MATH 121. UNIQUENESS OF ALGEBRAIC CLOSURE

Let k be a field, and \overline{k}/k a choice of algebraic closure. As a first step in the direction of proving that \overline{k} is "unique up to (non-unique) isomorphism", we prove:

Lemma 0.1. Let L/k be an algebraic extension, and L'/L another algebraic extension. There is a k-embedding $i: L \hookrightarrow \overline{k}$, and once i is picked there exists a k-embedding $L' \hookrightarrow \overline{k}$ extending i.

Proof. Since an embedding $i: L \hookrightarrow \overline{k}$ realizes the algebraically closed \overline{k} as an algebraic extension of L (and hence as an algebraic closure of L), by renaming the base field as L it suffices to just prove the first part: any algebraic extension admits an embedding into a specified algebraic closure.

Define Σ to be the set of pairs (k',i) where $k'\subseteq L$ is an intermediate extension over k and $i:k'\hookrightarrow \overline{k}$ is a k-embedding. Using the inclusion $i_0:k\hookrightarrow \overline{k}$ that comes along with the data of how \overline{k} is realized as an algebraic closure of k, we see that $(k,i_0)\in\Sigma$, so Σ is non-empty. We wish to apply Zorn's Lemma, where we define a partial ordering on Σ by the condition that $(k',i')\leq (k'',i'')$ if $k'\subseteq k''$ inside of L and $i''|_{k'}=i'$. It is a simple exercise in gluing set maps to see that the hypothesis of Zorn's Lemma is satisfied, so there exists a maximal element $(K,i)\in\Sigma$.

We just have to show K=L. Pick $x\in L$, so x is algebraic over K (as it is algebraic over k). If $f_x\in K[T]$ is the minimal polynomial of x, then $K(x)\simeq K[T]/f_x$. Using $i:K\hookrightarrow \overline{k}$ realizes \overline{k} as an algebraic closure of K, so $f_x\in K[T]$ has a root in \overline{k} . Pick such a root, say r, and then we define $K[T]\to \overline{k}$ by using i on the coefficients K and sending T to r. This map kills f_x , and hence factors through the quotient to define a map of fields $K[T]/f_x\hookrightarrow \overline{k}$ extending i. Composing this with the isomorphism $K(x)\simeq K[T]/f_x$ therefore defines an element $(K(x),i')\in \Sigma$ which dominates (K,i). By maximality, this forces (K(x),i')=(K,i), or in other words K(x)=K as subfields of L. This holds for all $x\in L$, and says exactly $x\in K$. Thus, L=K, as desired.

As an application of the lemma, we get the "uniqueness" of algebraic closures:

Theorem 0.2. Let \overline{k}_1 and \overline{k}_2 be two algebraic closures of k. Then there exists an isomorphism $\overline{k}_1 \simeq \overline{k}_2$ over k.

Beware that the isomorphism in the theorem is nearly always highly non-unique (it can be composed with any k-automorphism of \overline{k}_2 , of which there are many in general). Thus, one should never write $\overline{k}_1 = \overline{k}_2$; always keep track of the choice of isomorphism. In particular, always speak of an algebraic closure rather than the algebraic closure; there is no "preferred" algebraic closure except in cases when there are no non-trivial automorphisms over k (which happens for fields which have the property of being "separably closed", a notion we'll encounter later).

Proof. By the lemma, applied to $L=\overline{k}_1$ (algebraic over k) and $\overline{k}=\overline{k}_2$ (an algebraically closed field equipped with a structure of algebraic extension of k), there exists a k-embedding $i:\overline{k}_1\hookrightarrow\overline{k}_2$. Since \overline{k}_1 is algebraic over k and \overline{k}_2 is algebraically closed, it follows that the k-embedding i realizes \overline{k}_2 as an algebraic extension of \overline{k}_1 . But an algebraically closed field (such as \overline{k}_1) admits no non-trivial algebraic extensions, so the map i is forced to be an isomorphism. More concretely, any $y\in\overline{k}_2$ is a root of an irreducible monic $f\in k[T]$, and $f=\prod(T-r_j)$ in $\overline{k}_1[T]$ since \overline{k}_1 is algebraically closed, so applying i shows that the $i(r_j)$'s exhaust the roots of f in \overline{k}_2 . Thus, $y=i(r_j)$ for some j, so indeed i is surjective.