
Math 145. Codimension

1. Main result and some interesting examples

In class we have seen that the dimension theory of an affine variety (irreducible!) is linked
to the structure of the function field in the sense that dimZ = trdegk(k(Z)). In particular,
we proved that all strictly increasing chains of irreducible closed subsets of Z have length
uniformly bounded by 1+trdegk(k(Z)), with some such chain achieving this maximal length.
But to make a sufficiently robust geometric theory of dimension, we need the following result
(to be proved in the next section).

Theorem 1.1. For every maximal chain of irreducible closed sets

Z0 ( Z1 ( · · · ( Zn = Z

in an affine variety Z (so Z0 is a point, by maximality), necessarily n = dimZ.

In this theorem, “maximal” means (since Z0 is a point and Z is irreducible) that the chain
cannot be made longer by inserting an irreducible closed set strictly between some Zi and
Zi+1. Since dimZ0 = 0 and dimZi+1 > dimZi for all i (as for any strict inclusion between
irreducible closed subsets of kN), we have

dimZi =
∑

1≤j≤i

(dimZj − dimZj−1)

with each of the i differences an integer ≥ 1. But for i = n we have dimZn = dimZ = n, so
each of the differences dimZj − dimZj−1 must be exactly 1 and hence dimZi = i for all i.

In other words, for a maximal chain of irreducible closed sets every jump involves an
increase of exactly 1 in the dimension. For example, in a 3-dimensional affine variety Z any
maximal chain of irreducible closed subsets must be a point in an irreducible curve in an
irreducible surface in Z. This has the following important corollary.

Corollary 1.2. If Z ′ is an affine variety of dimension d′ and Z ⊆ Z ′ is an irreducible closed
subset of dimension d ≤ d′ then every maximal chain of irreducible closed sets beginning at
Z and ending at Z ′ has the form

Z = Zd ( · · · ( Zd′ = Z ′

with dimZi = i for every d ≤ i ≤ d′.

Proof. By maximality of such a chain, if we append on the left a maximal chain contained
in Z then we get a maximal chain in Z ′, so by the Theorem applied to Z ′ this new chain
(which begins at a point) must have 1 + dimZ ′ terms and dimZi = i for all i. �

In view of this corollary, we have a good notion of codimension in the irreducible case:

Definition 1.3. For an affine variety Z ′ and an irreducible closed subset Z, the codimension
c = codimZ′(Z) of Z in Z ′ is the unique integer c such that every maximal chain of irreducible
closed sets beginning at Z and ending at Z ′ has c+1 terms. Equivalently, c = dimZ ′−dimZ.

1



2

There is a reasonable definition of codimension without irreducibility hypotheses (i.e.,
allowing Z or Z ′ to be reducible), but it is not as geometrically significant as in the irreducible
case, so we won’t discuss it.

We end this introductory section with some instructive examples. Inspired by linear
algebra, it is natural to wonder if we can define codimension c = codimZ′(Z) in terms of
“minimal number of equations needed to cut out Z inside Z ′”. This can be interpreted
in two reasonable ways. Since k[Z] = k[Z ′]/J for a radical ideal J , we can consider the
minimal number of generators of the ideal J or the minimal number of generators of some
ideal I ⊂ k[Z ′] such that rad(I) = J . This latter condition is a weaker requirement (as we
do not specify which I to use), but even for this it turns out that working with the number
of equations does not give the right notion in general.

The “problem” is that we are working too globally. It turns out that in a suitable “local”
sense (in the Zariski topology) one can always find a set of c “local equations” that define Z
as a subset of Z ′ near an arbitrary chosen point z ∈ Z, but the proof rests on much deeper
work in the dimension theory of local noetherian rings. For cutting out the entirety of Z in
Z ′, there are counterexamples if we try to use only c equations. We now describe two such
counterexample, but we omit the justifications (which require techniques in commutative
algebra beyond the level of this course).

Our first counterexample arises from the theory of elliptic curves (but the next example
will be more geometrically compelling).

Example 1.4. Consider the irreducible plane curve Z ′ = {y2 = x3 + 17} in k2 for an alge-
braically closed field k of characteristic 0. The point Z = {(−2, 3)} in Z ′ has codimension
1, but it can be shown that there is no element f ∈ k[Z ′] such that the zero locus of f on
Z ′ is Z. The key input to this is the fact that (−2, 3) has infinite order in the “group law”
on an elliptic curve arising from Z ′, a fact which uses non-obvious results in the arithmetic
theory of elliptic curves.

