is to show that $n \times n$ matrix on the left side is invertible over R, as then we can multiply both sides by the inverse matrix and so conclude that all v_{i} 's vanish in M, whence $M=0$ since the v_{i} 's were chosen to span M over R. If we call this matrix on the left side A then $\operatorname{det}(A) \equiv 1 \bmod \mathfrak{m}$ since $A \bmod \mathfrak{m}$ is the $n \times n$ identity matrix over $R / \mathfrak{m}=k$. Thus, $\operatorname{det}(A) \in R^{\times} \operatorname{since} R$ is $\operatorname{local}(\operatorname{det}(A) \in R$ is not in the unique maximal ideal \mathfrak{m}, so it must be a unit).

For any matrix A over any ring R whatsoever, we claim that A has a 2 -sided inverse if $\operatorname{det}(A) \in R^{\times}$. (The converse is true and obvious due to multiplicativity for determinants of matrices over general commutative rings.) To prove this, consider the classical "adjugate" matrix $\operatorname{adj}(A)$ whose $i j$-entry is $(-1)^{i+j}$ times the $(n-1) \times(n-1)$ minor of A obtained by deleting the i th row and j th column. We claim that this satisfies the "universal identity"

$$
A \cdot \operatorname{adj}(A)=\operatorname{adj}(A) \cdot A=\operatorname{det}(A) \cdot \operatorname{id}_{n}
$$

Well, this identity is reduced to the "universal" case for the matrix $\left(X_{i j}\right)$ over the ring $\mathbf{Z}\left[X_{i j}\right]$ that is a domain, for which the proof is reduced to its fraction field, a case that we know via linear algebra! Hence, if $\operatorname{det}(A)$ is a unit then $(\operatorname{det}(A))^{-1} \operatorname{adj}(A)$ is a 2 -sided inverse to A.

