
Math 145. Dimension theory for locally closed subsets

Recall that the dimension of a topological space X (for applications to algebraic geometry)
is defined to be the supremum over all n ≥ 0 such that X contains a strictly increasing chain

Z0 ( Z1 ( · · · ( Zn

with each Zi an irreducible closed subset of X. We have seen in class that if Y is a subspace
of X then dimY ≤ dimX. In this handout, we address the behavior of dimension on
“reasonable” subspaces of X.

Let Y ⊂ X be a subset that is locally closed in the following sense: for all y ∈ Y there
exists an open set Uy ⊂ X containing y such that Y

⋂
Uy is closed in Uy. For visualization

purposes, the basic example to keep in mind is to begin with a closet set Z ⊆ X and to
remove a closed subset of Z. This gives all examples. That is, a subset Y of X is locally
closed if and only if Y = Z

⋂
U for a closed set Z in X and an open set U in X. Indeed,

the implication “⇐” is clear, and for the converse we note that U :=
⋃

y∈Y Uy contains Y as

a closed subset (since U − Y meets each open Uy in the subset Uy − (Y ∩Uy) that is open in
Uy, and an arbitrary union of open subsets is open). Thus, Y = Z

⋂
U for a closed set Z in

X as desired. Locally closed sets arise very often in algebraic geometry: we may begin with
a closed set Z in kn, and then pass to the open set Z ∩ {f 6= 0} for some f ∈ k[x1, . . . , xn].

Another way to express the “locally closed” condition is that Y is open in its closure
Y . Indeed, since the formation of closures in topological spaces commutes with intersecting
against an open subset (check!), if Y = Z∩U for closed Z in X and open U in X then Y ∩U
is the closure of Y in U , which is simply Y . That is, Y = U ∩ Y is open in Y . Conversely,
if Y is open in Y then Y = Z

⋂
U where Z = Y is closed in X and U is some open subset

of X.
Our main goal is to prove:

Theorem 0.1. If Y is locally closed in an affine algebraic set X then dimY = dimY .

To prove this, we will use the result (proved in class) that in the irreducible case, dimX =
trdegkk(X) where k(X) denotes the fraction field of the coordinate ring k[X] (a domain
since X is irreducible).

First note that we can replace X by Y , bringing us to the case where Y = U is a dense
open subset of X. In such cases we seek to prove that dimU = dimX. The first key step is
to pass to the case when X is irreducible, as follows. If {X1, . . . , Xm} is the set of irreducible
components of X then Z1 = X2 ∪ · · · ∪Xm is closed in X and not equal to X (as X1 6⊂ Z1),
so U ∩ (X − Z1) is a non-empty open subset of X1 since U is dense in X and X − Z1 is
a non-empty open subset of X. Hence, U ∩ X1 is also a non-empty open subset of X1.
Likewise, U ∩Xi is a non-empty open subset of Xi for all i.

Open sets in irreducible spaces are dense, so each U ∩Xi is irreducible (as its closure Xi in
X is irreducible) and U ∩Xi is not contained in U ∩Xi′ whenever i 6= i′ (as their respective
closures Xi and Xi′ in X are distinct). Hence, {U ∩ Xi} is the finite set of irreducible
components of the noetherian topological space U , so dimU = max dim(U ∩Xi). Likewise,
dimX = max dimXi. It therefore suffices to show that dim(U ∩ Xi) = dimXi for each i,
so we may now assume that X is irreducible. Thus, every non-empty open subset of X is
dense.
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The next step is to pass to a more concrete U . Pick x0 ∈ U , and let J be the ideal in the
coordinate ring k[X] of X corresponding to the closed set X −U in X. There must be some
f ∈ J that is non-vanishing at x0 (since x 6∈ X −U = Z(J)), so Xf := {x ∈ X | f(x) 6= 0} =
X − Z(f) is an open subset of X that contains x0 (so it is non-empty) and is contained in
U (since f ∈ J). That is,

x0 ∈ Xf ⊆ U ⊆ X,

so dimXf ≤ dimU ≤ dimX and hence it suffices to prove that dimXf = dimX. That is,
we can replace U with Xf for some nonzero f in the coordinate ring k[X].

Now comes the key point. Recall that we are granting the link between dimension theory
of affine algebraic sets and transcendence degree: dimX = trdegkk(X). We shall prove
likewise that dimXf = trdegkk(X). Although Xf is open in X and generally not closed, the
Rabinowitz trick that arose in the proof of the Nullstellensatz will enable us to homeomor-
phically identify the irreducible open set Xf with an affine algebraic set whose function field
is also k(X) (so we would be done).

Consider the affine space kN (with coordinates x1, . . . , xN) that contains X as Z(J) for a
radical ideal J . Since X is irreducible, J = P is even prime. The Rabinowitz trick identifies
Xf as a set with the affine algebraic set X ′ in kN+1 (with coordinates x1, . . . , xN , t) defined
by killing J and tf(x)−1. Explicitly, the continuous projection map kN+1 → kN to the first
N coordinates restricts to a continuous map X ′ → Xf that is visibly bijective with inverse
x 7→ (x, 1/f(x)).

Grant for a moment that this set-theoretic inverse map Xf → X ′ is also continuous. We
conclude that Xf is (naturally) homeomorphic to X ′, so by the topological nature of the
definition of dimension we see that dimXf = dimX ′ = trdeg(k(X ′)). But the coordinate
ring k[X ′] is k-isomorphic to k[X][t]/(tf − 1) ' k[X]f , so k[X ′] is a domain whose fraction
field is Frac(k[X]f ) = Frac(k[X]) = k(X). Hence, comparing transcendence degrees over k
then gives that dimXf = dimX ′ = trdegkk(X) = dimX, so we would be done. It remains
(granting the equality dimX = trdegk(k(X)) for irreducible X) to show that the inverse
map Xf → X ′ ⊂ kN+1 is continuous. We shall show that the preimage of any closed set in
kN+1 is closed in Xf (which will give the result, since the topology on X ′ is defined to make
it closed in kN+1.

Since every closed set in kN+1 is an intersection of finitely many hypersurfaces, it suffices
to show that for any h ∈ k[x1, . . . , xN , t] the preimage in Xf of Z(h) ⊂ k[X ′] is closed in Xf .
This preimage consists of points x ∈ kN such that h(x, 1/f(x)) 6= 0. If h has degree d then
we can write

h(c1, . . . , cn, 1/f(c)) =
H(c1, . . . , cn)

f(c)d

where H is an auxiliary polynomial in k[x1, . . . , xn], so the visibly closed subset Z(H) ⊂ kN

is the preimage in X ′ of Z(h) ⊂ X ′.


