Math 145. Dimension theory for locally closed subsets

Recall that the dimension of a topological space X (for applications to algebraic geometry) is defined to be the supremum over all $n \geq 0$ such that X contains a strictly increasing chain

$$
Z_{0} \subsetneq Z_{1} \subsetneq \cdots \subsetneq Z_{n}
$$

with each Z_{i} an irreducible closed subset of X. We have seen in class that if Y is a subspace of X then $\operatorname{dim} Y \leq \operatorname{dim} X$. In this handout, we address the behavior of dimension on "reasonable" subspaces of X.

Let $Y \subset X$ be a subset that is locally closed in the following sense: for all $y \in Y$ there exists an open set $U_{y} \subset X$ containing y such that $Y \bigcap U_{y}$ is closed in U_{y}. For visualization purposes, the basic example to keep in mind is to begin with a closet set $Z \subseteq X$ and to remove a closed subset of Z. This gives all examples. That is, a subset Y of X is locally closed if and only if $Y=Z \bigcap U$ for a closed set Z in X and an open set U in X. Indeed, the implication " \Leftarrow " is clear, and for the converse we note that $U:=\bigcup_{y \in Y} U_{y}$ contains Y as a closed subset (since $U-Y$ meets each open U_{y} in the subset $U_{y}-\left(Y \cap U_{y}\right)$ that is open in U_{y}, and an arbitrary union of open subsets is open). Thus, $Y=Z \bigcap U$ for a closed set Z in X as desired. Locally closed sets arise very often in algebraic geometry: we may begin with a closed set Z in k^{n}, and then pass to the open set $Z \cap\{f \neq 0\}$ for some $f \in k\left[x_{1}, \ldots, x_{n}\right]$.

Another way to express the "locally closed" condition is that Y is open in its closure \bar{Y}. Indeed, since the formation of closures in topological spaces commutes with intersecting against an open subset (check!), if $Y=Z \cap U$ for closed Z in X and open U in X then $\bar{Y} \cap U$ is the closure of Y in U, which is simply Y. That is, $Y=U \cap \bar{Y}$ is open in \bar{Y}. Conversely, if Y is open in \bar{Y} then $Y=Z \bigcap U$ where $Z=\bar{Y}$ is closed in X and U is some open subset of X.

Our main goal is to prove:
Theorem 0.1. If Y is locally closed in an affine algebraic set X then $\operatorname{dim} Y=\operatorname{dim} \bar{Y}$.
To prove this, we will use the result (proved in class) that in the irreducible case, $\operatorname{dim} X=$ $\operatorname{trdeg}_{k} k(X)$ where $k(X)$ denotes the fraction field of the coordinate ring $k[X]$ (a domain since X is irreducible).

First note that we can replace X by \bar{Y}, bringing us to the case where $Y=U$ is a dense open subset of X. In such cases we seek to prove that $\operatorname{dim} U=\operatorname{dim} X$. The first key step is to pass to the case when X is irreducible, as follows. If $\left\{X_{1}, \ldots, X_{m}\right\}$ is the set of irreducible components of X then $Z_{1}=X_{2} \cup \cdots \cup X_{m}$ is closed in X and not equal to X (as $X_{1} \not \subset Z_{1}$), so $U \cap\left(X-Z_{1}\right)$ is a non-empty open subset of X_{1} since U is dense in X and $X-Z_{1}$ is a non-empty open subset of X. Hence, $U \cap X_{1}$ is also a non-empty open subset of X_{1}. Likewise, $U \cap X_{i}$ is a non-empty open subset of X_{i} for all i.

Open sets in irreducible spaces are dense, so each $U \cap X_{i}$ is irreducible (as its closure X_{i} in X is irreducible) and $U \cap X_{i}$ is not contained in $U \cap X_{i^{\prime}}$ whenever $i \neq i^{\prime}$ (as their respective closures X_{i} and $X_{i^{\prime}}$ in X are distinct). Hence, $\left\{U \cap X_{i}\right\}$ is the finite set of irreducible components of the noetherian topological space U, so $\operatorname{dim} U=\max \operatorname{dim}\left(U \cap X_{i}\right)$. Likewise, $\operatorname{dim} X=\max \operatorname{dim} X_{i}$. It therefore suffices to show that $\operatorname{dim}\left(U \cap X_{i}\right)=\operatorname{dim} X_{i}$ for each i, so we may now assume that X is irreducible. Thus, every non-empty open subset of X is dense.

