MATH 145. MAXSPEC

In this handout, we aim to prove two results. First, we prove a key fact which was used in the proof in class of the existence of the sheaf \mathscr{O}_A on $\operatorname{Max}(A)$ for any reduced finitely generated k-algebra A. Then, with this sheaf in place, we show in a precise sense that A is functorially determined by the ringed space $\operatorname{Max}\operatorname{Spec}(A) := (\operatorname{Max}(A), \mathscr{O}_A)$ over k.

1. Gluing localizations

Let A be a reduced finitely generated k-algebra, and let X = Max(A). For each $a \in A$ the open subset $X_a = X - V_A((a))$ is naturally identified with $Max(A_a)$ and A_a is thereby identified as a k-subalgebra of the k-algebra of functions on X_a . (Explicitly, since a is non-vanishing at every $x \in X_a$, the map $A_a \to \{X_a \to k\}$ carries b/a^n to the function $x \mapsto b(x)/a(x)^n$. See HW6 Exercise 4(i).)

By HW6 Exercise 4(ii) if $X_{a'} \subset X_a$ then *a* has unit image in $A_{a'}$ and the resulting unique *A*-algebra map $A_a \to A_{a'}$ is compatible with the restriction map carrying *k*-valued functions on X_a to *k*-valued functions on $X_{a'}$. In particular, for any $a, a' \in A$ we have $X_{aa'} = X_a \cap X_{a'}$, so fractions $f = b/a^n \in A_a$ and $f' = b'/a'^{n'} \in A_{a'}$ viewed as *k*-valued functions on X_a and $X_{a'}$ respectively agree on $X_a \cap X_{a'}$ if and only if *f* and *f'* have the same images in the common localization $A_{aa'} = (A_a)_{a'} = (A_{a'})_a$.

Theorem 1.1. Let $f : X = Max(A) \rightarrow k$ be a function, and choose $a_1, \ldots, a_n \in A$ such that the open sets X_{a_i} cover X. If $f|_{X_{a_i}} \in A_{a_i}$ as a k-valued function on X_{a_i} for each i then $f \in A$ as a k-valued function on X.

Proof. The condition that $\{X_{a_i}\}$ covers X is that their complements $V_A(a_i)$ have empty total intersection. But this intersection is $V_A((a_1, \ldots, a_n))$, so the emptiness says that the ideal (a_1, \ldots, a_n) is not contained in *any* maximal ideals of A, which is to say that $(a_1, \ldots, a_n) = (1)$.

In view of the discussion preceding the Theorem, we can now express the problem in terms of commutative algebra with A and its localizations: if $a_1, \ldots, a_n \in A$ generate 1 and $f_i \in A_{a_i}$ are elements such that $f_i = f_j$ in $A_{a_i a_j}$ for all $i \neq j$ then there exists $f \in A$ such that $f = f_i$ in A_{a_i} for all i. To prove this, we write $f_i = b_i/a_i^{n_i}$ for all i. We may and do increase the exponent in each of these denominators (by multiplying the numerators accordingly) so that $n_i = n$ for all i. The equality $f_i = f_j$ in $A_{a_i a_j}$ says that the element $a_j^n b_i - a_i^n b_j$ of A vanishes in $A_{a_i a_j}$ for all i, j. That is, this difference is killed in A by $(a_i a_j)^{n_{ij}}$ for some $n_{ij} \geq 0$, and we may certainly increase these to all equal some common $m \geq 0$. Hence, for all $i \neq j$ we have

$$(a_i a_j)^m (a_j^n b_i - a_i^n b_j) = 0,$$

or equivaently

$$a_j^{n+m}(a_i^n b_i) - a_i^{n+m}(a_j^n b_j) = 0$$

in A for all $i \neq j$.