Our next counterexample (due to Hartshorne) works in any characteristic, involving a
surface in 4-space. Roughly speaking, we consider a surface S obtained from the plane by
identifying the points (0, 0) and (0, 1). More rigorously:

Example 1.5. Consider the k-subalgebra

A = {f ∈ k[t, u] | f(0, 0) = f(0, 1)} ⊂ k[t, u].

(The equation defining A corresponds to the geometric idea of identifying the points (0, 0)
and (0, 1).) I claim that A is the k-subalgebra generated by 4 elements:

t, tu, u(u− 1) = u2 − u, u2(u− 1) = u3 − u2.

Geometrically, this means that A is the coordinate ring of a surface in affine 4-space.
Clearly the 4 indicated elements of k[t, u] lie in A. To prove that they generate A as a

k-algebra, consider an arbitrary element f ∈ A. Since any n > 1 has the form 2a+ 3b with
integers a, b ≥ 0, we can use the elements u2 − u and u3 − u2 in our list to write f in the
form

f = h(t, u2 − u, u3 − u2) + ug(t)
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for some h ∈ k[x, y, z]. Likewise, ug(t) = cu + tuG(t) for some c ∈ k and G ∈ k[t]. Hence,
we have expressed f as an element of k[t, tu, u(u − 1), u2(u − 1)] up to adding an element
of the form cu. But cu ∈ A precisely when f ∈ A (as t, tu, u(u − 1), u2(u − 1) ∈ A), and
cu ∈ A if and only if c = 0, so f ∈ A if and only if c = 0. Thus, the asserted list of k-algebra
generators of A really does work.

To summarize, we see that there is a surjective map π : k[x, y, z, w] � A via

x 7→ t, y 7→ u(u− 1), z 7→ tu, w 7→ u2(u− 1).

The kernel P := ker π is a prime ideal (since the quotient A is a domain), and clearly

(1) xw − yz, x2y − z(z − x), y3 − w(w − y) ∈ P.
In more geometric terms, since the defining inclusion A ↪→ k[t, u] is injective, we see that
the polynomial map f : k2 → k4 defined by

f : (t, u) 7→ (t, u(u− 1), tu, u2(u− 1))

has image contained in Z(P ) and dense in Z(P ) (since k[x, y, z, w]/P = A ↪→ k[t, u] is
injective). Since the injective map k[x, y, z, w]/P = A→ k[t, u] is module-finite (e.g., t ∈ A
and u2−u ∈ A), the geometric map k2 → Z(P ) is finite surjective, so dimZ(P ) = dim k2 = 2.
Thus, Z := Z(P ) is an irreducible surface in k4; it has codimension 2.

The elements in (1) vanish on Z, and they do cut out Z set-theoretically; i.e., their common
zero locus in k4 is Z = f(k2). Indeed, consider a point (x0, y0, z0, w0) that satisfies all three
relations

x0w0 = y0z0, x
2
0y0 = z0(z0 − x0), y

3
0 = w0(w0 − y0).

We seek (t0, u0) ∈ k2 such that

(x0, y0, z0, w0) = (t0, u0(u0 − 1), t0u0, u
2
0(u0 − 1)).

The “easy” case is when x0 6= 0, in which case we define u0 = z0/x0 and t0 = x0; this works
since

u0(u0 − 1) = z0(z0 − x0)/x
2
0 = x2

0y0/x
2
0 = y0, u

2
0(u0 − 1) = u0y0 = z0y0/x0 = w0.

Suppose instead that x0 = 0, so clearly z0 = 0 and our point is (0, y0, 0, w0) with y3
0 =

w0(y0 − w0). If y0 = 0 then w0 = 0 and so we can take t0 = u0 = 0. If y0 6= 0 then we can
take t0 = 0 and u0 = w0/y0. This completes the proof that Z is the common zero locus of
the elements in (1). (Note that we have not addressed whether or not these three elements
of P in fact generate P . This is not necessary to know.)

To prove that Z cannot be the set of common zeros of a pair of polynomials in k[x, y, z, w],
one has to use deeper techniques from commutative algebra (related to completions and
connectedness properties of Cohen-Macaulay rings). This is explained in Example 3.4.2 of
Hartshorne’s paper “Complete intersections and connectedness”.