The next step is to pass to a more concrete U. Pick $x_{0} \in U$, and let J be the ideal in the coordinate ring $k[X]$ of X corresponding to the closed set $X-U$ in X. There must be some $f \in J$ that is non-vanishing at x_{0} (since $x \notin X-U=\underline{Z}(J)$), so $X_{f}:=\{x \in X \mid f(x) \neq 0\}=$ $X-\underline{Z}(f)$ is an open subset of X that contains x_{0} (so it is non-empty) and is contained in U (since $f \in J$). That is,

$$
x_{0} \in X_{f} \subseteq U \subseteq X
$$

so $\operatorname{dim} X_{f} \leq \operatorname{dim} U \leq \operatorname{dim} X$ and hence it suffices to prove that $\operatorname{dim} X_{f}=\operatorname{dim} X$. That is, we can replace U with X_{f} for some nonzero f in the coordinate ring $k[X]$.

Now comes the key point. Recall that we are granting the link between dimension theory of affine algebraic sets and transcendence degree: $\operatorname{dim} X=\operatorname{trdeg}_{k} k(X)$. We shall prove likewise that $\operatorname{dim} X_{f}=\operatorname{trdeg}_{k} k(X)$. Although X_{f} is open in X and generally not closed, the Rabinowitz trick that arose in the proof of the Nullstellensatz will enable us to homeomorphically identify the irreducible open set X_{f} with an affine algebraic set whose function field is also $k(X)$ (so we would be done).

Consider the affine space k^{N} (with coordinates x_{1}, \ldots, x_{N}) that contains X as $\underline{Z}(J)$ for a radical ideal J. Since X is irreducible, $J=P$ is even prime. The Rabinowitz trick identifies X_{f} as a set with the affine algebraic set X^{\prime} in k^{N+1} (with coordinates x_{1}, \ldots, x_{N}, t) defined by killing J and $t f(x)-1$. Explicitly, the continuous projection map $k^{N+1} \rightarrow k^{N}$ to the first N coordinates restricts to a continuous map $X^{\prime} \rightarrow X_{f}$ that is visibly bijective with inverse $x \mapsto(x, 1 / f(x))$.

Grant for a moment that this set-theoretic inverse map $X_{f} \rightarrow X^{\prime}$ is also continuous. We conclude that X_{f} is (naturally) homeomorphic to X^{\prime}, so by the topological nature of the definition of dimension we see that $\operatorname{dim} X_{f}=\operatorname{dim} X^{\prime}=\operatorname{trdeg}\left(k\left(X^{\prime}\right)\right)$. But the coordinate ring $k\left[X^{\prime}\right]$ is k-isomorphic to $k[X][t] /(t f-1) \simeq k[X]_{f}$, so $k\left[X^{\prime}\right]$ is a domain whose fraction field is $\operatorname{Frac}\left(k[X]_{f}\right)=\operatorname{Frac}(k[X])=k(X)$. Hence, comparing transcendence degrees over k then gives that $\operatorname{dim} X_{f}=\operatorname{dim} X^{\prime}=\operatorname{trdeg}_{k} k(X)=\operatorname{dim} X$, so we would be done. It remains (granting the equality $\operatorname{dim} X=\operatorname{trdeg}_{k}(k(X))$ for irreducible X) to show that the inverse map $X_{f} \rightarrow X^{\prime} \subset k^{N+1}$ is continuous. We shall show that the preimage of any closed set in k^{N+1} is closed in X_{f} (which will give the result, since the topology on X^{\prime} is defined to make it closed in k^{N+1}.

Since every closed set in k^{N+1} is an intersection of finitely many hypersurfaces, it suffices to show that for any $h \in k\left[x_{1}, \ldots, x_{N}, t\right]$ the preimage in X_{f} of $\underline{Z}(h) \subset k\left[X^{\prime}\right]$ is closed in X_{f}. This preimage consists of points $x \in k^{N}$ such that $h(x, 1 / f(x)) \neq 0$. If h has degree d then we can write

$$
h\left(c_{1}, \ldots, c_{n}, 1 / f(c)\right)=\frac{H\left(c_{1}, \ldots, c_{n}\right)}{f(c)^{d}}
$$

where H is an auxiliary polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$, so the visibly closed subset $\underline{Z}(H) \subset k^{N}$ is the preimage in X^{\prime} of $\underline{Z}(h) \subset X^{\prime}$.