We arranged that $(a_1, \ldots, a_n) = (1)$, so by raising an identity $\sum z_i a_i = 1$ to a large power we see that $(a_1^r, \ldots, a_n^r) = (1)$ for all $r \ge 1$. Setting r = n + m, we get $c_i \in A$ such that

(1.1)
$$\sum c_i a_i^{n+m} = 1.$$

This should be viewed as a "partition of unity". For all $i \neq j$ we have

$$a_j^{n+m}(a_i^n b_i) = a_i^{n+m}(a_j^n b_j)$$

in A, so if we multiply both sides of (1.1) by $a_j^n b_j$ we get

$$a_{j}^{n}b_{j} = \sum_{i} c_{i}a_{i}^{n+m}a_{j}^{n}b_{j} = \sum_{i} c_{i}a_{j}^{n+m}(a_{i}^{n}b_{i}) = (\sum_{i} c_{i}a_{i}^{n}b_{i})a_{j}^{n+m}.$$

Since $f_i = b_i/a_i^n = (b_i a_i^m)/a_i^{n+m}$, if we define e = n + m and $b'_i = b_i a_i^m$ then $f_i = b'_i/a_i^e$ for all i and

$$b'_j = (\sum_i c_i b'_i) a^e_j$$

in A for all j. Thus,

$$f_i = b'_j / a^e_j = \sum_i c_i b'_i$$

in A_{a_i} for all *i*. That is, the element $f = \sum_i c_i b'_i \in A$ satisfies $f = f_i$ in A_{a_i} for all *i*.

2. Geometric objects attached to rings

For any reduced finitely generated k-algebra A, we define the ringed space

$$\operatorname{MaxSpec}(A) = (\operatorname{Max}(A), \mathcal{O}_A)$$

over k attached to A. We know that the topological space Max(A) is contravariant in A, and we wish to upgrade this to a contravariance for MaxSpec(A). More importantly, once this is done, we will show that for a second reduced finitely generated k-algebra B, the resulting map of sets

$$\operatorname{Hom}_{k-\operatorname{alg}}(A, B) \to \operatorname{Hom}(\operatorname{MaxSpec}(B), \operatorname{MaxSpec}(A))$$

is bijective: MaxSpec(A) functorially encodes A.

Lemma 2.1. For any map of k-algebras $\phi : A \to B$, pullback of k-valued functions along the continuous map ϕ : Max $(B) \to Max(A)$ carries $\mathcal{O}_A(U)$ into $\mathcal{O}_B(\phi^{-1}(U))$ for all open $U \subset Max(A)$. That is, ϕ underlies a uniquely determined map of ringed spaces

 $\operatorname{MaxSpec}(\phi) : \operatorname{MaxSpec}(B) \to \operatorname{MaxSpec}(A)$

over k.

Proof. Choose $f \in \mathscr{O}_A(U)$. To show that $f \circ \widetilde{\phi} : \phi^{-1}(U) \to k$ lies in $\mathscr{O}_B(\widetilde{\phi}^{-1}(U))$, by the local nature of \mathscr{O}_B we just have to find an open cover of $\widetilde{\phi}^{-1}(U)$ by subsets of $Y = \operatorname{Max}(B)$ of the form Y_{b_i} such that $(f \circ \widetilde{\phi})|_{Y_{b_i}} \in B_{b_i}$ for all i.

of the form Y_{b_i} such that $(f \circ \tilde{\phi})|_{Y_{b_i}} \in B_{b_i}$ for all *i*. Since *U* is open in X = Max(A), it has an open cover by sets of the form X_{a_i} . The preimage of $V_A(a)$ under $\tilde{\phi}$ is $V_B(\phi(a))$ since $a(\tilde{\phi}(y)) = (\phi(a))(y)$, so $\tilde{\phi}^{-1}(X_a) = Y_{\phi(a)}$ by passing to complements. Hence, the open sets $Y_{\phi(a_i)}$ cover $\tilde{\phi}^{-1}(U)$, so it suffices to show that $(f \circ \tilde{\phi})|_{Y_{\phi(a_i)}} \in B_{\phi(a_i)}$ for all *i*. But

