MATH 145. MAXSPEC
In this handout, we aim to prove two results. First, we prove a key fact which was used
in the proof in class of the existence of the sheaf &4 on Max(A) for any reduced finitely
generated k-algebra A. Then, with this sheaf in place, we show in a precise sense that A is
functorially determined by the ringed space MaxSpec(A) := (Max(A), O4) over k.

1. GLUING LOCALIZATIONS

Let A be a reduced finitely generated k-algebra, and let X = Max(A). For each a € A
the open subset X, = X — V4((a)) is naturally identified with Max(A,) and A, is thereby
identified as a k-subalgebra of the k-algebra of functions on X,. (Explicitly, since a is
non-vanishing at every = € X,, the map A, — {X, — k} carries b/a" to the function
x> b(z)/a(x)". See HW6 Exercise 4(i).)

By HW6 Exercise 4(ii) if X, C X, then a has unit image in A, and the resulting unique
A-algebra map A, — A, is compatible with the restriction map carrying k-valued functions
on X, to k-valued functions on X, . In particular, for any a,a’ € A we have X, = X, N X,
so fractions f = b/a" € A, and f' =b'/d " e A, viewed as k-valued functions on X, and
X respectively agree on X, N X, if and only if f and f’ have the same images in the
common localization A, = (Ag)er = (Aa)a-

Theorem 1.1. Let f : X = Max(A) — k be a function, and choose ay,...,a, € A such
that the open sets X,, cover X. If f’Xai € A,, as a k-valued function on X, for each i then
f € A as a k-valued function on X.

Proof. The condition that {X,, } covers X is that their complements V4 (a;) have empty total
intersection. But this intersection is Va((a1, ..., a,)), so the emptiness says that the ideal
(ay,...,a,) is not contained in any maximal ideals of A, which is to say that (ai,...,a,) =
(1).

In view of the discussion preceding the Theorem, we can now express the problem in
terms of commutative algebra with A and its localizations: if aq,...,a, € A generate 1 and
fi € A,, are elements such that f; = f; in A,,q, for all i # j then there exists f € A such that
f = fiin A,, for all i. To prove this, we write f; = b;/a;" for all i. We may and do increase
the exponent in each of these denominators (by multiplying the numerators accordingly) so
that n; = n for all i. The equality f; = f; in Ay, says that the element a7b; — ai'b; of
A vanishes in A,,,, for all ¢,j. That is, this difference is killed in A by (a;a;)™ for some
n;; > 0, and we may certainly increase these to all equal some common m > 0. Hence, for
all 7 # j we have

(aia;)™ (afb; — ai'b;) =0,
or equivaently
af "™ (aib;) — a7 ™ (afb;) = 0
in A for all « # j.

We arranged that (ay,...,a,) = (1), so by raising an identity ) z;a; = 1 to a large power

we see that (af,...,al) = (1) for all » > 1. Setting » = n + m, we get ¢; € A such that
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(1.1) Zcia;”m =1
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This should be viewed as a “partition of unity”. For all 7 # j we have

@) = o a)

in A, so if we multiply both sides of (1.1) by a}}b; we get
ajb; = Zcia?era?bj = Zcia?er(a?bi) = (Z ciapb;)ay ™™,

Since f; = b;/al = (b;a™)/a}™™, if we define e = n+m and b}, = b;a™ then f; = b}/a$ for all

1 and
b;. = (Z cib;)aj

in A for all j. Thus,
fi = b;/aj = chbi

in A,, for all i. That is, the element f = . ¢;b; € A satisfies f = f; in A,, for all 4. |

2. GEOMETRIC OBJECTS ATTACHED TO RINGS

For any reduced finitely generated k-algebra A, we define the ringed space
MaxSpec(A) = (Max(A), O4)

over k attached to A. We know that the topological space Max(A) is contravariant in A, and
we wish to upgrade this to a contravariance for MaxSpec(A). More importantly, once this
is done, we will show that for a second reduced finitely generated k-algebra B, the resulting
map of sets

Homy, a1¢(A, B) — Hom(MaxSpec(B), MaxSpec(A))

is bijective: MaxSpec(A) functorially encodes A.