2. Proof of Theorem 1.1

We shall prove that if Z is an affine variety over an algebraically closed field k then all
maximal chains of irreducible closed subsets of Z have length 1 + dimZ. (The argument
works over any infinite field, but we prefer to use geometric language in some parts rather
than pure commutative algebra, hence our need to restrict to an algebraically closed ground
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field.) We argue by induction on dimZ. If dimZ = 0 then Z is a point and the result is
clear. Thus, we may assume that the common value dimZ = trdegk(k(Z)) is positive. Since
any maximal chain of irreducible closed subsets in Z ends with V ( Z where V is maximal
among irreducible proper closed subsets of Z, our task is equivalent to showing that if V ( Z
is a maximal irreducible proper closed subset of Z then

dim(V )
?
= dim(Z)− 1,

as then we can apply dimension induction to conclude. It is equivalent to show that
trdegk(k(V )) = trdegk(k(Z))− 1.

We first treat the special case Z = kd with d > 0, and then we will use this case to
handle the general case via the Noether normalization theorem. For Z = kd we claim that
the maximal proper irreducible closed subsets are precisely the irreducible hypersurfaces
V = Z(f) for an irreducible f ∈ k[Z] = k[T1, . . . , Td]. Indeed, if P is any nonzero prime
ideal of this polynomial ring then it contains a nonzero polynomial and thus (by primality)
contains one of its irreducible factors f . That is, P contains (f), so the prime ideals (f)
for irreducible f ∈ k[T1, . . . , Td] are precisely the minimal nonzero primes of this polynomial
ring. This yields the asserted description of the maximal irreducible proper closed subsets
of kd. Our task in this special case is to show that dim(Z(f)) = d− 1.

By relabeling variables we can assume that f involves Td, so

f = an(T1, . . . , Td−1)T
n
d + · · · ∈ k[T1, . . . , Td−1][Td]

with n > 0, the omitted terms of lower degree in Td, and an ∈ k[T1, . . . , Td−1] nonzero. Since
f is irreducible and involves Tn, it is easy to see (check!) that f does not divide any nonzero
element of k[T1, . . . , Td−1]. Thus, the natural map

k[T1, . . . , Td−1]→ k[T1, . . . , Td]/(f) = k[Z(f)]

between domains is injective, yet the induced map of fraction fields

k(T1, . . . , Td−1)→ k(Z(f))

is finite algebraic since the element Td ∈ k(Z(f)) satisfies the positive-degree algebraic rela-
tion over k(T1, . . . , Td−1) given by the condition f = 0. Thus, by additivity of transcendence
degree in towers of finitely generated field extensions,

dim(Z(f)) = trdegk(k(Z(f))) = trdegk(k(T1, . . . , Td−1)) = d− 1,

as desired.
Now we consider the general case with d = dim(Z) > 0. By Noether normalization there

is a finite surjection f : Z → kd, so the image V ′ = f(V ) ⊆ kd is an irreducible closed subset
and V → V ′ is a finite surjection. Thus, dimV ′ = dimV < dimZ = d, so V ′ 6= kd. It
suffices to show that dim(V ′) = d − 1, so in view of the special case just treated above it
suffices to show that V ′ is maximal as an irreducible proper closed subset of kd. Recall that
V is maximal as an irreducible proper closed subset of Z, by hypothesis. It therefore suffices
to apply the following general result to Z → kd.

Proposition 2.1 (weak going-down theorem). Let f : Z → Z ′ be a finite surjective map
between affine varieties over an algebraically closed field k. Assume that k[Z ′] is an integrally
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closed domain, and let V ⊆ Z be a maximal proper irreducible closed subset. The irreducible
closed image V ′ = f(V ) ⊆ Z ′ is a maximal proper irreducible closed subset of Z ′.

This proposition is true without the “integrally closed” condition once Theorem 1.1 is
proved, as one sees by then simply considering dimensions (as the hypothesis is then saying
dimV = dimZ − 1 and the conclusion is saying dimV ′ = dimZ ′ − 1, and we know that
dimension does not change under finite surjective maps between irreducible affine algebraic
sets).

Proof. Let d denote the common dimension of Z and Z ′ (which we may assume to be
positive). Since dim(V ′) = dim(V ) < d, we certainly have that V ′ 6= Z ′. We assume to the
contrary that there is an irreducible closed subset W ′ strictly between V ′ and Z ′. In terms
of commutative algebra with the domain A = k[Z] and its integrally closed k-subalgebra
A′ = k[Z ′], P ′ = I(V ′) is a prime ideal of A′ strictly containing the nonzero prime ideal
Q′ = I(W ′) of A′ and by construction of V ′ we know that P = I(V ) is a prime ideal of A
lying over P ′ (i.e., P ∩ A′ = P ′, which is to say A′/P ′ ↪→ A/P ). Also, by hypothesis P is
minimal as a nonzero prime ideal of A (expressing the maximality hypothesis on V in Z).
From this situation we shall deduce a contradiction.