$$(f \circ \phi)|_{Y_{\phi(a_i)}} = (f|_{X_{a_i}}) \circ \phi$$

and $f|_{X_{a_i}} = f_i \in A_{a_i}$ for all *i* since $f \in \mathcal{O}_A(U)$. Thus, we are reduced to showing that pullback of *k*-valued functions along $\phi : Y_{\phi(a)} \to X_a$ induces $\phi : A_a \to B_{\phi(a)}$. This is the problem of comparing two maps from A_a into the *k*-algebra of *k*-valued functions on $Y_{\phi(a)}$, and as such it suffices to compare after composing with $A \to A_a$ (due to the uniqueness aspect of the universal property of this localization).

Since $A \to A_a$ is induced by the restriction map along $X_a \hookrightarrow X$ on k-valued functions (HW6, Exercise 4(i)), our problem is to show that pullback of k-valued functions along the composite map $Y_{\phi(a)} \to X_a \to X$ carries A into $B_{\phi(a)}$ via ϕ . But this composite map of topological spaces is equal to the composite map

$$Y_{\phi(a)} \to Y \to X$$

(the latter being $\tilde{\phi}$), and pullback of k-valued functions along $Y_{\phi(a)} \to Y$ induces the natural map $B \to B_{\phi(a)}$. Hence, we are finally reduced to checking that pullback of k-valued functions along $\tilde{\phi}: Y \to X$ induces $\phi: A \to B$. In view of the *definition* of $\tilde{\phi}$, this was a calculation early in our study of "polynomial maps" (in terms of a choice of presentation of each of A and B as quotients of polynomial rings over k).

It is clear that if $\psi: B \to C$ is a second such map then

 $MaxSpec(\psi \circ \phi) = MaxSpec(\phi) \circ MaxSpec(\psi).$

Hence, $A \rightsquigarrow \text{MaxSpec}(A)$ is a contravariant functor from the category of reduced finitely generated k-algebras to the category of ringed spaces over k. The key fact is that this construction involves no new maps in the following sense:

Theorem 2.2. The natural map of sets

$$\operatorname{Hom}_{k-\operatorname{alg}}(A, B) \to \operatorname{Hom}(\operatorname{MaxSpec}(B), \operatorname{MaxSpec}(A))$$

defined by $\phi \mapsto \widetilde{\phi}$ is bijective.

Proof. The map induced by pullback along ϕ on global k-valued functions carries A into B via ϕ . Hence, ϕ as a map between ringed spaces over k recovers ϕ ! This proves the injectivity.

Now let $f : \operatorname{MaxSpec}(B) \to \operatorname{MaxSpec}(A)$ be an arbitrary map as ringed spaces over k. Pullback along f on global k-valued functions carries $A = \mathcal{O}_A(\operatorname{Max}(A))$ into $B = \mathcal{O}_B(\operatorname{Max}(B))$ via some k-algebra map ϕ . We therefore aim to prove that $f = \tilde{\phi}$.

Since a map between ringed spaces over k is determined by the map on underlying topological spaces, it suffices to show that for $y \in Y = \operatorname{Max}(B)$, the point $x = f(y) \in X = \operatorname{Max}(A)$ is equal to $\tilde{\phi}(y)$. Since a point of X is just a maximal ideal of A, and so is determined by the set of elements $a \in A$ that vanish at this point (this set being exactly the associated maximal ideal of A), we just have to show that a(x) = 0 if and only if $a(\tilde{\phi}(y)) = 0$. But $a(x) = a(f(y)) = (a \circ f)(y) = (\phi(a))(y)$ by definition of ϕ . By the computations from our early study of polynomial maps, we know that $(\phi(a))(y) = a(\tilde{\phi}(y))$. Hence, $a(x) = a(\tilde{\phi}(y))$ for all $a \in A$, so $x = \tilde{\phi}(y)$ as desired.