Lemma 2.1. For any map of k-algebras ¢ : A — B, pullback of k-valued functions along
the continuous map ¢ : Max(B) — Max(A) carries Oa(U) into Og(¢p=*(U)) for all open
U C Max(A). That is, ¢ underlies a uniquely determined map of ringed spaces

MaxSpec(¢) : MaxSpec(B) — MaxSpec(A)
over k.

Proof. Choose f € O4(U). To show that fo ¢ : ¢~ 1(U) — k lies in Op(¢~*(U)), by the
local nature of @5 we just have to find an open cover of ¢1(U) by subsets of Y = Max(B)
of the form Y}, such that (f o $)|yb_ € By, for all 1.

Since U is open in X = Max(;l), it has an open cover by sets of the form X,,. The
preimage of V4(a) under ¢ is Vp(¢(a)) since a(¢(y)) = (¢(a))(y), so ¢ *(Xa) = Yy by

passing to complements. Hence, the open sets Yy 4,) cover 5*1(U ), so it suffices to show that

(f o d)lv,,, € Bo(ay for all i. But
(f © )‘Y(j)(ai) = (f‘XaZ) ° ¢,
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and flx, = fi € Aq, for all i since f € O4(U). Thus, we are reduced to showing that

pullback of k-valued functions along ¢ : Yy — X, induces ¢ : A, — Bgy,). This is the
problem of comparing two maps from A, into the k-algebra of k-valued functions on Y,
and as such it suffices to compare after composing with A — A, (due to the uniqueness
aspect of the universal property of this localization).

Since A — A, is induced by the restriction map along X, < X on k-valued functions
(HW6, Exercise 4(i)), our problem is to show that pullback of k-valued functions along the
composite map Yy — X, — X carries A into By via ¢. But this composite map of
topological spaces is equal to the composite map

Y¢(a) —-Y - X

(the latter being ¢), and pullback of k-valued functions along Yy, — Y induces the natural
map B — Bgyq). Hence, we are finally reduced to checking that pullback of k-valued functions

along ¢ : Y — X induces ¢ : A — B. In view of the definition of 5, this was a calculation
early in our study of “polynomial maps” (in terms of a choice of presentation of each of A
and B as quotients of polynomial rings over k). [ |

It is clear that if ¢ : B — C'is a second such map then
MaxSpec(¢ o ¢) = MaxSpec(¢) o MaxSpec(1)).

Hence, A ~» MaxSpec(A) is a contravariant functor from the category of reduced finitely
generated k-algebras to the category of ringed spaces over k. The key fact is that this
construction involves no new maps in the following sense:

Theorem 2.2. The natural map of sets
Homy, n15(A, B) — Hom(MaxSpec(B), MaxSpec(A))
defined by ¢ — gg is bijective.

Proof. The map induced by pullback along ¢ on global k-valued functions carries A into B
via ¢. Hence, ¢ as a map between ringed spaces over k recovers ¢! This proves the injectivity.

Now let f : MaxSpec(B) — MaxSpec(A) be an arbitrary map as ringed spaces over
k. Pullback along f on global k-valued functions carries A = 04(Max(A)) into B =

Op(Max(B)) via some k-algebra map ¢. We therefore aim to prove that f = ¢.
Since a map between ringed spaces over k is determined by the map on underlying topolog-
ical spaces, it suffices to show that for y € Y = Max(B), the point z = f(y) € X = Max(A)

is equal to g(y) Since a point of X is just a maximal ideal of A, and so is determined by
the set of elements a € A that vanish at this point (this set being exactly the associated

maximal ideal of A), we just have to show that a(x) = 0 if and only if a(¢(y)) = 0. But
a(z) = a(f(y)) = (ao f)(y) = (¢(a))(y) by definition of ¢. By the computations from our

early study of polynomial maps, we know that (p(a))(y) = a(é(y)). Hence, a(x) = a(¢p(y))
for all @ € A, so x = ¢(y) as desired. [