Let W = f−1(W ′), a closed (possibly reducible!) subset of Z that maps onto W ′. By the
Nullstellensatz, the ideal I(W ) ⊂ k[Z] = A is rad(Q′A). The finiteness of W � W ′ implies
that each irreducible component of W is finite onto an irreducible closed subset of W ′, which
in turn has dimension < d, so the irreducible components of W have dimension < d. Thus,
these components are all distinct from Z. But V is an irreducible closed subset of W , hence
it lies in one of the irreducible components of W , yet V is maximal as an irreducible closed
subset of Z! Since we have just seen that all irreducible components of W are distinct from
Z, this forces V to exhaust an irreducible component of W that contains it; i.e., V is an
irreducible component of W . But f(V ) = V ′ 6= W ′ = f(W ), so V 6= W . In other words, W
must be reducible.

Consider the irreducible components {V = W1, . . . ,Ws} of W . Since W2 ∪ · · · ∪ Ws is
a proper closed subset of W , removing it leaves a non-empty open subset U of W that is
contained in the irreducible V , so U is also irreducible. A base for the topology of W consists
of “hypersurface complements” Wa = W∩{a 6= 0} for a ∈ A = k[Z], so some Wa is contained
in U . In particular, Wa is irreducible and must coincide with Va. By the Rabinowitz trick,
Wa is homeomorphic to the affine algebraic set associated to the finitely generated k-algebra

k[W ]a = (A/I(W ))a = (A/rad(Q′A))a ' Aa/rad(Q′Aa),

where the final equality is HW2, Exercise 3(iii). By the irreducibility this ring is a domain.
But the ideal P of A = k[Z] that cuts out V ⊂ Z vanishes at all points of the non-empty
Va = Wa, so a 6∈ P and hence PAa is a prime ideal of Aa containing Q′Aa, so it contains
rad(Q′Aa). We conclude that PAa/rad(Q′Aa) is a prime ideal of the domain k[W ]a and
yet vanishes at all of its “points”, so this is the ideal (0). That is, PAa = rad(Q′Aa). In
particular, every h ∈ P satisfies hn ∈ Q′Aa for some n > 0, so some amhn ∈ Q′A for some
m,n > 0.

Since P contains P ′, to get a contradiction we may take h = a′ ∈ P ′ − Q′. (Such an a′

exists since Q′ is strictly contained in P ′.) Thus, ξ := ama′n ∈ Q′A. Recall from class that
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this implies that ξ is a root of a monic polynomial

H(T ) = TN + q′N−1T
N−1 + · · ·+ q′0 ∈ A′[T ]

with q′j ∈ Q′. Now we bring out a special feature of integrally closed domains (such as A′):

Lemma 2.2. Let A′ be an integrally closed domain, and F ′ its fraction field. For any finite
extension F/F ′ and ξ ∈ F that is integral over A′, the minimal polynomial of ξ over F ′ lies
in A′[T ] and it generates the ideal of elements of A′[T ] that vanish on ξ.

This lemma asserts the striking fact that for integrally closed A′, the concept of minimal
polynomial works well over A′ even though A′[T ] is not a PID (when A′ is not a field).

Proof. We may replace F with its normal closure over F ′ so that F is normal over F ′. Hence,
the minimal polynomial g ∈ F ′[T ] of ξ splits over F and Aut(F/F ′) transitively permutes
the roots. But ξ is integral over A′, so all of the roots are integral over A′. Their elementary
symmetric functions are the coefficients of g in F ′ yet must be integral over A′ (as integrality
is preserved under sums and products, such as in the formation of elementary symmetric
functions), so by the integral closedness of A′ in F ′ we conclude that the coefficients of g do
indeed lie in A′.

Suppose now that h ∈ A′[T ] vanishes at ξ, so g|h in F ′[T ]. But g is monic over A′ and
h ∈ A′[T ], so if we write h = gG for some necessarily monic G ∈ F ′[T ] then G must lie in
A′[T ] because otherwise we choose the maximal-degree term c′T r in G with coefficient c′ not
in A′ and compare h and gG in degree r + deg(g). �

We conclude from the lemma that the minimal polynomial h(T ) of ξ = ama′n over k(Z ′)
lies in A′[T ] and divides H(T ) = TN + q′N−1T

N−1 + · · ·+ q′0 in A′[T ]. Passing to the quotient
modulo Q′, it follows that h mod Q′ divides H mod Q′ = TN in (A′/Q′)[T ] = k[W ′][T ].
Working in k(W ′)[T ], the factor h mod Q′ of TN must be a power of T , yet h is monic in
A′[T ], so we conclude that all lower-degree coefficients of h also lies in Q′ (just like for H).

The minimal polynomial of am = ξ/a′n over k(Z ′) is obtained by h by dividing the lower-
degree coefficients of h by suitable powers of a′, yet these coefficients also all lie in A′ since
the element am of the module-finite A′-algebra A must be integral over A′ (by the preceding
Lemma). The lower-degree A′-coefficients of this minimal polynomial wind up in Q′ after
multiplying by a suitable power of a′ (to recover h), yet a′ 6∈ Q′ by design, so primality of
Q′ then implies that the lower-degree coefficients of the minimal polynomial of am all lie in
Q′! That is, we have a monic relation

(am)N + c′N−1(a
m)N−1 + · · ·+ c′0 = 0

with all c′j ∈ Q′, so (am)N ∈ Q′A ⊂ P ′A ⊂ P . Primality of P then forces a ∈ P . But we
saw early on from our choice of a that in fact a 6∈ P ! This contradiction completes the proof
of Proposition 2.1 (and hence of Theorem 1.1). �

Remark 2.3. The idea behind the preceding proof can be expressed in another way which
illuminates the role of integral closedness. Rather than showing that a maximal proper
irreducible closed set V ⊂ Z maps onto a maximal proper irreducible closed set V ′ ⊂ Z ′

(with Z and Z ′ irreducible affine algebraic sets), we can just as well try to show that if
V ′ ( W ′ ⊂ Z ′ is a strict containment between general irreducible closed sets in Z ′ and if V
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is an irreducible closed set of Z that lies over V ′ in the sense that it maps onto V ′ then is
V contained in an irreducible closed set W that maps onto W ′ (so V ( W ⊆ Z if W ′ lies
strictly between V ′ and Z ′)? This formulation of the problem turns out to be false when
k[Z ′] is not integrally closed.

Here is a nice counterexample. Consider the map f : k2 → k3 defined by (x, y) 7→
(x(x−1), x2(x−1), y). The image consists of the points (u, v, y) ∈ k3 for which v2−uv−u3 = 0
(as we see by setting x = v/u when u 6= 0), so if we define

Z ′ = {(u, v, y) ∈ k3 | v2 − uv − u3 = 0}
then it is easy to check that Z ′ is an irreducible surface and f : k2 → Z ′ is a finite map
(since x2 − x and y lie in the coordinate ring k[Z ′] ⊂ k[x, y]). In fact, the module-finite
inclusion k[Z ′] ↪→ k[x, y] induces an equality of fraction fields since y ∈ k[Z ′] and x = v/u
with u, v ∈ k[Z ′], so k[x, y] is the integral closure of k[Z ′] in its fraction field and it is strictly
larger (e.g., x 6∈ k[Z ′]). That is, k[Z ′] is not integrally closed.

Geometrically, f carries both lines L0 = {x = 0} and L1 = {x = 1} onto the y-axis
L = {u = v = 0} ⊂ Z ′ in k3, with f−1(L) = L0 ∪ L1. Away from L the restricted
map k2 − (L0 ∪ L1) → Z ′ − L is an isomorphism between these basic affine open sets (i.e.,
the associated map of coordinate rings k[x, y]x(x−1) → k[Z ′]x−y is an isomorphism), so we
visualize Z ′ as the result of making the plane k2 pass through itself along a single line L.

Consider the diagonal line ∆ = {x = y} in k2 which meets L0 = {x = 0} in (0, 0) and
meets L1 = {x = 1} in (1, 1). The image C ′ = f(∆) ⊂ Z ′ is an irreducible closed set in
Z ′ of dimension 1 that meets the common image L of L0 and L1 in the points P = (0, 0, 0)
and Q = (0, 0, 1). Visually, C ′ is a curve in Z ′ that “wraps around” the surface Z ′, passing
through the line of singularities L at the points P and Q. In particular, the preimage
f−1(C ′) = ∆ ∪ {(1, 0)} ∪ {(0, 1)} is a disjoint union of the diagonal ∆ and two isolated
points (1, 0) and (0, 1). Thus, if we consider the irreducible closed set V ′ = {P} in C ′ and
choose the irreducible closed set V = {(1, 0)} over V ′ then there is no irreducible closed set
C in Z = k2 that contains V ′ and maps onto the irreducible closed set C ′ that contains V ′.
Indeed, since C ′ is irreducible of dimension 1 then any such C would have to be irreducible
of dimension 1 and yet lie in f−1(C ′) which is a disjoint union of ∆ and two isolated points.
That is, the only possibility for C is ∆, yet this does not contain V = {(1, 0)}!


